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Abstract

In this article, we overview recent developments of modern computational meth-
ods for the approximate solution of phase-field problems. The main difficulty for
developing a numerical method for phase field equations is a severe stability restric-
tion on the time step due to nonlinearity and high order differential terms. It is known
that the phase field models satisfy a nonlinear stability relationship called gradient sta-
bility, usually expressed as a time-decreasing free-energy functional. This property
has been used recently to derive numerical schemes that inherit the gradient stability.
The first part of the article will discuss implicit-explicit time discretizations which
satisfy the energy stability. The second part is to discuss time-adaptive strategies for
solving the phase-field problems, which is motivated by the observation that the en-
ergy functionals decay with time smoothly except at a few critical time levels. The
classical operator-splitting method is a useful tool in time discrtization. In the final
part, we will provide some preliminary results using operator-splitting approach.

1 Introduction

Phase-field models have emerged as a powerful approach for modeling and predicting
mesoscale morphological and microstructural evolution in materials. They were origi-
nally derived for the microstructure evolution and phase transition, but have been recently
extended tomany other physical phenomena, such as solid-solid transitions, growth of can-
cerous tumors, phase separation of block copolymers, dewetting and rupture of thin liquid
films and infiltration of water into porous medium. In general, the phase-field models take
two distinct values (for instance,+1 and �1) in each of the phases, with a smooth change
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between both values in the zone around the interface, which is then diffused with a finite
width. Many phenomenological macroscopic coarsening processes are energy driven in
the sense that the dynamics is the gradient flow of a certain energy functionalKohn [2006].

Two of the phase-field models have attracted much attention: the molecular beam epi-
taxy (MBE) equation with slope selection

(1) ut = �ı∆2u+ r � f (ru); x 2 Rd ; t 2 (0; T ];

and the Cahn-Hilliard (CH) equation

(2) ut = �ı∆2u+∆f (u); x 2 Rd ; t 2 (0; T ]:

In this paper, we consider

(3) f (�) = �j�j
2

� �

for which the two phase-field models (1) and (2) become

(4) ut = �ı∆2u+ r � (jruj
2
ru � ru); (x; y) 2 Rd ; t 2 (0; T ];

and

(5) ut = �ı∆2u+∆(u3 � u); (x; y) 2 Rd ; t 2 (0; T ]:

In (4), u is a scaled height function of epitaxial growth of thin films in a co-moving frame
and the parameter ı is a positive surface diffusion constant. In (5), u represents the con-
centration of one of the two metallic components of the alloy, and the positive parameter ı
represents the interfacial width, which is small compared to the characteristic length of the
laboratory scale. An important feature of these two equations is that they can be viewed
as the gradient flow of the following energy functionals:

(6) E(u) =

Z
Ω

�
ı

2
j∆uj

2 +
1

4
(jruj

2
� 1)2

�
dx

for the MBE equation and

(7) E(u) =

Z
Ω
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(juj
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for the CH one. It is well known that both energy functionals decay in time

(8) E(u(t) � E(u(s)); 8t � s:

In this paper, we will review some recent works developing highly efficient numerical
methods for phase field models. The main stability criteria is the energy decay principle
(8). Among the time discretizations based on (8), Eyre’s Eyre [1993] convex splitting
scheme should be specially mentioned. It is a first-order accurate unconditionally stable
time-stepping scheme for gradient flows, which can be either linear or nonlinear depending
on the ways of splitting. In particular, it has served as inspiration for many other time
integration schemes in recent years, see, e.g., Feng, Tang, and J. Yang [2015], Qiao and
S. Sun [2014], Shen, C. Wang, X. Wang, and Wise [2012], and Shen, J. Xu, and J. Yang
[2017]. Other significant works for higher order stable schemes for the phase field models
can be found in Gomez and Hughes [2011], Qiao, Z.-Z. Sun, and Z. Zhang [2015], Shen,
C. Wang, X. Wang, and Wise [2012], Wise, C. Wang, and Lowengrub [2009], Xia, Y. Xu,
and Shu [2009], and van der Zee, Oden, Prudhomme, and Hawkins-Daarud [2011].

