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Abstract. In this paper, sharp a posteriori error estimators are derived for a class of distributed
elliptic optimal control problems. These error estimators are shown to be useful in adaptive finite
element approximation for the optimal control problems and are implemented in the adaptive ap-
proach. Our numerical results indicate that the sharp error estimators work satisfactorily in guiding
the mesh adjustments and can save substantial computational work.
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1. Introduction. Finite element approximation of optimal control problems
has long been an important topic in engineering design work and has been exten-
sively studied in the literature. There have been extensive theoretical and numeri-
cal studies for finite element approximation of various optimal control problems; see
[2, 12, 13, 15, 20, 23, 37, 44]. For instance, for the optimal control problems gov-
erned by some linear elliptic or parabolic state equations, a priori error estimates
of the finite element approximation were established long ago; see, for example,
[12, 13, 15, 20, 23, 37]. Furthermore, a priori error estimates were established for
the finite element approximation of some important flow control problems in [17] and
[11]. A priori error estimates have also been obtained for a class of state constrained
control problems in [43], though the state equation is assumed to be linear. In [29],
this assumption has been removed by reformulating the control problem as an abstract
optimization problem in some Banach spaces and then applying nonsmooth analysis.
In fact, the state equation there can be a variational inequality.

In recent years, the adaptive finite element method has been extensively investi-
gated. Adaptive finite element approximation is among the most important means to
boost the accuracy and efficiency of finite element discretizations. It ensures a higher
density of nodes in a certain area of the given domain, where the solution is more
difficult to approximate. At the heart of any adaptive finite element method is an a
posteriori error estimator or indicator. The literature in this area is extensive. Some
of the techniques directly relevant to our work can be found in [1, 5, 6, 7, 28, 32,
34, 42, 47]. It is our belief that adaptive finite element enhancement is one of the
future directions to pursue in developing sophisticated numerical methods for optimal
design problems.
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Although adaptive finite element approximation is widely used in numerical sim-
ulations, it has not yet been fully utilized in optimal control. Initial attempts in
this aspect have been reported only recently for some design problems; see, e.g.,
[3, 4, 38, 41]. However, a posteriori error indicators of a heuristic nature are widely
used in most applications. For instance, in some existing work on adaptive finite ele-
ment approximation of optimal design, the mesh refinement is guided by a posteriori
error estimators solely from the state equation (or the displacement) for a fixed con-
trol (or design). Thus error information from approximation of the control (design) is
not utilized. Although these methods may work well in some particular applications,
they cannot be applied confidently in general. It is unlikely that the potential power
of adaptive finite element approximation has been fully utilized due to the lack of
more sophisticated a posteriori error indicators.

Very recently, some error estimators of residual type were developed in [8, 9,
30, 31, 33]. These error estimators are based on a posteriori estimation of the dis-
cretization error for the state and the control (design). When there is no constraint
in a control problem, normally the optimality conditions consist of coupled partial
differential equations only. Consequently, one may be able to write down the dual
system of the whole optimality conditions and then apply the weighted a posteriori er-
ror estimation technique to obtain a posteriori estimators for the objective functional
approximation error of the control problem; see [8, 9]. In many applications (like
parameter estimation), it is more interesting to obtain a posteriori error estimators
for the control approximation error [22]. Furthermore, there frequently exist some
constraints for the control in applications. In such cases, the optimality conditions
often contain a variational inequality and then have some very different properties.
Thus it does not always seem to be possible to apply the techniques used in [8, 9] to
constrained control problems.

In our work, constrained cases are studied via residual estimation using the norms
of energy type. A posteriori error estimators are derived for quite general constrained
control problems governed by the elliptic equations (see [30, 31, 33]) with upper error
bounds. However, these error estimators have yet to be applied to adaptive finite
element methods. Indeed, numerical experiments indicated that these estimators tend
to over-refine the computational meshes. Thus the resulting computational meshes
may not be efficient in reducing approximation errors. It seems that one has to
derive sharper error estimators in order to obtain more efficient meshes. This seems
to be possible at least for a class of control problems, which are frequently met in
applications. More details on these will be given in section 3.

In this paper, we consider the convex optimal control problem
min
u∈K

{g(y) + h(u)},

−div(A∇y) = f + Bu in Ω, y|∂Ω = 0,

(1.1)

where g and h are given convex functionals, K is a closed convex set, and B is a
continuous linear operator. The details will be specified later. The main objective
of this work is to derive sharp a posteriori error estimators for some frequently met
optimal control problems. A number of new techniques have to be introduced in
order to obtain such estimators. Our numerical tests indicate that these improved
error estimators indeed lead to efficient computational meshes.

The paper is organized as follows: In section 2, we describe the finite element
approximation for the convex optimal control problem (1.1). In section 3, we derive
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error estimates for the problem with an obstacle constraint. Both upper bounds
and lower bounds are established with attention on their equivalence. In section 4,
numerical experiments will be carried out, with particular attention to testing the
influence of various indicators on the mesh construction.

2. The elliptic optimal control problem and finite element approxima-
tion. In this section, we describe the elliptic optimal control problem and its finite
element approximation. Let Ω and ΩU be two bounded open sets in Rn(n ≤ 3) with
the Lipschitz boundaries ∂Ω and ∂ΩU . We denote by C0(Ω̄) the space of continuous
functions on Ω̄. We adopt the standard notation Wm,q(Ω) for Sobolev spaces on Ω
with norm ‖·‖m,q,Ω and seminorm |·|m,q,Ω(see (1.2) of [16, p. 2]). For q = 2, we denote
Wm,2(Ω) by Hm(Ω) with norm ‖ · ‖m,Ω := ‖ · ‖m,2,Ω and seminorm | · |m,Ω := | · |m,2,Ω.
We set H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}. In addition, c or C denotes a general
positive constant independent of h.

In the rest of the paper, we shall take the state space Y = H1
0 (Ω), the control space

U = L2(ΩU) with the inner product (·, ·)U , and H = L2(Ω) with the inner product
(·, ·). We wish to study the finite element approximation of the distributed elliptic
convex optimal control problem (1.1). Assume that g and h are convex functionals
which are continuously differentiable on H = L2(Ω) and U = L2(ΩU), respectively,
and h is further strictly convex. Suppose that K is a closed convex set in the control
space U , f ∈ L2(Ω), B is a continuous linear operator from U to H ⊂ Y ′ (the dual
space of Y ), and

A(·) = (ai,j(·))n×n ∈ (L∞(Ω))n×n

such that there is a constant c > 0 satisfying, for any vector ξ ∈ Rn,

(Aξ) · ξ ≥ c|ξ|2.

We further assume that h(u) → +∞ as ‖u‖0,ΩU
→ ∞, the functional g(·) is bounded

below, and

|(g′(v) − g′(w), q)| ≤ C‖v − w‖1,Ω‖q‖1,Ω ∀v, w, q ∈ Y.(2.1)

To consider the finite element approximation of the above optimal control prob-
lem, here we give it a weak formula

(CCP)


min
u∈K

{g(y) + h(u)},

a(y, w) = (f + Bu,w) ∀w ∈ Y = H1
0 (Ω),

(2.2)

where

a(v, w) =

∫
Ω

(A∇v) · ∇w ∀v, w ∈ H1(Ω),

(f, w) =

∫
Ω

fw ∀f, w ∈ L2(Ω).

Under these assumptions, the control problem (CCP) has a unique solution (y, u),
and a pair (y, u) is the solution of (CCP) if and only if there is a costate p ∈ Y such
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that the triplet (y, p, u) satisfies the following optimality conditions (see [27]):

(CCP-OPT)


a(y, w) = (f + Bu,w) ∀w ∈ Y = H1

0 (Ω),

a(q, p) = (g′(y), p) ∀q ∈ Y = H1
0 (Ω),

(h′(u) + B∗p, v − u)U ≥ 0 ∀v ∈ K ⊂ U = L2(ΩU),

(2.3)

where B∗ is the adjoint operator of B and g′ and h′ are the derivatives of g and
h. Here g′ and h′ have been viewed as functions in H = L2(Ω) and U = L2(ΩU),
respectively, using the well-known representation theorem in a Hilbert space.

Let us consider the finite element approximation of the above control problem.
For ease of exposition, we consider only n-simplex, conforming Lagrange elements.
Also, we assume that Ω and ΩU are polygonal. Let Th be a partitioning of Ω into
disjoint open regular n-simplices τ so that Ω̄ = ∪τ∈Th τ̄ . Each element has at most
one face on ∂Ω, and the adjoining elements τ̄ and τ̄ ′ have either only one common
vertex or a whole edge or a whole face if τ and τ ′ ∈ Th. Let hτ denote the diameter of
the element τ in Th. Associated with Th is a finite dimensional subspace Sh of C0(Ω̄)
such that vh|τ are polynomials of k-order (k ≥ 1) for all vh ∈ Sh and τ ∈ Th. Denote
{Pi} (i = 1, 2, . . . , J) the vertex set associated with Th. Let Y h = V h

0 := Sh ∩ Y .
Similarly, we have a regular partitioning of ΩU , and we use the following corre-

sponding notation: Th
U , τU , hτU and PU

i (i = 1, 2, . . . , JU). Associated with Th
U is

another finite dimensional subspace Wh
U of L2(ΩU) such that vh|τU are polynomials of

k-order (k ≥ 0) for all vh ∈ Wh
U and τU ∈ Th

U . Note here that there is no requirement
for the continuity or boundary conditions. Let Uh = Wh

U ⊂ U = L2(ΩU).
Due to the limited regularity of the optimal control u (at most in H1(ΩU ) in

general), here we will consider only the piecewise constant space for the control ap-
proximation, while higher-order finite spaces may be used for the state and costate.

Then a possible finite element approximation of (CCP) is as follows:

(CCP)h


min

uh∈Kh
{g(yh) + h(uh)},

a(yh, wh) = (f + Buh, wh) ∀wh ∈ Y h,

(2.4)

where Kh is a closed convex set in Uh such that there are vh ∈ Kh converging to
an element v ∈ K in U . It follows that the control problem (CCP)h has a unique
solution (yh, uh) and that a pair (yh, uh) ∈ Y h × Uh is the solution of (CCP)h if
and only if there is a costate ph ∈ Y h such that the triplet (yh, ph, uh) satisfies the
following optimality conditions:

(CCP-OPT)h


a(yh, wh) = (f + Buh, wh) ∀wh ∈ Y h ⊂ Y = H1

0 (Ω),

a(qh, ph) = (g′(yh), qh) ∀qh ∈ Y h ⊂ Y = H1
0 (Ω),

(h′(uh) + B∗ph, vh − uh)U ≥ 0 ∀vh ∈ Kh ⊂ U = L2(ΩU).

(2.5)

It follows that (yh, ph, uh) is uniformly bounded in Y × Y × U . This is because
g(yh)+h(uh) is uniformly bounded due to the above assumption on Kh. Thus ‖uh‖U
is also uniformly bounded. Then it follows from (2.5) and (2.1) that ‖yh‖Y and ‖ph‖Y
are uniformly bounded.
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The finite element approximation solution must be solved by using some mathe-
matical programming algorithms such as the conjugate gradient method, the interior
point method, and the SQP algorithms. This is a very active research area and is too
large to be reviewed here even very briefly. Some of the recent progress in this area
has been summarized in [14].

3. Sharp a posteriori error estimators. Deriving a posteriori error estima-
tors for the finite element approximation of the control problem (CCP) is not an
easy task since the triplet (y, p, u) is the solution of the coupled system (CCP-OPT).
Although there is much work on a priori error estimates for finite element approxima-
tion of optimal control problems, as seen in section 1, there are substantial differences
between a priori error estimates and a posteriori error estimates for such control prob-
lems. Only very recently, some a posteriori error estimators have been derived in the
literature. For the control problem (CCP), for instance, the following error estimators
have been derived in [31] and [35], assuming that (h′(uh) + B∗ph)|τU ∈ H1(τU ) for
any τU ∈ Th

U :

‖uh − u‖2
0,ΩU

+ ‖yh − y‖2
1,Ω + ‖ph − p‖2

1,Ω ≤ C

(
η̄2
1 +

5∑
i=2

η2
i

)
= Cη̄2,(3.1)

where

η̄2
1 =

∑
τU∈Th

U

h2
τU ‖∇(h′(uh) + B∗ph)‖2

0,τU ,(3.2)

η2
2 =

∑
τ∈Th

h2
τ

∫
τ

(f + Buh + div(A∇yh))2,

η2
3 =

∑
l∈∂Th

hl

∫
l

[(A∇yh) · n]2,

η2
4 =

∑
τ∈Th

h2
τ

∫
τ

(g′(yh) + div(A∗∇ph))2,

η2
5 =

∑
l∈∂Th

hl

∫
l

[(A∗∇ph) · n]2,

where hl is the diameter of the face l, and the A-normal derivative jump over the
interior face l is defined by

[(A∇vh) · n]|l = ((A∇vh)|∂τ1
l
− (A∇vh)|∂τ2

l
) · n,

with n being the unit outer normal vector of τ1
l on l = τ̄1

l ∩ τ̄1
l . The A∗-normal

derivative jump is similarly defined for the transposed matrix A∗ of A.
However, major improvements on these error estimators are much needed in order

that they can be used to guide mesh adaptivity efficiently in solving the optimal
control problem numerically. For example, it does not seem that they are always
sharp for the constrained cases, and this can be seen from Figures 4.4 and 4.6 in
Example 4.1 of section 4, where it is clear that |u − uh| has a very different profile
(the left of Figure 4.4) from that of η̄1 (or η̄) (the left of Figure 4.6). Consequently,
the mesh refinement adjustment schemes based on η̄ may be inefficient. In Example
4.1, the state and costate are very smooth, but the optimal control u has the gradient
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jumps across the free boundary, which is the boundary of the zero set {x : u(x) = 0},
as seen in Figure 4.1. This causes large control approximation errors along the free
boundary, as seen from the left of Figures 4.3 and 4.4. Thus an efficient computational
mesh for the control should have a higher density of nodes around the free boundary,
as those in Figure 4.2. However, the mesh adjustment guided by η̄1 did not achieve
this goal well, as seen from Figure 4.5. In fact, the resulting mesh even produced a
larger approximation error for the control than the uniform mesh of the same size. A
sharp error estimator will lead to much more efficient computational meshes, as seen
in Figure 4.2.

In this section, we study sharp error estimates for finite element approximation
of the convex control problem (CCP). It follows that η̄ consists of three parts: The
part η̄1 is contributed from the approximation error of the variational inequality, and
η2
2 +η2

3 , η2
4 +η2

5 result from the approximation error of the state and costate equations.
It is well known that η2

2 + η2
3 and η2

4 + η2
5 are sharp error estimators for the state and

costate equations. Therefore, the key to our purpose is to improve η̄2
1 . However, it

is difficult to derive improved estimates without knowing explicit structures of the
control constraint sets K and Kh; the methods and techniques to be developed will
depend heavily on these details. Here we derive a posteriori error estimators with
both upper bounds and lower bounds for a class of convex sets K of obstacle type,
which are most frequently met in real applications. We achieved this by exploring
the special structure of the constraint sets. The ideas are applicable to some other
control problems, e.g., the boundary control problems.

We shall first consider the constraint of a single obstacle

K = {v ∈ U : v ≥ φ}, Kh = Uh ∩ K,

and then we will extend the results to more general cases.
We define the coincidence set (contact set) Ω−

U and the noncoincidence set (non-
contact set) Ω+

U as follows:

Ω−
U = {x ∈ ΩU : u(x) = φ(x)}, Ω+

U = {x ∈ ΩU : u(x) > φ(x)}.
It can be seen that the inequality in (2.3) is equivalent to the following:

h′(u) + B∗p ≥ 0, u ≥ φ, (h′(u) + B∗p)(u − φ) = 0, a.e. in ΩU .(3.3)

We shall show that the quantity (h′(uh) + B∗ph)|Ω−
U

can be mostly removed from

the error indicator η̄ in this case, which enables us to obtain sharp error estimates. To
make the presentation of our approach clearer and less technical, we shall first derive
sharp error estimators containing an a priori quantity and then approximate it using
an a posteriori quantity so that the estimators can be easily applied in numerical
computations. Let us note that some approximations of a priori quantities are also
used in [9].

In the following, we assume that there is a constant c > 0 such that

(h′(v) − h′(w), v − w)U ≥ c‖v − w‖2
0,ΩU

∀v, w ∈ U.(3.4)

3.1. Upper error bounds. We first consider the case of a constant obstacle
φ(x) ≡ φ0. We define

Ω+
h = {∪τ̄U : τU ⊂ Ω+

U , τU ∈ Th
U }, Ω−

h = {∪τ̄U : τU ⊂ Ω−
U , τU ∈ Th

U },
Ωb

h = ΩU\(Ω+
h ∪ Ω−

h ), Ω+b
h = Ω+

h ∪ Ωb
h, Ω−b

h = Ω−
h ∪ Ωb

h,
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and denote by χQ the characteristic function of Q. Let ∂Th be the set consisting of
all of the faces l of any τ ∈ Th such that l is not on ∂Ω. Let hl be the diameter of
the face l. We need the following lemmas in deriving residual-type a posteriori error
estimates.

Lemma 3.1 (see [10]). Let πh : C0(Ω̄) → Sh be the standard Lagrange interpola-
tion operator such that

πhv :=
∑
i

v(ai)ϕi,

where ai are the nodes on Ω̄ and ϕi are the corresponding shape functions. Then, for
m = 0, 1 and n/2 < q ≤ ∞,

‖v − πhv‖m,q,τ ≤ Ch2−m
τ |v|2,q,τ ∀v ∈ W 2,q(Ω),(3.5)

where the constant C depends only on Ω and the minimum angle of the simplices in
Th.