2 Time stablization by adding consistent terms

Since explicit schemes usually suffer from severe stability restrictions caused by the pres-
ence of high-order derivative terms and do not obey the energy decay property, semi-
implicit schemes are widely used. It is known that explicit schemes usually suffer severe
time step restrictions and generally do not obey energy conservation. To enforce the en-
ergy decay property and increase the time step, a good alternative is to use implicit-explicit
(semi-implicit) schemes in which the linear part is treated implicitly (such as backward
differentiation in time) and the nonlinear part is evaluated explicitly. For example, in
L.Q. Chen [1998] Chen and Shen considered the semi-implicit Fourier-spectral scheme
for (5) (set ı = 1)

1un+1(k) � cun(k)

∆t
= �jkj

41un+1(k) � jkj
2 1f (un)(k);(1)

where cun denotes the Fourier coefficient of u at time step tn. On the other hand, the semi-
implicit schemes can generate large truncation errors. As a result smaller time steps are
usually required to guarantee accuracy and (energy) stability. To resolve this issue, a class
of large time-stepping methods were proposed and analyzed in Feng, Tang, and J. Yang
[2013], He, Liu, and Tang [2007], Shen and X. Yang [2010], C. Xu and Tang [2006], and
Zhu, Chen, Shen, and Tikare [1999]. The basic idea is to add anO(∆t) stabilizing term to
the numerical scheme to alleviate the time step constraint whilst keeping energy stability.
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The choice of the O(∆t) term is quite flexible. For example, in Zhu, Chen, Shen, and
Tikare [1999] the authors considered the Fourier spectral approximation of the modified
Cahn-Hilliard-Cook equation

@tC = r �
�
(1 � aC 2)r(C 3

� C � �r
2C )

�
:(2)

The explicit Fourier spectral scheme is (see equation (16) therein)

1C n+1(k; t) � cC n(k; t)

∆t
= ik �

˚
(1 � aC 2)[ik0(f�C + C 3

g
n
k0 + �jk0

j
2 cC n(k0; t))]r

	
k
:

(3)

The time step for the above scheme has a severe constraint

∆t � � �K4
� 1;(4)

where K is the number of Fourier modes in each coordinate direction. To increase the
allowable time step, it is proposed in Zhu, Chen, Shen, and Tikare [ibid.] to add a term
�Ak4(1C n+1 � cC n) to the RHS of (3). Note that on the real side, this term corresponds to
a fourth order dissipation, i.e.

�A∆2(C n+1
� C n)

which roughly is of order O(∆t).
In He, Liu, and Tang [2007], a stabilized semi-implicit scheme was considered for the

CH model, with the use of an order O(∆t) stabilization term

A∆(un+1
� un):

Under a condition on A of the form:

A � max
x2Ω

n1
2

jun(x)j2 +
1

4
jun+1(x) + un(x)j2

o
�

1

2
; 8n � 0;(5)

one can obtain energy stability (8). Note that the condition (5) depends nonlinearly on the
numerical solution. In other words, it implicitly uses the L1-bound assumption on un in
order to make A a controllable constant.

In 2010, Shen and Yang proved energy stability of semi-implicit schemes for the Allen-
Cahn and the CH equations with truncated nonlinear term. More precisely it is assumed
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that

max
u2R

jf 0(u)j � L��(6)

which is what we referred to as the Lipschitz assumption on the nonlinearity in the abstract.
In 2011, Bertozzi et al. considered a nonlinear diffusion model of the form

@tu = �r � (f (u)r∆u) + r � (g(u)ru);

where g(u) = f (u)�0(u), and f , � are given smooth functions. In addition f is assumed
to be non-nonnegative. The numerical scheme considered in Bertozzi, Ju, and Lu [2011]
takes the form

un+1 � un

∆t
= �A∆2(un+1

� un) � r � (f (un)r∆un) + r � (g(un)run);(7)

where A > 0 is a parameter to be taken large. One should note the striking similarity
between this scheme and the one introduced in Zhu, Chen, Shen, and Tikare [1999]. In
particular in both papers the biharmonic stabilization of the form �A∆2(un+1 � un) was
used. The analysis in Bertozzi, Ju, and Lu [2011] is carried out under the additional as-
sumption that

sup
n

kf (un)k1 � A < 1:(8)

This is reminiscent of the L1 bound on un.
Roughly speaking, all prior analytical developments are conditional in the sense that

either one makes a Lipschitz assumption on the nonlinearity, or one assumes certain a
prioriL1 bounds on the numerical solution. It is very desirable to remove these technical
restrictions and establish a more reasonable stability theory.

In D. Li, Qiao, and Tang [2016], this problem is settled for the spectral Galerkin case.
More precisely, the authors of D. Li, Qiao, and Tang [ibid.] considered a stabilized semi-
implicit scheme introduced in He, Liu, and Tang [2007] following the earlier work C. Xu
and Tang [2006]. It takes the form8<:

un+1 � un

∆t
= �ı∆2un+1 + A∆(un+1

� un) + ∆ΠN (f (un)); n � 0;

u0 = ΠNu0:
(9)
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whereA > 0 is the coefficient for theO(∆t) regularization term. For each integerN � 2,
define

XN = span
n
cos(k � x); sin(k � x) : k = (k1; k2) 2 Z2; jkj1 = maxfjk1j; jk2jg � N

o
:

Note that the space XN includes the constant function (by taking k = 0). The L2 projec-
tion operator ΠN : L2(Ω) ! XN is defined by

(ΠNu � u; �) = 0; 8� 2 XN ;(10)

where (�; �) denotes the usualL2 inner product onΩ. In yet other words, the operatorΠN is
simply the truncation of Fourier modes ofL2 functions to jkj1 � N . SinceΠNu0 2 XN ,
by induction it is easy to check that un 2 XN for all n � 0.