Lemma 3.2 (see [21]). For all v ∈ W 1,q(Ω), 1 ≤ q ≤ ∞,

‖v‖0,q,∂τ ≤ C(h−1/q
τ ‖v‖0,q,τ + h1−1/q

τ |v|1,q,τ ).(3.6)

We need another operator π̂h: the local averaging interpolation operator defined
in [42], which can be applied to functions not necessarily continuous, preserves the
homogeneous boundary conditions and is stable in the W 1,q-norm. The full definition
of π̂h is rather long. Thus the readers are referred to [42]. Fortunately, we need only
to use one of its properties, which is stated in the following lemma.

Lemma 3.3. Let π̂h : W 1,q(Ω) → Sh be the local averaging interpolation operator
defined in (2.13) of [42]. For m = 0, 1 and 1 ≤ q ≤ ∞,

|v − π̂hv|m,q,τ ≤ C
∑

τ̄ ′∩τ̄ 	=∅
h1−m
τ |v|1,q,τ ′ ∀v ∈ W 1,q(Ω).(3.7)

Lemma 3.4. Let πa
h : L1(ΩU ) → Wh

U be the integral averaging operator such that

(πa
hv)|τU :=

1

|τU |
∫
τU

v ∀τU ∈ Th
U .

Then, for m = 0, 1 and 1 ≤ q ≤ ∞,

‖v − πa
hv‖0,q,τU ≤ Chm

τU |v|m,q,τU ∀v ∈ Wm,q(ΩU ).(3.8)

Proof. The result is trivial for m = 0. For m = 1, we note that πa
hv|τU = v|τU

if v is a constant on τU . Thus (3.8) can be proved by the standard techniques in the
finite element method [10].

We first give some upper bounds for u−uh in the L2-norm and for y− yh, p− ph
in the H1-norm. We shall use the following inequality:

|(Bv,w)| = |(v,B∗w)U | ≤ C‖v‖0,ΩU
‖w‖1,Ω ∀v ∈ U,w ∈ Y,(3.9)

which is held from our assumptions on the operator B.
Theorem 3.1. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.3) and (2.5),

respectively. Let the obstacle φ be a constant φ0. Assume that conditions (3.4), (2.1),
and (3.9) hold, and (h′(uh) + B∗ph)|τU ∈ H1(τU) for any τU ∈ Th

U . Then

‖uh − u‖2
0,ΩU

+ ‖yh − y‖2
1,Ω + ‖ph − p‖2

1,Ω ≤ C

5∑
i=1

η2
i ,(3.10)
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where

η2
1 =

∑
τU∈Th

U

h2
τU ‖∇(h′(uh) + B∗ph)χΩ+b

h
‖2
0,τU ,(3.11)

η2
2 =

∑
τ∈Th

h2
τ

∫
τ

(f + Buh + div(A∇yh))2,

η2
3 =

∑
l∈∂Th

hl

∫
l

[(A∇yh) · n]2,

η2
4 =

∑
τ∈Th

h2
τ

∫
τ

(g′(yh) + div(A∗∇ph))2,

η2
5 =

∑
l∈∂Th

hl

∫
l

[(A∗∇ph) · n]2.

Proof. We first estimate the error ‖u − uh‖2
0,ΩU

. It follows from the assumption

(3.4) and the inequalities (2.3) and (2.5) that, for any vh ∈ Kh,

c‖u − uh‖2
0,ΩU

≤ (h′(u), u − uh)U − (h′(uh), u − uh)U

≤ (−B∗p, u − uh)U − (h′(uh), u − uh)U + (h′(uh) + B∗ph, vh − uh)U

= (h′(uh) + B∗ph, vh − u)U + (B∗(ph − p), u − uh)U .(3.12)

We introduce yuh
and puh

, defined by

a(yuh
, w) = (f + Buh, w) ∀w ∈ Y,(3.13)

a(q, puh
) = (g′(yuh

), q) ∀q ∈ Y.(3.14)

It follows from (2.3), (3.13), and (3.14) that

a(yuh
− y, w) = (B(uh − u), w) ∀w ∈ Y,(3.15)

a(q, puh
− p) = (g′(yuh

) − g′(y), q) ∀q ∈ Y.(3.16)

Taking w = puh
− p in (3.15) and q = yuh

− y in (3.16), we have, due to the convexity
of g,

(B(uh − u), puh
− p) = (g′(yuh

) − g′(y), yuh
− y) ≥ 0.

Using (3.12) together with (3.9) gives

c‖u − uh‖2
0,ΩU

≤ (h′(uh) + B∗ph, vh − u)U + (B∗(ph − puh
), u − uh)U − (puh

− p,B(uh − u))

≤
∑

τU∈Th
U

(h′(uh) + B∗ph, vh − u)τU + C‖ph − puh
‖2
1,Ω +

c

2
‖u − uh‖2

0,ΩU
.

Now take vh = πa
hu ∈ Kh defined in Lemma 3.4. Then we have

(h′(uh) + B∗ph, vh − u)τU = ((I − πa
h)(h′(uh) + B∗ph), (πa

h − I)(u − uh))τU

≤ ChτU ‖∇(h′(uh) + B∗ph)‖0,τU ‖u − uh‖0,τU

≤ Ch2
τU ‖∇(h′(uh) + B∗ph)‖2

0,τU +
c

4
‖u − uh‖2

0,τU .
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Noting that (vh − u)|τU = (πa
h − I)u|τU = 0 for any τU ∈ ΩU\Ω+b

h , we obtain

‖u − uh‖2
0,ΩU

≤ C
∑

τU∈Ω+b
h

h2
τU ‖∇(h′(uh) + B∗ph)‖2

0,τU + C‖ph − puh
‖2
1,ΩU

= Cη2
1 + C‖ph − puh

‖2
1,ΩU

.

(3.17)

The second step is to estimate the error ‖puh
− ph‖1,Ω. Let ep = puh

− ph. Then
it follows from (2.4)2, (3.14), and (2.1) that

c‖puh
− ph‖2

1,Ω ≤ a(ep, puh
) − a(ep, ph)

= (g′(yuh
), ep) − a(ep − π̂hep, ph) − (g′(yh), π̂hep)

=
∑
τ∈Th

∫
τ

(g′(yh) + div(A∗∇ph))(ep − π̂hep)

−
∑

l∈∂Th

∫
l

[(A∗∇ph) · n](ep − π̂hep) + (g′(yuh
) − g′(yh), ep)

≤ C
∑
τ∈Th

h2
τ

∫
τ

(g′(yh) + div(A∗∇ph))2 + C
∑

l∈∂Th

hl

∫
l

[(A∗∇ph) · n]2

+ C‖yuh
− yh‖2

1,Ω +
c

2
‖ep‖2

1,Ω,

where we have used Lemma 3.3 to obtain

‖ep − π̂hep‖0,τ ≤ Chτ

 ∑
τ̄ ′∩τ̄ 	=∅

|ep|21,τ ′

1/2

(3.18)

and Lemmas 3.2 and 3.3 to have, assuming l ⊂ τ̄ ,

‖ep − π̂hep‖0,l ≤ C(h−1/2
τ ‖ep − π̂hep‖0,τ + h1/2

τ |ep − π̂hep|1,τ )(3.19)

≤ Ch1/2
τ

 ∑
τ̄ ′∩τ̄ 	=∅

|ep|21,τ ′

1/2

.

Thus we have

‖puh
− ph‖2

1,Ω ≤ C(η̂2
4 + η̂2

5) + C‖yuh
− yh‖2

1,Ω.(3.20)

The third step is thus to estimate the error ‖yuh
−yh‖1,Ω. Let ey = yuh

−yh, and
let π̂h be the interpolator in Lemma 3.3. It can be seen that a(ey, π̂hey) = 0 due to
the Galerkin orthogonality a(ey, wh) = 0 ∀wh ∈ Y h from (2.5)1 and (3.13). Then it
follows from (2.5), (3.13), (3.6), and (3.7) that
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c‖yuh
− yh‖2

1,Ω ≤ a(ey, ey) = a(ey, ey − π̂hey)

=
∑
τ∈Th

∫
τ

(f + Buh + div(A∇yh))(ey − π̂hey)

−
∑

l∈∂Th

∫
l

[(A∇yh) · n](ey − π̂hey)

≤ C
∑
τ∈Th

h2
τ

∫
τ

(f + Buh + div(A∇yh))2

+ C
∑

l∈∂Th

hl

∫
l

[(A∇yh) · n]2 +
c

2
‖ey‖2

1,Ω,

where we have bounded ‖ey − π̂hey‖0,τ and ‖ey − π̂hey‖0,l as in (3.18) and (3.19).
Thus we have

‖yuh
− yh‖2

1,Ω ≤ C(η̂2
2 + η̂2

3).(3.21)

Finally, by noting that, from (3.15), (3.16), (3.9), and (2.1), we have

‖yuh
− y‖1,Ω ≤ C‖uh − u‖0,ΩU

,(3.22)

‖puh
− p‖1,Ω ≤ C‖yuh

− y‖1,Ω ≤ C‖uh − u‖0,ΩU
,(3.23)

we combine (3.17), (3.20), and (3.21) to obtain

‖u − uh‖2
0,ΩU

+ ‖y − yh‖2
1,Ω + ‖p − ph‖2

1,Ω

≤ ‖u − uh‖2
0,ΩU

+ 2
(‖y − yuh

‖2
1,Ω + ‖p − puh

‖2
1,Ω

)
+2
(‖yuh

− yh‖2
1,Ω + ‖puh

− ph‖2
1,Ω

)
≤ C‖u − uh‖2

0,ΩU
+ 2

(‖yuh
− yh‖2

1,Ω + ‖puh
− ph‖2

1,Ω

) ≤ C

5∑
i=1

η2
i .