Theorem 2.1 (Unconditional energy stability for 2D CH). Consider (9) with ı > 0 and
assume u0 2 H 2(Ω) with mean zero. DenoteE0 = E(u0) the initial energy. There exists
a constant ˇc > 0 depending only on E0 such that if

A � ˇ �

�
ku0k

2
H2 + ı

�1
j log ıj2 + 1

�
; ˇ � ˇc ;(11)

then

E(un+1) � E(un); 8n � 0;

where E is defined by (7). Furthermore, let u0 2 H s , s � 4 with mean zero. Let u(t) be
the solution to (5) with initial data u0. Let un be defined according to (9) with initial data
ΠNu0. If A satisfies (11), then

ku(tm) � um
k2 � A � eC1tm � C2 � (N�s +∆t):

where tm = m∆t , C1 > 0 depends only on (u0; ı), C2 > 0 depends on (u0; ı; s).

There is an analogue of Theorem 2.1 for theMBE Equation (4). Consider the following
semi-implicit scheme for MBE (4):8<:

un+1 � un

�
= �ı∆2un+1 + A∆(un+1

� un) + ΠN r � (g(run)); n � 0;

u0 = ΠNu0:
(12)

This scheme was introduced and analyzed in C. Xu and Tang [2006] (see also Qiao, Z.
Zhang, and Tang [2011]). The authors of C. Xu and Tang [2006] first introduced the
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stabilized O(∆t) term of the form A∆(un+1 � un) as given in (12), and provided an
energy stability analysis based on the assumption that A depends implicitly on the L1

bound on the numerical solution un. Note that the result in D. Li, Qiao, and Tang [2016]
provide a clean description on the size of the constantA, in the sense thatA is independent
of the L1 bound on the numerical solution. The energy-supercritical three-dimensional
case is analysed in D. Li and Qiao [2017b] by exploiting discrete smoothing estimates.

Note that above results are restricted to the first-order time discretization. On the other
hand, D. Li and Qiao [2017a] introduced recently several novel stabilization techniques
for second-order schemes. Quite surprisingly, it is found that depending on the form of
numerical discretization (such as f (2un �un�1) v.s. 2f (un)�f (un�1)) the correspond-
ing scheme can have conditional stability or unconditional stability with the stabilization
parameter depending only on initial data and the diffusion coefficient. Developing upon
the second-order scheme in D. Li and Qiao [ibid.], Song and Shu [2017] constructed a
new unconditionally stable second-order implicit–explicit local discontinuous Galerkin
Method for the Cahn–Hilliard Equation.

3 Time stepping with p-adaptivity

As the governing equations (4) and (5) involve the perturbed (i.e., the coefficient ı � 1)
biharmonic operators and strong nonlinearities, it is very difficult to design efficient time
discretization strategy which can resolve dynamics and steady state of the corresponding
phase field models. Moreover, nonlinear energy stability which is intrinsic to the phase
field models (see, e.g., Figure 1) is also a challenging issue for numerical approximations.
Numerical evidences show that violating the energy stability may lead to non-physical
oscillations. Consequently, a satisfactory numerical strategy needs to balance solution
accuracy, efficiency and nonlinear stability.

Below we will briefly outline the motivation of this section. Our numerical evidences
show that the lower order time discretizations may require very small time stepsizes in
order to resolve the short time dynamics of the phase field problems. Figure 2 gives a
typical example which gives energy evolutions for the Cahn-Hilliard Equation (5) with
∆t = 1/1000; 1/100; 1/50. It is observed that a time step smaller than 10�2 is needed in
order to obtain accurate solutions.

For improvement, one quick idea is to use higher order time discretization. However,
there has few higher order energy-stable schemes, particularly for order 3 or higher. Our
idea is to use the so-called spectral deferred correction (SDC) method which was first in-
troduced to solve initial value ordinary differential equations (ODEs) by Dutt, Greengard,
and Rokhlin [2000]. The key idea of the SDCmethod is to first convert the original ODEs
into the corresponding Picard equation and then apply a deferred correction procedure
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Figure 1: Illustrative energy curves for the three different models.
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Figure 2: A typical example for the energy dependent on time steps for the Cahn-
Hilliard equation.

in the integral formulation, aiming to achieve higher order accuracy in an iterative way.
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The reasons for us to employ the SDC method are the following: iteration loops can im-
prove the formal accuracy in a flexible and simple way; the SDC method was designed to
handle stiff systems which are the case of our perturbed singularly nonlinear equations;
and the flexibility of the order enhancement is useful for our local adaptive strategy to be
described later. On the other hand, although the SDC method can solve the short-time dy-
namics very well (e.g., a 5th-order time discretization can fix the problem in Figure 2 with
∆t = 1/20), unfortunately, a higher order time discretization may yield numerical insta-
bility as the nonlinear stability can not be guaranteed for higher order time discretizations.
A typical example is given in Figure 3, which solves the same example as in Figure 2 but
with an 3rd order SDC method (i.e. Np = 2 in the figure) and an 5th-order SDC method
(i.e. Np = 4). It is observed that the discrete energies blow up before T = 30.