Therefore, the proof is completed.
In many applications, we are mostly interested in computing the values of the

state and the control. In such cases, it is more useful to bound the errors in the
L2-norm to derive sharper estimators, which are given in the following theorem. We
shall use the following condition:

|(Bv,w)| = |(v,B∗w)U | ≤ C‖v‖0,ΩU
‖w‖0,Ω ∀v ∈ U,w ∈ Y,(3.24)

which is held from our assumptions. We shall assume the following condition:

|(g′(v) − g′(w), q)| ≤ C‖v − w‖0,Ω‖q‖2,Ω ∀v, w ∈ Y, q ∈ H2(Ω).(3.25)

Theorem 3.2. Assume that all of the conditions of Theorem 3.1 and (3.25) are
satisfied except that (3.9) is replaced with (3.24). Assume that Ω is convex. Then

‖u − uh‖2
0,ΩU

+ ‖y − yh‖2
0,Ω + ‖p − ph‖2

0,Ω ≤ C

(
η2
1 +

5∑
i=2

η̂2
i

)
,
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where η2
1 is defined in Theorem 3.1 and

η̂2
2 =

∑
τ∈Th

h4
τ

∫
τ

(f + Buh + div(A∇yh))2,

η̂2
3 =

∑
l∈∂Th

h3
l

∫
l

[(A∇yh) · n]2,

η̂2
4 =

∑
τ∈Th

h4
τ

∫
τ

(g′(yh) + div(A∗∇ph))2,

η̂2
5 =

∑
l∈∂Th

h3
l

∫
l

[(A∗∇ph) · n]2.

Proof. Again, we first estimate the error ‖u− uh‖2
0,ΩU

. By the same argument as
in the proof of Theorem 3.1 but using (3.24), we have

‖u − uh‖2
0,ΩU

≤ Cη2
1 + C‖ph − puh

‖2
0,Ω.(3.26)

To estimate ‖ph−puh
‖2
0,Ω, we use the dual technique. Consider the following auxiliary

problems: Find ξ ∈ H1
0 (Ω) and ζ ∈ H1

0 (Ω) such that

a(w, ξ) = (f1, w) ∀w ∈ Y,(3.27)

a(ζ, q) = (f2, q) ∀q ∈ Y.(3.28)

It follows from the well-known regularity results that

‖ξ‖2,Ω ≤ C‖f1‖0,Ω, ‖ζ‖2,Ω ≤ C‖f2‖0,Ω.

Let f2 = puh
− ph in (3.28) and denote by πh : C0(Ω̄) → Y h the standard Lagrange

interpolation operator. It follows from (2.5)2 and (3.14) that

‖puh
− ph‖2

0,Ω = (f2, ph(uh) − ph) = a(ζ, puh
) − a(ζ, ph)

= (g′(yuh
), ζ) − a(ζ − πhζ, ph) − (g′(yh), πhζ)

=
∑
τ∈Th

∫
τ

div(A∗∇ph)(ζ − πhζ) −
∑

l∈∂Th

∫
l

[(A∗∇ph) · n](ζ − πhζ)

+ (g′(yuh
), ζ) − (g′(yh), πhζ)

=
∑
τ∈Th

∫
τ

(g′(yh) + div(A∗∇ph))(ζ − πhζ)

−
∑

l∈∂Th

∫
l

[(A∗∇ph) · n](ζ − πhζ) + (g′(yuh
) − g′(yh), ζ).

By using Lemmas 3.1 and 3.2,

‖ζ − πhζ‖0,τ ≤ Ch2
τ |ζ|2,τ ,(3.29)

‖ζ − πhζ‖0,l ≤ C(h−1/2
τ ‖ζ − πhζ‖0,τ + h1/2

τ |ζ − πhζ|1,τ ) ≤ Ch3/2
τ |ζ|2,τ ,(3.30)
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where l ⊂ τ̄ . Then it follows from (3.25) that

‖puh
− ph‖2

0,Ω ≤ C
∑
τ∈Th

h2
τ‖g′(yh) + div(A∗∇ph)‖0,τ‖ζ‖2,τ

+ C
∑

l∈∂Th

h
3/2
l

(∫
l

[(A∗∇pn) · n]2
)1/2

‖ζ‖2,τ + C‖yuh
− yh‖0,Ω‖ζ‖2,Ω

≤ C
∑
τ∈Th

h4
τ

∫
τ

(g′(yh) + div(A∗∇ph))2 + C
∑

l∈∂Th

h3
l

∫
l

[(A∗∇pn) · n]2

+ C‖yuh
− yh‖2

0,Ω +
1

2
‖f2‖2

0,Ω.

Therefore, we have

‖puh
− ph‖2

0,Ω ≤ C(η̂2
4 + η̂2

5) + C‖yuh
− yh‖2

0,Ω.(3.31)

The second step is again to estimate ‖yuh
− yh‖2

0,Ω. Similarly, letting f1 = yuh
− yh

in (3.27) gives

‖yuh
− yh‖2

0,Ω = (f, yuh
− yh) = a(yuh

− yh, ξ) = a(yuh
− yh, ξ − πhξ)

=
∑
τ∈Th

∫
τ

(f + Buh + div(A∇yh))(ξ − πhξ)

−
∑

l∈∂Th

∫
l

[(A∇yh) · n](ξ − πhξ)

≤ C
∑
τ∈Th

h2
τ

∫
τ

‖f + Buh + div(A∇yh)‖0,τ‖ξ‖2,τ

+ C
∑

l∈∂Th

h
3/2
l

(∫
l

[(A∇yh) · n]2
)1/2

‖ξ‖2,τ

≤ C
∑
τ∈Th

h4
τ

∫
τ

(f + Buh + div(A∇yh))2

+ C
∑

l∈∂Th

h3
l

∫
l

[(A∇yh) · n]2 +
1

2
‖f1‖2

0,Ω,

where we have estimated ‖ξ − πhξ‖0,τ and ‖ξ − πhξ‖0,l as in (3.29) and (3.30). The
above result leads to

‖yuh
− yh‖2

0,Ω ≤ C(η̂2
2 + η̂2

3).(3.32)

Then it follows from (3.26), (3.31), and (3.32) that

‖u − uh‖2
0,ΩU

≤ C

(
η2
1 +

5∑
i=2

η̂2
i

)
.(3.33)

Finally, we estimate ‖yh − y‖0,Ω and ‖ph − p‖0,Ω. It follows from (3.15), (3.16), and
(2.1) that

‖yh − y‖0,Ω ≤ ‖yh − yuh
‖0,Ω + ‖yuh

− y‖0,Ω

≤ ‖yh − yuh
‖0,Ω + C‖uh − u‖0,ΩU
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and

‖ph − p‖0,Ω ≤ ‖ph − puh
‖0,Ω + ‖puh

− p‖0,Ω

≤ ‖ph − puh
‖0,Ω + C‖yuh

− y‖1,Ω

≤ ‖ph − puh
‖0,Ω + C‖uh − u‖0,ΩU

.

The above results, together with (3.31)–(3.33), yield

‖yh − y‖2
0,Ω + ‖ph − p‖2

0,Ω ≤ C

(
η2
1 +

5∑
i=2

η̂2
i

)
.(3.34)

Hence the proof is completed by combining (3.33) and (3.34).

3.2. Lower error bounds. In this subsection, we wish to demonstrate that the
error estimates obtained above are quite sharp by establishing lower error bounds
for the finite element approximation. We start with the following lemma about the
bubble functions, the proof of which can be found in [1, 45].

Lemma 3.5. Let τ ∈ Th. Let τ1
l , τ2

l be two elements in Th with a common edge
(face) l = τ̄1

l ∩ τ̄2
l . For any constants Bτ and Dl, there exist polynomials wτ ∈ H1

0 (τ)
and wl ∈ H1

0 (τ1
l ∪ τ2

l ) such that, for m = 0, 1,∫
τ

Bτwτ = h2
τ

∫
τ

B2
τ , |wτ |2m,τ ≤ Ch

2(1−m)+2
τ

∫
τ

B2
τ ,∫

l

Dlwl = hl

∫
l

D2
l , |wl|2m,τ1

l ∪τ2
l
≤ Ch

2(1−m)+1
l

∫
l

D2
l .