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

10

t

E
n

er
g

y

 

 

25.5 26.5
10

0

10
2

10
4

10
6

10
8

t

E
n

er
g

y

 

 

Np=2 

Np=4

22 22.5
10

0

10
2

10
4

10
6

10
8

10
10

t

E
n

er
g

y

 

 
Np=2Np=4

Figure 3: A typical energy blow-up with 3rd (right) or a 5th (left) order time dis-
cretization for the Cahn-Hilliard equation.

Note that the problem in Figs. 2 and 3 is partially due to the use of the central-difference
approaches in space approximation (see Feng, Tang, and J. Yang [2015]). A more elegant
approach using discontinuous Galerkin (DG) method together with SDC methods. Stable
and accurate numerical results have been obtained in Guo and Y. Xu [2016] and Guo, Xia,
and Y. Xu [2017]. On the other hand, for simple central-difference approaches in space,
we can use a hybrid p-adaptive method which chooses appropriate order of accuracy at
each time level. It is seen from the energy curves in Figure 1 that first-order methods
should be good enough in most of time regimes, but in some critical stages with rapid
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energy change appropriate adaptive strategies must be used. Some p-adaptive details will
be reported and the relevant numerical results will be presented in this section.

3.1 Convex splitting methods. An important class of time discretization is the convex
splitting method originally proposed by Eyre [1993], see also improved version of Shen,
J. Xu, and J. Yang [2017] and Shen, C. Wang, X. Wang, and Wise [2012], which can
produce unconditional energy stability (in the sense that the stability is irrelevant with the
choice of the time steps). If we can express the free energy as the difference of two convex
functional, namelyE = Ec �Ee , where bothEc andEe are convex about u, then we may
use the concept of convex splitting due to Eyre [1993] to obtain highly stable numerical
schemes.

Belowwe will demonstrate the convex splitting by considering the Cahn-Hilliard Equa-
tion (5). Using the splitting form

(1) Ec(u) =

Z
Ω

�
ı

2
jruj

2 +
ˇ

2
u2

�
dx; Ee(u) =

Z
Ω

�
ˇ

2
u2 � F (u)

�
dx;

where F = (juj2 � 1)2/4, and the corresponding semi-discrete scheme to the Cahn-
Hilliard Equation (5) is

un+1 � un

∆t
= ∆

�
ıEc(u

n+1)

ıu
�
ıEe(u

n)

ıu

�
(2)

= ��2∆2un+1 + ˇ∆un+1
� ˇ∆un +∆f (un):

It can be proven (see, e.g.,Feng, Tang, and J. Yang [2015]) that if the constant ˇ is suf-
ficiently large then the semi-discrete scheme (2) is unconditionally energy stable, i.e.,
E(un+1) � E(un), where the energy E is defined by (7). Similarly, for the MBE model
(4), using the convex splitting

(3) Ec(u) =

Z
Ω

�
�2

2
j∆uj

2 +
ˇ

2
jruj

2

�
dx; Ee(u) =

Z
Ω

�
ˇ

2
jruj

2
� F (ru)

�
dx;

gives the corresponding semi-discrete scheme

un+1 � un

∆t
= �

�
ıEc(u

n+1)

ıu
�
ıEe(u

n)

ıu

�
(4)

= ��2∆2un+1 + ˇ∆un+1
� ˇ∆un + r � f (run):

In practical computations, for both (4) and (5) with f (u) of the form (3), ˇ = 1 can
guarantee the energy stability for (4), and ˇ = 2 can guarantee the energy stability for (2).
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3.2 Spectral deferred correctionmethod. Assume the time interval [0; T ] intoN non-
overlapping intervals 0 = t0 < t1 < � � � < tN = T: Let ∆tn = tn+1 � tn and un

denotes the numerical solution of u(tn), with u0 = u(t0). Based on the convex splitting
schemes presented in the above subsection, our convex splitting scheme can be written in
the following form

(5) un+1 = un +∆tn(FE (un) + FI (u
n+1))

for convenience, where FN represents the explicit part and FI represents the implicit part.
The SDC method is a one step, multi-stage method. Denoting the p + 1 Legendre-