For ease of exposition, we assume that A is a constant matrix and Y h is the
piecewise linear finite element space. We also assume that there exists an integer
k ≥ 0 independent of h such that, for any τU ∈ Th

U , (h′(uh)+B∗ph)|τU is a polynomial
of k-order on τU . This assumption is needed to apply the inverse property in our proof
below, and it may impose an implicit relationship between the meshes for the state
and the control. We further assume that

‖h′(v) − h′(w)‖0,ΩU
≤ C‖v − w‖0,ΩU

∀v, w ∈ Y.(3.35)

Theorem 3.3. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.3) and (2.5),
respectively. Assume that A is a constant matrix, Y h is the piecewise linear finite
element space, f ∈ L2(Ω), φ ≡ φ0, (h′(uh) + B∗ph)|τU is a polynomial of k-order on
τU for any τU ∈ Th

U with k ≥ 0 independent of h, and the conditions (2.1), (3.24),
and (3.35) hold. Then there exists a constant C depending on the matrix A and those
constants in (2.1), (3.24), (3.35), and Lemma 3.5 such that

5∑
i=1

η2
i ≤ C(‖u − uh‖2

0,ΩU
+ ‖y − yh‖2

1,Ω + ‖p − ph‖2
1,Ω)

+ C
∑
τ∈Th

h2
τ (‖F − F̄‖2

0,τ + ‖G − Ḡ‖2
0,τ )

+ C
∑

τU∈Th
U

h2
τU ‖∇(h′(uh) + B∗ph)χΩb

h
‖2
0,τU ,



1334 RUO LI, WENBIN LIU, HEPING MA, AND TAO TANG

where ηi (1 ≤ i ≤ 5) are defined in Theorem 3.1, F = f + Buh, G = g′(yh), F̄ |τ =∫
τ
F/|τ |, and Ḡ|τ =

∫
τ
G/|τ |.

Proof. From the optimality conditions (2.3), we deduce that (h′(u)+B∗p)|Ω+
U

= 0.

It follows from the inverse property [10], (3.35), and (3.24) that

η2
1 =

∑
τU∈Th

U

h2
τU (‖∇(h′(uh) + B∗ph)χΩ+

h
‖2
0,τU + ‖∇(h′(uh) + B∗ph)χΩb

h
‖2
0,τU )

≤ C‖h′(uh) + B∗ph − h′(u) − B∗p‖2
0,Ω+

h
+ C

∑
τU∈Th

U

h2
τU ‖∇(h′(uh) + B∗ph)χΩb

h
‖2
0,τU

≤ C(‖u − uh‖2
0,ΩU

+ ‖p − ph‖2
1,Ω) + C

∑
τU∈Th

U

h2
τU ‖∇(h′(uh) + B∗ph)χΩb

h
‖2
0,τU .

To bound η2
2 , let wτ be the bubble function as in Lemma 3.5 with Bτ = F̄ |τ . It

follows from (2.5) and (3.13) that

η2
2 =

∑
τ∈Th

h2
τ

∫
τ

F 2 ≤ 2
∑
τ∈Th

h2
τ

∫
τ

{F̄ 2 + (F − F̄ )2}

= 2
∑
τ∈Th

∫
τ

{wτF + wτ (F̄ − F ) + h2
τ (F − F̄ )2}

= 2
∑
τ∈Th

∫
τ

(A∇(yuh
− yh)) · ∇wτ + 2

∑
τ∈Th

∫
τ

{wτ (F̄ − F ) + h2
τ (F − F̄ )2}

≤ C
∑
τ∈Th

|yuh
− yh|21,τ + δ

∑
τ∈Th

(|wτ |21,τ + h−2
τ ‖wτ‖2

0,τ ) + C
∑
τ∈Th

h2
τ

∫
τ

(F − F̄ )2

≤ C(|yuh
− y|21,Ω + |y − yh|21,Ω) + Cδη2

2 + C
∑
τ∈Th

h2
τ

∫
τ

(F − F̄ )2.

Then it follows from this inequality and (3.22) that

η2
2 ≤ C(‖u − uh‖2

0,ΩU
+ ‖y − yh‖2

1,Ω) + C
∑
τ∈Th

h2
τ

∫
τ

(F − F̄ )2.(3.36)

To estimate η3, we define the bubble function wl as in Lemma 3.5 with Dl =
[(A∇yh) · n]|l. By (3.13),

η2
3 =

∑
l∈∂Th

hl

∫
l

D2
l =

∑
l∈∂Th

∫
l

wl[(A∇yh) · n] =
∑

l∈∂Th

∫
τ1
l ∪τ2

l

(A∇yh) · ∇wl

=
∑

l∈∂Th

∫
τ1
l ∪τ2

l

(A∇(yh − yuh
)) · ∇wl +

∑
l∈∂Th

∫
τ1
l ∪τ2

l

(f + Buh)wl

≤ C
∑
τ∈Th

|yuh
− yh|21,τ + δ

∑
l∈∂Th

(|wl|21,τ1
l ∩τ2

l
+ h−2

l ‖wl‖2
0,τ1

l ∩τ2
l
) + Cη2

2

≤ C(|yuh
− y|21,Ω + |y − yh|21,Ω) + Cδη2

3 + Cη2
2 .

It follows from the above inequality, (3.22), and (3.36) that

η2
3 ≤ C

(‖u − uh‖2
0,ΩU

+ ‖y − yh‖2
1,Ω

)
+ C

∑
τ∈Th

h2
τ

∫
τ

(F − F̄ )2.
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For η4, let wτ be set as in Lemma 3.5 with Bτ = Ḡ|τ . It follows from (3.14),
(2.1), (3.23), and (3.22) that

η2
4 =

∑
τ∈Th

h2
τ

∫
τ

G2 ≤ 2
∑
τ∈Th

h2
τ

∫
τ

{Ḡ2 + (G − Ḡ)2}

= 2
∑
τ∈Th

∫
τ

{wτG + wτ (Ḡ − G) + h2
τ (G − Ḡ)2}

= 2
∑
τ∈Th

∫
τ

{(A∇wτ ) · ∇(puh
− ph) + wτ (g′(yh) − g′(yuh

))

+ wτ (Ḡ − G) + h2
τ (G − Ḡ)2}

≤ C|puh
− ph|21,Ω + δ

∑
τ∈Th

(|wτ |21,τ + h−2
τ ‖wτ‖2

0,τ )

+ C‖yh − yuh
‖2
1,Ω + C

∑
τ∈Th

h2
τ

∫
τ

(G − Ḡ)2

≤ C
(‖u − uh‖2

0,ΩU
+ ‖p − ph‖2

1,Ω + ‖y − yh‖2
1,Ω

)
+ Cδη2

4 + C
∑
τ∈Th

h2
τ

∫
τ

(G − Ḡ)2.

Thus

η2
4 ≤ C

(‖u − uh‖2
0,ΩU

+ ‖y − yh‖2
1,Ω + ‖p − ph‖2

1,Ω

)
+ C

∑
τ∈Th

h2
τ (G − Ḡ)2.(3.37)

To estimate η5, we set wl as in Lemma 3.5 with Dl = [(A∗∇ph) · n]|l. It follows
from (3.14), (2.1), (3.23), and (3.22) that

η2
5 =

∑
l∈∂Th

hl

∫
l

D2
l =

∑
l∈∂Th

∫
l

wl[(A
∗∇ph) · n] =

∑
l∈∂Th

∫
τ1
l ∪τ2

l

(A∗∇ph) · ∇wl

=
∑

l∈∂Th

∫
τ1
l ∪τ2

l

(A∇wl) · ∇(ph − puh
) +

∑
l∈∂Th

∫
τ1
l ∪τ2

l

g′(yuh
)wl

≤ C|ph − puh
|21,Ω + δ

∑
l∈∂Th

(|wl|21,τ1
l ∩τ2

l
+ h−2

l ‖wl‖2
0,τ1

l ∩τ2
l
)

+ C‖yuh
− yh‖2

1,Ω + Cη2
4

≤ C(‖u − uh‖2
0,ΩU

+ ‖p − ph‖2
1,Ω + ‖y − yh‖2

1,Ω) + Cδη2
5 + Cη2

4 .

This inequality, combined with (3.37), implies

η2
5 ≤ C(‖u − uh‖2

0,ΩU
+ ‖y − yh‖2

1,Ω + ‖p − ph‖2
1,Ω) + C

∑
τ∈Th

h2
τ (G − Ḡ)2.

Thus we proved the desirable result.
We believe that the error estimator η2

1 +
∑5

i=2 η̂2
i in Theorem 3.2 is also sharp,

though we are unable to establish any lower error bound for it. As a matter of fact,
to our best knowledge, there exist no lower a posteriori error bounds in the L2-norm
in the literature or for any control problem.



1336 RUO LI, WENBIN LIU, HEPING MA, AND TAO TANG

3.3. Sharp a posteriori error estimators. In the above section, we have
shown the following error bounds:

c

(
5∑

i=1

η2
i −

∑
τ∈Th

h2
τ

∫
τ

{(F − F̄ )2 + (G − Ḡ)2} −
∑
τ∈Ωb

h

h2
τ‖∇(h′(uh) + B∗ph)‖2

0,τ


≤ ‖u − uh‖2

0,ΩU
+ ‖y − yh‖2

1,Ω + ‖p − ph‖2
1,Ω ≤ C

(
5∑

i=1

η2
i

)
,

(3.38)

provided that the conditions of Theorems 3.1 and 3.3 hold. We note that, if the free
boundary ∂Ω+

U is regular, for instance, if the free boundary consists of a finite number
of smooth surfaces or if the total area of the free boundary is finite, then meas (Ωb

h) is
of the order h as h → 0. Thus the second and third terms of the left side are of higher
order as h → 0 if the data are regular. Take the following typical quadratic control
as one example: let Ω = ΩU ; let Uh and Y h be the piecewise constant and linear
spaces, respectively; let Bu = u, f ∈ H1(Ω), h(u) =

∫
Ω

u2, and g(y) =
∫
Ω

(y − y0)2

with y0 ∈ H1(Ω). Then one has∫
Ω

(F − F̄ )2 + (G − Ḡ)2 ≤ Ch2(|f |2H1 + |y0|2H1) + C

∫
Ω

(Buh − Buh)2,

∑
τ∈Ωb

h

‖∇(h′(uh) + B∗ph)‖2
0,τ ≤ C

(∫
Ωb

h

|∇B∗p|2 + ‖ph − p‖2
H1(Ω)

)
.