Guass-Radau IIa nodes (cf. Shen, Tang, and L.-L. Wang [2011]) on [�1; 1] by �1 = r0 <

r1 < � � � < rp�1 < rp = 1 and letting

tn;i =
tn+1 � tn

2
ri +

tn+1 + tn

2
; i = 0; 1; � � � ; p;

we obtain the spectral nodes on interval [tn; tn+1] of the form tn = tn;0 < tn;1 < � � � <

tn;p�1 < tn;p = tn+1. Then the interval [tn; tn+1] is divided into p subintervals. Let
∆tn;m = tn;m+1 � tn;m and uk

n;m denotes the kth order approximation to u(tn;m).
Note that we do the SDC procedure in every interval [tn; tn+1]. Given un, we wish to

approximate un+1. Let u1n;0 = un. We first compute a first order accurate approximate
solution u1 at the nodes ftn;mg

p
m=1:

(6) u1n;m+1 = u1n;m +∆tn;m

�
FE (tn;m; u

1
n;m) + FI (tn;m+1; u

1
n;m+1)

�
:

We then do the successive corrections. For each 1 � k � K, let uk+1
n;0 = un. For

m = 0; � � � ; p � 1, we use

uk+1
n;m+1 = uk+1

n;m +∆tn;m

�
FE (tn;m; u

k+1
n;m ) � FE (tn;m; u

k
n;m) + FI (tn;m+1; u

k+1
n;m+1)

� FI (tn;m+1; u
k
n;m+1)

�
+ Im+1

m (FE (t; uk) + FI (t; u
k));(7)

where the last part is the integral of the p-th degree interpolating polynomial on the p+1

points
(tn;m; FE (tn;m; u

k
n;m) + FI (tn;m; u

k
n;m))p

m=0

over the subinterval [tn;m; tn;m+1], which is the numerical quadrature approximation ofZ tn;m+1

tn;m

(FE (�; u(�)) + FI (�; u(�)))d�:
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The above procedure leads to un+1 = uK+1
n;p .

For more details of the SDC method, we refer the readers to Dutt, Greengard, and
Rokhlin [2000] and Minion [2003] and the recent work Guo and Y. Xu [2016] and Tang,
Xie, and Yin [2013].

3.3 Efficiency enhancement with p-adaptivity. It is known that the convex splitting
method can preserve the energy stability but accuracy may not be satisfactory. Although
using SDC may enhance accuracy, the SDC corrections may cause blow-up as demon-
strated in Fig. 3. It remains to balance the accuracy and stability. To this end, an adaptive
strategy adjusting the correction number was proposed in Feng, Tang, and J. Yang [2015]
based on the discrete energies Eh(u

n) and Eh(u
n�1):

(8)
Np = minfNmax; maxf0; Nmax + fix[log�(jEh(u

n) �Eh(u
n�1)j + ��(Nmax+1))]gg;

where � is a positive constant, Nmax is the maximum number of corrections and fix[�]
represents the integer part of a number. Below we will explain the motivation of using (8)
to predict Np. It is clear that more corrections are needed in the region where the energy
decays fast. More specifically, the relationship between Np and the energy change is
given as following:

(9) Np =

8̂̂<̂
:̂

0; if jEh(u
n) �Eh(u

n�1)j < ��Nmax

k; if ��Nmax+k � jEh(u
n) �Eh(u

n�1)j < ��Nmax+k+1

Nmax; if jEh(u
n) �Eh(u

n�1)j � ��1

;

whereNmax is upper bounded by 2p�1 as the accuracy order of the interpolation on the
p + 1 Gauss-Radau nodes is 2p and the parameter � can be fixed as 3 or 5.

Note that the energy decreasing property motivates us to use the energy difference at
tn�1 and tn for choosing the number of corrections. Firstly, as observed from the energy
curves in Figure 1, the energy variation in most time regimes is very small, so Np = 0

should be chosen in most of the time intervals. This implies that only first order SDC
method is used, which guarantees the energy stability in general. Secondly, in the tran-
sition regime, the energy variation is between ��Nmax and ��1, which indicates some
variable value of Np is used based on the size of the energy variation. Thirdly, if the
energy variation exceeds ��1, then the maximum number of correction should be used.
In the later two cases, the energy decreasing property may not be preserved locally. How-
ever, as the total number of the intervals relevant to the last two cases is very small, it is
expected that the overall energy stability can be preserved well. In other words, the choice
of (9) seems very useful to balance the accuracy and overall energy stability.
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Example 3.1. We will use the adaptive SDC scheme for the Cahn-Hilliard Equation (5)
with initial condition u0(x; y) = 0:05 sin x siny + 0:001; 0 � x; y � 2�; and the
periodic boundary condition. The parameter ı is chosen as 0.01.