Thus it follows that the second and third terms of the left side of (3.38) are not needed
in computations. It can be seen that the above observation still holds even if f, y0 are
only piecewise smooth. For more general objective functionals, one can proceed as
in Remark 3.4. Therefore, (3.38) gives equivalent a posteriori error estimates in the

global sense and thus shows that the estimator
∑5

i=1 η2
i is in general quite sharp.

An obvious problem is that the characteristic function χΩ+b
h

is not a posteriori

in the sense that we usually do not know the position of the free boundary. Never-
theless, one can substitute it with some a posteriori quantities, thus obtaining some
a posteriori error indicators, which can then be used in the adaptive finite element
method.

One possible idea is to approximate χΩ+b
h

by the finite element solution, as sug-

gested in [24] and [32]. The basic idea is to approximate the characteristic function
with the a posteriori quantity χh

Ω+
U

. For α > 0, let

χh
Ω+

U
=

uh − φ0

hα + uh − φ0
.

Thus, in computing, we replace η2
1 by

η̃2
1 =

∑
τ∈Th

U

h2
τU ‖∇(h′(uh) + B∗ph)χh

Ω+
U
‖2
0,τU .

In the following, we investigate the possible errors caused by this replacement. To
this end, we separate ΩU into three parts:

Ω−
h , Ω

α/2
U := {x ∈ ΩU : uh(x) < φ0 + hα/2, u(x) > φ0}, and Ω+b

h \Ω
α/2
U .
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Then, for τ ∈ Ω−
h , we have

‖χh
Ω+

U
− χΩ+b

h
‖0,∞,τ =

∥∥∥∥ uh − u

hα + uh − u

∥∥∥∥
0,∞,τ

≤ min{1, h−α‖uh − u‖0,∞,τ},

and, for τ ∈ Ω+b
h \Ω

α/2
U ,

‖χh
Ω+

U
− χΩ+b

h
‖0,∞,τ =

∥∥∥∥ hα

hα + uh − φ0

∥∥∥∥
0,∞,τ

≤ hα/2.

Therefore, if the error ‖uh−u‖0,∞,τ for τ ⊂ Ω−
h (where u ≡ φ0) is of the order hβ with

β > α, then the difference caused by the replacement is a high-order small quantity

locally for all τ ∈ Ω−
h ∪ (Ω+b

h \Ω
α/2
U ). The size of the remaining domain Ω

α/2
U depends

on the error ‖uh − u‖0,∞. It can be shown (see, e.g., [32]) that meas (Ω
α/2
U ) → 0, as

long as ‖uh−u‖0,∞,Ω → 0, as h → 0. Thus χh
Ω+

U

is a good approximator to χΩ+b
h

, and

this is confirmed in our numerical tests; see section 4.
Remark 3.1. Generally speaking, for the problem considered here, the costate

p is more regular than the solution u. Therefore, we may use ph instead of uh to
approximate the characteristic function. It can be seen from (2.3) that

u = max{−(h′)−1(B∗p), φ0}.
Thus, for example, we can define

χ̃h
Ω+

U
=

ũh − φ0

hα + ũh − φ0
,

where ũh = max{−(h′)−1(B∗ph), φ0}. Similarly, we can show

‖χ̃h
Ω+

U
−χΩ+b

h
‖0,∞,τ ≤

{
min{1, h−α‖(h′)−1(B∗ph) − (h′)−1(B∗p)‖0,∞,τ} ∀τ ∈ Ω−

h ,

hα/2 ∀τ ∈ Ω+b
h \Ω

α/2
U .

3.4. Nonconstant obstacles. If the constraint φ0 is a function φ(x), one could
introduce u∗(x) = u(x) − φ(x). Then the triplet (y, p, u∗) satisfies the following
optimality conditions:

a(y, w) = (f∗ + Bu∗, w) ∀w ∈ Y = H1
0 (Ω),

a(q, p) = (g′(y), p) ∀q ∈ Y = H1
0 (Ω),

((h∗)′(u∗) + B∗p, v − u)U ≥ 0 ∀v ∈ K ⊂ U = L2(ΩU),

(3.39)

where f∗ = f + Bφ, h∗(v) = h(v + φ), and K = {v ∈ U : v ≥ 0}. Thus the problem
is reduced to the case of (2.3) with φ0 = 0.

However, this strategy, although simpler, may affect the efficiency of the resulting
error estimators. Let us try to explain this: the inactive data φ|Ω−

U
on the noncoin-

cidence set does not affect the solution of (CCP) and thus is not expected to play a
major role in a sharp error estimator. However, with the transformation u − φ, this
data may be brought into the resulting error estimators through f∗. Thus we will
directly consider the error u − uh rather than u∗ − u∗

h. Let

K = {v ∈ U : v ≥ φ a.e. in ΩU}, Kh = {vh ∈ Uh : vh ≥ φh a.e. in ΩU},(3.40)
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where φh ∈ Uh is an approximation of φ. Here we take φh = πa
hφ. It should be

noticed that Kh �⊂ K in general.
Theorem 3.4. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.3) and (2.5),

respectively. Assume that all of the conditions of Theorem 3.1 and (3.35) hold and
Kh is defined as in (3.40) with φ ∈ L2(ΩU) and φh = πa

hφ. Then

‖uh − u‖2
0,ΩU

+ ‖yh − y‖2
1,Ω + ‖ph − p‖2

1,Ω ≤ C

6∑
i=1

η2
i ,(3.41)

where ηi (i = 1–5) are defined in Theorem 3.1 and

η2
6 =

∑
τU∈Th

U

‖(φh − φ)χΩ−b
h
‖2
0,τU .

Proof. We will give only the details for the estimation of ‖u−uh‖2
0,ΩU

. The other
terms can be estimated similarly as in Theorem 3.1. It should be emphasized that
here one cannot take v = uh in (2.3) since uh ≥ φ may not be true. It follows from
(3.3) that

h′(u) + B∗p ≥ 0, (h′(u) + B∗p)χΩ+
U

= 0.(3.42)

Then it follows from the assumption (3.4), the inequality (2.5), and (3.42) that, for
any vh ∈ Kh,

c‖u − uh‖2
0,ΩU

(3.43)

≤ (h′(u), u − uh)U − (h′(uh), u − uh)U + (h′(uh) + B∗ph, vh − uh)U

= (h′(uh) + B∗ph, vh − u)U + (B∗(ph − p), u − uh)U + (h′(u) + B∗p, u − uh)U

= ((h′(uh) + B∗ph)χΩ+b
h

, vh − u)U + (B∗(ph − p), u − uh)U

+((h′(uh) + B∗ph − (h′(u) + B∗p))χΩ−
h
, vh − u)U

+((h′(u) + B∗p)χΩ−
h
, vh − uh)U + ((h′(u) + B∗p)χΩ−

U\Ω−
h
, u − uh)U

:=

5∑
i=1

Ii.

Take vh = πa
hu. Then I1 and I2 can be estimated as in the proof of Theorem 3.1 such

that

I1 + I2 ≤ C(η2
1 + ‖ph − puh

‖2
1,Ω) + δ‖u − uh‖2

0,ΩU
,

where δ is a small positive constant. It follows from (3.35), (3.24), and (3.23) that

I3 ≤
∑

τU∈Th
U

(‖h′(uh) − h′(u)‖0,τU + ‖B∗(ph − p)‖0,τU )‖(φ − φh)χΩ−
h
‖0,τU

≤ δ(‖u − uh‖2
0,ΩU

+ ‖ph − puh
‖2
1,Ω) + Cη2

6 .

We note that I4 ≤ 0 due to (3.42) and the fact that (vh−uh)|Ω−
h

= (φh−uh)|Ω−
h
≤ 0.
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Finally, to estimate I5, we use u|Ω−
U

= φ|Ω−
U

, (3.42) and uh ≥ φh to get

((h′(u) + B∗p)χΩ−
U\Ω−

h
, u − uh)τU = ((h′(u) + B∗p)χΩ−

U\Ω−
h
, φ − uh)τU

≤ ((h′(u) + B∗p)χΩ−
U\Ω−

h
, φ − φh)τU = (h′(u) + B∗p, (φ − φh)χΩb

h
)τU

= (h′(u) + B∗p − (h′(uh) + B∗ph), (φ − φh)χΩb
h
)τU

+ ((I − πa
h)(h′(uh) + B∗ph), (φ − φh)χΩb

h
)τU .

Thus

I5 ≤ δ(‖u − uh‖2
0,ΩU

+ ‖ph − puh
‖2
1,Ω) + C(η2

1 + η2
6).

The rest of the proof is the same as that in Theorem 3.1.
Remark 3.2. We can approximate the characteristic functions χΩ+b

h
and χΩ−b

h
by

χh
Ω+b

h

=
uh − φh

hα+ + uh − φh
, χh

Ω−b
h

=
hα−

hα− + uh − φh
,

where α+ and α− are positive parameters.

3.5. Double obstacles. We now consider the control problem with the double
obstacles: φ1(x) < φ2(x). Let

K = {v ∈ U : φ1 ≤ v ≤ φ2 a.e. in ΩU},
Kh = {vh ∈ Uh : φh

1 ≤ vh ≤ φh
2 a.e. in ΩU},(3.44)

where φh
i ∈ Uh is an approximation of φi (i = 1, 2). We assume that φh

i = πa
hφi (i =

1, 2). To generalize the ideas used in Theorem 3.4 to this case, we define

Ω−
φi

= {x ∈ ΩU : u(x) = φi(x), }, Ω−
φ = Ω−

φ1
∪ Ω−

φ2
, Ω+

φ = ΩU\Ω−
φ ,

Ω−
φi,h

= {∪τ̄U : τU ⊂ Ω−
φi

, τU ∈ Th
U }, Ω−

φ,h = Ω−
φ1,h

∪ Ω−
φ2,h

, Ω+b
φ,h = ΩU\Ω−

φ,h,

Ω−b
φi,h

= {∪τ̄U : τ̄U ∩ Ω−
φi,h

�= ∅, τU ∈ Th
U }.

Theorem 3.5. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.3) and (2.5),
respectively. Assume that all of the conditions of Theorem 3.4 hold and K and Kh

are defined as in (3.44) with φi ∈ L2(ΩU) and φh
i = πa

hφi (i = 1, 2). Then

‖uh − u‖2
0,ΩU

+ ‖yh − y‖2
1,Ω + ‖ph − p‖2

1,Ω ≤ C

6∑
i=1

η2
i ,(3.45)

where ηi (i = 2–5) are defined in Theorem 3.1 and

η2
1 =

∑
τU∈Th

U

h2
τU ‖∇(h′(uh) + B∗ph)χΩ+b

φ,h
‖2
0,τU ,

η2
6 =

∑
τU∈Th

U

∑
i=1,2

‖(φh
i − φi)χΩ−b

φi,h
‖2
0,τU .
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Proof. Again, we give only the details for estimation of the error ‖u − uh‖2
0,ΩU

.
In this case, we have

(h′(u) + B∗p)χΩ−
φ1

≥ 0, (h′(u) + B∗p)χΩ−
φ2

≤ 0, (h′(u) + B∗p)χΩ+
φ

= 0.(3.46)

As in (3.43), it follows from the assumption (3.4), the inequality (2.5), and (3.46)
that, for any vh ∈ Kh,

c‖u − uh‖2
0,ΩU

(3.47)

≤ (h′(u), u − uh)U − (h′(uh), u − uh)U + (h′(uh) + B∗ph, vh − uh)U

= (h′(uh) + B∗ph, vh − u)U + (B∗(ph − p), u − uh)U + (h′(u) + B∗p, u − uh)U

= ((h′(uh) + B∗ph)χΩ+b
φ,h

, vh − u)U + (B∗(ph − p), u − uh)U

+((h′(uh) + B∗ph − (h′(u) + B∗p))χΩ−
φ,h

, vh − u)U

+((h′(u) + B∗p)χΩ−
φ,h

, vh − uh)U + ((h′(u) + B∗p)χΩ−
φ \Ω−

φ,h
, u − uh)U

:=

5∑
i=1

Ji.

It is easy to see that for 1 ≤ i ≤ 3, Ji can be estimated as Ii. Thanks to (3.46), we
still have J4 ≤ 0. Also, J5 can be treated similarly to I5. For instance, let us consider
the case that τU ⊂ (Ω−b

φ2,h
\Ω−

φ2,h
). Assume that Ω−b

φ2,h
∩ Ω−

φ1
= ∅ for simplicity. We

then have, from u|Ω−
φ2

= φ2|Ω−
φ2

, (3.46), and uh ≤ φh
2 , that

((h′(u) + B∗p)χΩ−b
φ2,h\Ω−

φ2,h
, u − uh)τU

= ((h′(u) + B∗p)χΩ−b
φ2,h\Ω−

φ2,h
, φ2 − uh)τU

≤ ((h′(u) + B∗p)χΩ−b
φ2,h\Ω−

φ2,h
, φ2 − φh

2 )τU

= (h′(u) + B∗p − (h′(uh) + B∗ph), φ2 − φh
2 )τU

+ ((I − πa
h)(h′(uh) + B∗ph), φ2 − φh

2 )τU .

The rest of the proof is the same as that of Theorem 3.4.
Remark 3.3. In computing, we may approximate the characteristic functions

χΩ+b
h

and χΩ−b
φi,h

by

χh
Ω+b

h

=
(uh − φh

1 )(φh
2 − uh)

hα+ + (uh − φh
1 )(φh

2 − uh)
, χh

Ω−b
φi,h

=
hα−

hα− + |uh − φh
i |

,

where α+ and α− are positive parameters.
Remark 3.4. It is clear that the uniform monotonicity conditions and Lipschitz

continuity (2.1), (3.4), (3.25), (3.35), assumed in the proofs of Theorems 3.1–3.3, are
needed to hold only in a neighborhood of the true solutions. This observation is
useful in some applications involving a nonquadratic objective functional like g(y) =∫
Ω

(y − y0)4.
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For (2.1) and (3.25), let us assume that g(y) =
∫
Ω

j(y), where j is twice contin-
uously differentiable on R1, to just fix the idea. Then it follows from the Sobolev
embedding result H1(Ω) → Lβ(Ω) (β < ∞ if n = 2, and β = 6 if n = 3) that we
have, using the Hölder inequality,

|(g′(v) − g′(w), q)| ≤ ‖j′′(z)‖0,β∗,Ω‖v − w‖0,β,Ω‖q‖0,β,Ω

≤ C‖j′′(z)‖0,β∗,Ω‖v − w‖1,Ω‖q‖1,Ω,

where z = θv + (1 − θ)w with θ ∈ [0, 1], β∗ = (1 − 2/β)−1 for any β > 2 if n = 2 and
β∗ = 3/2 if n = 3.

Also, by using the embedding result H2(Ω) → L∞(Ω) for n ≤ 3, we have

|(g′(v) − g′(w), q)| ≤ ‖j′′(z)‖0,Ω‖v − w‖0,Ω‖q‖2,Ω.

For example, if g(y) =
∫
Ω

(y−y0)4 with y0 ∈ L4(Ω), we have by H1(Ω) → L2β∗
(Ω)

that

|(g′(v) − g′(w), q)| ≤ C(‖v2‖0,β∗,Ω + ‖w2‖0,β∗,Ω + ‖y2
0‖0,β∗,Ω)‖v − w‖1,Ω‖q‖1,Ω,

≤ C(‖v‖2
1,Ω + ‖w‖2

1,Ω + ‖y0‖2
L4(Ω))‖v − w‖1,Ω‖q‖1,Ω

and

|(g′(v) − g′(w), q)| ≤ C(‖v2‖0,Ω + ‖w2‖0,Ω + ‖y2
0‖0,Ω)‖v − w‖0,Ω‖q‖2,Ω,

≤ C(‖v‖2
1,Ω + ‖w‖2

1,Ω + ‖y0‖2
L4(Ω))‖v − w‖0,Ω‖q‖2,Ω.

Thus (2.1) and (3.25) hold as long as v, w are in a bounded set of Y . One can discuss
(3.4) and (3.35) similarly.

It follows from the proofs of Theorems 3.4–3.5 that Theorem 3.2 can also be
generalized to the nonconstant or double obstacle cases in the same way. Thus one
can just use η2

1 + η2
6 as the error indicator in adaptive finite element methods if only

the values of the control and state are important in an application.

4. Numerical experiments. In this section, we carry out some numerical ex-
periments to demonstrate possible applications of the error estimators obtained in
section 3. In most control problems, the optimal control is often of prime inter-
est. Thus it is important to develop mesh refinement schemes that efficiently reduce
the error ‖u − uh‖. In practice, there are four major types of adaptive finite element
methods—namely, the h-method (mesh refinement), the p-method (order enrichment),
the r-method (mesh redistribution), and the hp-method. A posteriori error estimators
can be used as error indicators to guide the mesh refinement in adaptive finite ele-
ment methods. For our numerical tests, using an adaptive mesh redistribution (AMR)
method is advantageous since it can keep the number of the total nodes unchanged
while adjusting the distribution of the nodes.

4.1. AMR method. The general idea behind the AMR method is to adjust
meshes such that the a posteriori error estimators (the monitor functions to be called)
are equally distributed over the computational meshes, while the total number of the
nodes remains the same. Clearly, this method particularly suits our purposes of testing
the efficiency of the known a posteriori error estimators.