The mesh grid in space is fixed as 400 � 400. We take the numerical solutions with
small uniform time step dt = 0:001 as the “reference” solution. We take p = 4 in the
SDC method, and ˇ = 1 in (2), � = 5; Nmax = 5 in (9) and set Np = Nmax at the first
step.

In Figure 4, the numerical results using adaptive SDC scheme with dt = 0:04 produce
graphically indistinguishable energy curve as that for un-adaptive dt = 0:001 results. On
the other hand, the energy curve with un-adaptive dt = 0:04 is quite far from the reference
energy curve, especially before T = 10, which can be seen in the locally magnified energy
curves from T = 2 to 8.

The CPU time comparison is presented in Figure 5, where it is seen that our adaptive
SDC scheme consumes more CPU time at beginning as more corrections are needed to
capture the fast dynamical evolution. However, the adaptive SDC scheme can enhance the
efficiency significantly in the long time computation. The numerical solutions at different
time levels are presented in Figure 6, where it is observed that the solution dynamics can
be captured correctly with larger time steps when adaptive strategy is employed.

4 Operator splitting method

Following the approach in Chertock, Kurganov, and Petrova [2009], we split Eq. (4) into
the nonlinear part

(1) ut = r � (jruj
2
ru);

and linear part

(2) ut = �∆u � ı∆2u:

We denote by SN the exact solution operator associated with (1) and by SL the exact
solution operator associated with (2). Notice that the corresponding energy functionals,

EN(u) =
1

4

Z
Ω

jruj
4 dxdy;(3)

EL(u) =

Z
Ω

�
ı

2
j∆uj

2
�

1

2
jruj

2 +
1

4

�
dxdy(4)
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decay. Then, introducing a (small) splitting step ∆t , the solution of the original equa-
tion (4) (which is assumed to be available at time t ) is evolved using the Strang splitting
method, one step of which can be written as

u(x; y; t +∆t) = SL(∆t/2)SN(∆t)SL(∆t/2)u(x; y; t):

A similar splitting approach is applied to equation (5), for which the linear part is still (2)
and the nonlinear one is

(5) ut = ∆(u3):

As in the case of the MBE equation, the corresponding energy functionals,

EN(u) =
1

4

Z
Ω

u4 dxdy;(6)

EL(u) =

Z
Ω

�
ı

2
jruj

2
�

1

2
u2 +

1

4

�
dxdy(7)

decay. We stress that even though the linear parts of equations (4) and (5) are the same,
the functionals (4) and (7) are different since they are associated with the corresponding
parts of the energy functionals (6) and (7).

In order to implement the splittingmethod, the exact solution operators SN and SL have
to be replaced by their numerical approximations. Note that one of the main advantages
of the operator splitting technique is the fact that the nonlinear, (1) and (5), and linear,
(2), subproblems, which are of different nature, can be solved numerically by different
methods. First, using the method of lines, (1) and (5) can be reduced to systems of ODEs,
which can be efficiently and accurately integrated by large stability domain explicit ODE
solvers Abdulle [2002]. Second, since (2) is linear, one can solve it (practically) exactly
using, for example, the pseudo-spectral method. This way, no stability restrictions on
solving (2) are imposed.

4.1 Finite-Difference Methods for (1) and (5). In this section, we propose efficient
explicit finite-differencemethods for the degenerate parabolic equations (1) and (5). These
methods are based on the semi-discretization of (1) and (5) followed by the use of an
efficient and accurate ODE solver. The ODE solver will be utilized to evolve the solutions
of (1) and (5) from time t to t + ∆t . We note that in a general case the time-steps of
the ODE solver denoted by ∆tODE will be smaller than the splitting step ∆t so that the
approximation of SN(∆t) will typically require several∆tODE steps.
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We first design 2mth-order centered-difference schemes for the 1-D version of (1):

(8) ut = (u3x)x ; x 2 [0; L]; t 2 (0; T ]:

We consider a uniform grid with nodes xj , such that xj+1 �xj = ∆x;8j , and introduce
the following 2mth-order discrete approximation of the @

@x
operator:

(9) ( x)j :=

mX
p=�m

˛p j+p =  x(xj ) + O((∆x)2m):

For example, when m = 2, we obtain a fourth-order centered-difference approximation
by taking

˛1 = �˛�1 =
2

3∆x
; ˛2 = �˛�2 = �

1

12∆x
:

Equipped with the above approximation of spacial derivatives, we discretize equation (8)
using the method of lines as follows:

(10)
duj

dt
(t) =

mX
p=�m

˛pHj+p(t) =: Fj (t);

where uj (t) denotes the computed point value of the solution at (xj ; t), and

(11) Hj (t) := (ux)
3
j (t) with (ux)j (t) :=

mX
p=�m

˛puj+p(t):

Note that the above quantities depend on t , but for the sake of brevity we will suppress
this dependence from now on.

It is proven in Cheng, Kurganov, Qu, and Tang [2015] that the semi-discrete schemes
(10)-(11) satisfy the following energy decay property:

d

dt
E∆

N � 0;

where E∆
N is a 1-D discrete version of the energy functional (3): E∆

N := 1
4

P
j

(ux)
4
j∆x.

We now consider the finite-difference schemes for ut = r � (jruj2ru), i.e., (1). We
consider a uniform grid with nodes (xj ; yk), such that xj+1�xj = ∆x;8j; yk+1�yk =

∆y;8k, and introduce the following 2mth-order discrete approximation of the @
@x

and @
@y
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operators:

(12)

( x)j;k :=

mX
p=�m

˛p j+p;k =  x(xj ; yk) + O((∆x)2m);

( y)j;k :=

mX
p=�m

ˇp j;k+p =  y(xj ; yk) + O((∆y)2m):

For example, when m = 2, we obtain a fourth-order centered-difference approximation
by taking

˛1 = �˛�1 =
2

3∆x
; ˛2 = �˛�2 = �

1

12∆x
; ˇ1 = �ˇ�1 =

2

3∆y
; ˇ2 = �ˇ�2 = �

1

12∆y
:

Equipped with the above approximation of spacial derivatives, 2mth-order semi-discrete
finite-difference schemes for (1) read:

(13)
duj;k

dt
=

mX
p=�m

˛pH
x
j+p;k +

mX
p=�m

ˇpH
y

j;k+p
=: Fj;k ;

where

(14) Hx
j;k := (ux)

3
j;k + (uy)

2
j;k(ux)j;k and H

y

j;k
:= (uy)

3
j;k + (ux)

2
j;k(uy)j;k

with

(15) (ux)j;k :=

mX
p=�m

˛puj+p;k and (uy)j;k :=

mX
p=�m

ˇpuj;k+p:

It is shown in Cheng, Kurganov, Qu, and Tang [2015] that the semi-discrete schemes
(13)–(15) satisfy the following energy decay property:

d

dt
E∆

N � 0;

whereE∆
N is a 2-D discrete version of the energy functional (3): E∆

N := 1
4

P
j jrhuj;kj4∆x∆y

with rhuj;k := ((ux)j;k ; (uy)j;k)
T .

We now design semi-discrete finite-difference schemes for ut = ∆(u3), i.e., (5). We
use the same grids and the same 2mth-order discrete approximation of the @

@x
and @

@y
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operators as above. Then, 2mth-order semi-discrete finite-difference schemes for (5) read:

(16)
duj;k

dt
=

mX
p=�m

˛pH
x
j+p;k +

mX
p=�m

ˇpH
y

j;k+p
=: Fj;k ;

where

(17) Hx
j;k :=

mX
p=�m

˛pu
3
j+p;k and H

y

j;k
:=

mX
p=�m

ˇpu
3
j;k+p:

It can be shown that the semi-discrete schemes (16)-(17) satisfy the following energy
decay property:

d

dt
E∆

N � 0;

whereE∆
N is a 2-D discrete version of the energy functional (6): E∆

N := 1
4

P
j

u4
j;k

∆x∆y.

4.2 Large Stability Domain Explicit ODE Solver. The ODE systems (10), (13) and
(16) have to be solved numerically. Recall that explicit ODE solvers typically require
time-steps to be ∆tODE ∼ (∆x)2, while implicit ODE solvers can be made uncondition-
ally stable. However, the accuracy requirements would limit time-step size and since a
large nonlinear algebraic system of equations has to be solved at each time-step, implicit
methods may not be efficient. Here, we apply the explicit third-order large stability do-
main Runge-Kutta method, developed in Medovikov [1998] and Medovikov [n.d.], which
allow one to use much larger time-steps compared with the standard explicit Runge-Kutta
methods. In practice, when the problem is not too stiff as in the case of ODEs arising
in finite-difference approximation of parabolic PDEs, these methods preserve all the ad-
vantages of explicit methods and are typically more efficient than implicit methods (see
Abdulle [2002], Medovikov [1998], and Verwer, Sommeijer, and Hundsdorfer [2004] for
details). We have implemented the code DUMKA3 Medovikov [n.d.], which incorpo-
rates the embedded formulas that permit an efficient stepsize control. The efficiency of
DUMKA3 is further improved when the user provides an upper bound on the time-step
stability restriction for the forward Euler method. Assume that the system of ODEs (10)-
(11) is numerically integrated by the forward Euler method from time t to t + ∆tFE and
that the following CFL condition holds:

(18) ∆tFE �
1

am
�

1

max
j

(ux)
2
j

; a :=

mX
p=�m

˛2p;
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where ˛p are the coefficients in (9) and (ux)j are given by (11). It is shown in Cheng,
Kurganov, Qu, and Tang [2015] that

(19) ku(t +∆tFE)kL2 � ku(t)kL2 ;

where ku(t)kL2 :=
qP

j u
2
j (t)∆x.