In solving the optimal control problem (1.1), we use an iterative method to move
the meshes and to redistribute the solutions on the new grid points. The procedure
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for the mesh moving part is described in [24, 25, 26]. The key idea here is to use
some kind of equivalent error estimators as the monitor function (or moving mesh
indicator). More precisely, let (x(ξ, η), y(ξ, η)

)
be the mesh map in two dimensions.

Here (ξ, η) are the computational coordinates. Let M > 0 be the monitor function
which depends on the physical solution to be adapted. By solving the Euler–Lagrange
equation

∇ · (M−1∇ξ) = 0, ∇ · (M−1∇η) = 0,(4.1)

a map between the physical domain Ω and the logical domain Ωc can be computed.
Typically, the map transforms a uniform mesh in the logical domain to cluster grid
points at the regions of physical domain where the solutions are of greater physical
interest. One of the crucial issues is what monitor functions are to be used. One
popular choice in the AMR method literature is a gradient-based monitor function
like Mτ =

√
1 + |∇yh|2τ , which moves more grids to the regions of the largest solution

gradients. In [24], it was shown that the gradient-based monitor functions may not
be suitable for free boundary problems, and a monitor function associated with a
posteriori error estimators is introduced which was found particularly useful in ap-
proximating the variational inequalities with free boundaries. In this section, we will
use the same solution procedures as described in [24] to obtain the numerical solutions
with moving grids, except that monitor functions will be based on the error estimators
developed in this work.

4.2. Numerical tests. Our numerical example is the following type of optimal
control problem:

min
1

2

∫
Ω

(y − y0)2 +
1

2

∫
ΩU

(u − u0)2

(OCP)

s.t.


−∆y = Bu + f,

y|∂Ω = y0|∂Ω = 0,

u ≥ 0 in ΩU .

In our example, ΩU = Ω = [0, 1] × [0, 1] and B = I. We also use the same
meshes for the approximation of the state and the control. Thus τU = τ . Let Ωh

be a polygonal approximation to Ω with boundary ∂Ωh. Let Th be a partitioning
of Ωh into a disjoint regular triangular τ so that Ω̄h = ∪τ∈Th τ̄ . Assume that the
state y is approximated in the finite element space Y h with Φi as basis functions and
u is approximated in Uh with Ψi as basis functions. Thus the problem (OCP) is
discretized as the following optimization problem:

min 1
2

{
(Y − Y 0)TQ(Y − Y 0) + (U − U0)TM(U − U0)

}
s.t. AY = BU + F,

U ≥ 0,

(4.2)
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with

Qij =

∫
Ω

ΦiΦjdx, M ij =

∫
Ω

ΨiΨjdx,

Aij =

∫
Ω

∇Φi∇Φjdx, Bij =

∫
Ω

ΦiΨjdx,

Fi =

∫
Ω

fΦidx.

The finite element solution (yh, uh) is given by yh =
∑

i YiΦ
i and uh =

∑
i UiΨ

i, and
(y0, u0) is approximated by yh

0 =
∑

i Y
0
i Φi and uh

0 =
∑

i U
0
i Ψi.

In solving the above optimization problem, we use a projection gradient method
developed by He [19]. The projection method, though simple, is by no means the
most efficient algorithm for solving our problem, but the purpose of the experiments
in this section is to test the efficiency of the error indicators. The idea in [19] is the
first to introduce the Lagrange multiplier P and then to set

H =

 Q 0 −AT

0 M BT

A −B 0

 , x =

 Y
U
P

 , c =

 QY 0

MU0

F

 .

The algorithm for solving the optimization problem (4.2) is described by the following
pseudocode:

du = beta*(Hx + c)

e = x - max(x-du,b)

error =||e||

do while error >= TOL

d= beta*H^T*e

g = d + du

beta=beta*error/||d||

e = e + d

rho = error^2/||e||^2

x = max(x - gamma \rho g,b)

du = \beta (H x + c)

e = x - max(x-du,b)

error = ||e||

end do

We now briefly describe the solution algorithm to be used for solving the numerical
examples in this section.

Algorithm 0

(i) Solve the optimization problem (4.2) with the above optimization code
on the current mesh, and calculate the error monitor function M;
(ii) move the mesh to a new location, and update the solution on new
meshes using the monitor M, as described in [25].

It is important to note from Theorem 3.2 that the error ‖u−uh‖L2(ΩU ) is largely
controlled by η1. Thus, in Algorithm 0, η1, in (3.11) will be used to construct the
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Fig. 4.1. The surface of the solution u.

monitor function M discussed in section 4.1,

M |τ =
√

1 + λη̃2
1 |τ ,(4.3)

where λ > 0 is a positive constant, and

η̃2
1 |τ = h2

τ‖∇(h′(uh) + B∗ph)χuh
‖2
0,τ .(4.4)

In general, λ should be chosen such that λ‖η1‖ >> 1. Here we let λ‖η1‖2 = 104. As
discussed in section 3, in our computation, we approximate the characteristic function
used in η1 by the following approximation:

χuh
=

uh

uh + ε
,(4.5)

where ε > 0 is a (small) positive number. In our experiments, we tried a range of
values for ε between 0.1 and 1, and similar computational results were obtained.

Example 4.1. In this example we have

u0 = 1 − sin(πx1/2) − sin(πx2/2), y0 = 0, p = Z(x1, x2), f = 4π4Z − u,

where Z = sin πx1 sin πx2. The exact solution of this problem is y = 2π2Z, u =
max(u0 − p, 0).

20×20 nodes solution. We first compute Example 4.1 on a 20×20 uniform mesh
and then adjust the mesh by using Algorithm 0. The parameters λ and ε in (4.3) and
(4.5) are 105 and 0.1, respectively. In Figure 4.1, the exact solution u is plotted. It is
seen that the free boundary for this problem is just a single curve, and the maximum
magnitude of the solution u is 1. The state and costate are approximated by piecewise
linear elements. Both piecewise constant and piecewise linear elements are used to
approximate the control in this example. In Figure 4.2, the 20 × 20 adaptive meshes
are displayed. The control approximation errors are presented in Figures 4.3 and 4.4.
It is observed that the maximum errors are distributed along the free boundary, as
seen from Figures 4.3 and 4.4.

The adaptive meshes shown in Figure 4.2 are obtained by using the AMR method
with the monitor function defined by (4.3). It is seen that a higher density of node



ADAPTIVE APPROXIMATION FOR OPTIMAL CONTROL 1345

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4.2. The adaptive mesh obtained by using piecewise constant elements (left) and piecewise
linear elements (right), with 20 × 20 nodes.
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Fig. 4.3. L2-error ‖u − uh‖ with uniform mesh (left) and adaptive mesh (right), obtained by
using piecewise constant elements with 20 × 20 nodes.
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Fig. 4.4. Same as Figure 4.3, except with linear elements.
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Fig. 4.5. Example 4.1 with 20×20 nodes: Mesh (left) and error (right) obtained by using linear
elements with unsharp error estimator associated with η̄1, as defined by (3.2).
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Fig. 4.6. Profiles of unsharp estimator η̄1 and the sharp estimator η̃1 obtained by using the
linear element with 20 × 20 nodes.

points are now distributed along the free boundary. Furthermore, the approximation
error is substantially reduced, as seen in Figures 4.3 and 4.4. In Figure 4.4, the L2-
norm of u−uh is 4.3×10−3 on the uniform mesh but is reduced 10 times to 4.4×10−4

on the adaptive mesh, while the L2 error of the state approximation becomes slightly
larger. It was found that one would need a 100 × 100 uniform mesh to produce
such an error reduction. Thus efficient adaptive meshes can indeed save substantial
computational work.

However, if we replace the estimator η̃1 in the monitor (4.3) with the estimator
η̄1 given by (3.2), then a very different mesh is obtained; see Figure 4.5. As also
seen in Figure 4.5, such a mesh is not efficient in reducing the control error; the
error is virtually the same as that on the uniform mesh. The main reason is that the
estimator η̄1 may not be sharp in this case. In fact, from Figure 4.6, it is clear that
η̄1 and |u − uh| have very different profiles, while η̃1 has a profile similar to that of
|u − uh|.

40× 40 nodes solution. To see the effect of mesh refinement, numerical solutions
for Example 4.1 are obtained by using 40 × 40 linear elements. The control error
distributions in this case are plotted in Figure 4.7, while the adapted mesh is plotted
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Fig. 4.7. Same as Figure 4.4, except with 40 × 40 nodes.
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Fig. 4.8. The adaptive mesh obtained by using piecewise linear elements with 40 × 40 nodes.

in Figure 4.8. It is clear that the control errors are reduced with the finer mesh and
with the use of the adaptive meshes.

5. Conclusion. In this work, we have derived some sharp a posteriori error
indicators for the distributed elliptic optimal control problems. It is shown that the
error indicators obtained can be applied in adaptive finite element computations and
are found efficient in guiding mesh adjustments for our numerical examples. It is clear
from the numerical experiments that the AMR methods can substantially increase the
approximation accuracy. We point out that the approaches used in this work can be
generalized to study other control problems.
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