Similar theoretical results hold for (13)–(15) with the forward Euler method, and for
(16)–(17) with the forward Euler method. Note that the code DUMKA3 automatically
selects time-steps so that in average the selected time-steps ∆tODE are much larger than
∆tFE.

4.3 Pseudo-Spectral Methods for (2). We first consider the 1-D equation,

(20) ut = �uxx � ıuxxxx ; x 2 [0; L]; t 2 (0; T ];

subject to the L-periodic boundary conditions.
We first use the FFT algorithm to compute the discrete Fourier coefficients fbum(t)g

from the available point values fuj (t)g. This gives us the following spectral approxima-
tion of u on [0; L]:

(21) u(x; t) �
X

m

bum(t)ei 2�mx
L :

We then substitute (21) into (20) and obtain very simple linear ODEs for the discrete
Fourier coefficients of u,

d

dt
bum(t) = (s � ıs2)bum(t); s =

�2�m
L

�2

;

which can be solved exactly:

bum(t +∆t) = e(s�ıs2)∆t bum(t):

Finally, we use the inverse FFT algorithm to obtain the point values of the solution at the
new time level, fuj (t + ∆t)g, out of the set of the discrete Fourier coefficients fbum(t +

∆t)g.
We now consider the 2-D equation (2),

ut = �(uxx + uyy) � ı(uxxxx + 2uxxyy + uyyyy);
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on a rectangular domain Ω = [0; Lx ] � [0; Ly ] with the Lx- and Ly-periodic boundary
conditions in the x- and y-directions, respectively.

Similar to the 1-D case, we apply the FFT algorithm and obtain very simple linear
ODEs for the discrete Fourier coefficients of u,

(22)
d

dt
bum;`(t) = (s � ıs2)bum;`(t); s =

�2�m
Lx

�2

+
�2�`
Ly

�2

:

The exact solution of (22) is

bum;`(t +∆t) = e(s�ıs2)∆t bum;`(t):

Finally, we apply the inverse FFT algorithm to obtain the point values of the solution
at the new time level, fuj;k(t + ∆t)g, out of the set of the discrete Fourier coefficients
fbum;`(t +∆t)g.

As a numerical example, we again consider Example 3.1 and compute its solution on a
128�128 uniform grid with the constant splitting step∆t = 10�3. The solution computed
at times t = 1; 2; 5 and 20 is shown in Figure 7. These results are in good agreement with
those reported in Feng, Tang, and J. Yang [2015] and with the SDC result reported in the
last section.

We mention that the present operator-splitting approach can be combined with some
time-adaptor strategy to speed up numerical simulations, see, e.g., Cheng, Kurganov, Qu,
and Tang [2015], Luo, Tang, and Xie [2016], and Qiao, Z. Zhang, and Tang [2011].

We close this section bymentioning that some theoretical study for the operator splitting
method outlined above was carried out in X. Li, Qiao, and H. Zhang [2017], where the
finite difference scheme for the nonlinear part was improved so that larger time steps are
allowed.

5 Concluding remarks

There have been considerable recent interests in developing highly stable and efficient nu-
merical schemes for solving phase-field models. In this article, we present three classes of
effective time discretization schemes. The first one is based on adding consistent terms so
that the energy-decay property is satisfied. Some recent theory for this class of methods
is reviewed. The second class is based on the time direction p-adaptivity, by combin-
ing lower-order convex-splitting methods and the SDC technique. It is demonstrated by
numerical experiments that this is a very efficient numerical approach. The third class
method is based on the classical operator-splitting method. Some preiminary results show
that this is a promising method for practical computations.
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Figure 4: Example 3.1: Energy curves of the Cahn-Hilliard equation by different
schemes with different time steps.
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Figure 5: Example 3.1: CPU time comparison between different schemes for Cahn-
Hilliard equation.
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Figure 6: Example 3.1: Solution variation at different time, using (a) direct energy
convex splitting scheme without SDC and dt = 0:001; (b) direct energy convex
splitting scheme without SDC and dt = 0:04; and (c) adaptive SDC scheme with
dt = 0:04.
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Figure 7: Example 3.1: u computed withsplitting time-stepping with
∆t = 10�3.


	Introduction
	Time stablization by adding consistent terms
	Time stepping with p-adaptivity
	Convex splitting methods
	Spectral deferred correction method
	Efficiency enhancement with p-adaptivity

	Operator splitting method
	Finite-Difference Methods for (1) and (5)
	Large Stability Domain Explicit ODE Solver
	Pseudo-Spectral Methods for (2)

	Concluding remarks

