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Abstract. Hermite spectral methods are investigated for linear diffusion equations and nonlin-
ear convection-diffusion equations in unbounded domains. When the solution domain is unbounded,
the diffusion operator no longer has a compact resolvent, which makes the Hermite spectral methods
unstable. To overcome this difficulty, a time-dependent scaling factor is employed in the Hermite ex-
pansions, which yields a positive bilinear form. As a consequence, stability and spectral convergence
can be established for this approach. The present method plays a similar role in the stability of the
similarity transformation technique proposed by Funaro and Kavian [Math. Comp., 57 (1991), pp.
597–619]. However, since coordinate transformations are not required, the present approach is more
efficient and is easier to implement. In fact, with the time-dependent scaling the resulting discretiza-
tion system is of the same form as that associated with the classical (straightforward but unstable)
Hermite spectral method. Numerical experiments are carried out to support the theoretical stability
and convergence results.
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1. Introduction. Spectral methods for approximating solutions of differential
equations in unbounded domains have received considerable attention, mainly due to
their high accuracy and being free from using artificial boundary conditions. The
spectral approaches employ orthogonal systems in unbounded domains, e.g., using
the Laguerre spectral methods for problems in semibounded or exterior domains [2,
4, 8, 12, 17, 18, 21] and the Hermite spectral methods for the problems in unbounded
domains [1, 5, 6, 7, 10, 20]. An alternative approximation for such problems is the
rational spectral method which has also been studied by several authors [3, 9, 11, 13,
25].

When the Hermite method is applied to second-order differential equations di-
rectly, it is found in [7] that the nonsymmetric bilinear form is not of the desired
coercity property. To see this, let us consider the following simple parabolic problem:
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∂tU − ν∂2

xU = f(x, t), x ∈ R, t > 0,

U(x, 0) = U0(x), x ∈ R,
(1.1)

where the diffusion constant ν > 0, and R = (−∞,∞). The solution U and its partial
derivative ∂xU have to satisfy certain decay conditions as |x| → ∞. Let PN(R) be the
space of polynomials of degree at most N and let

VN = {vN(x) = ωβφN(x) | φN(x) ∈ PN(R)} ,(1.2)

where ωβ = e−(βx)2 with β being a constant. The semidiscrete Hermite function
method for (1.1) is to find uN(t) ∈ VN such that for any ϕN ∈ PN(R),{

(∂tuN(t), ϕN) + ν(∂xuN(t), ∂xϕN) = (f(t), ϕN), t > 0,

(uN(0), ϕN) = (U0, ϕN),
(1.3)

where (·, ·) is the conventional inner product in the L2(R) space.
We demonstrate that neither is the nonsymmetric bilinear form in (1.3) coercive

nor can a corresponding G̊arding’s type inequality be established. To show this, we
denote by Hl(x) the Hermite polynomial of degree l orthogonal on R with respect to

the weight ω1(x) = e−x2

. Let β > 0 and let

H l(x) := (2ll!
√
π)−1/2Hl(x) , H

(β)
l (x) :=

√
βH l(βx) .

Note that ‖H l‖ω1 = 1 and ‖H(β)
l ‖ωβ

= 1. Then, for uN = ωβφN with φN :=∑N
l=0 ûlH

(β)
l , we have

(∂xuN , ∂xφN) = |φN |21,ωβ
+ β2‖φN‖2

ωβ
− 2β4‖xφN‖2

ωβ
(1.4)

= −2β2
N∑
l=2

√
l(l − 2)ûlûl−2,

which cannot be controlled by ‖uN‖2
ω−1

β

=
∑N

l=0 |ûl|2. In other words, the stability

for (1.3) cannot be established by using the classical energy method. On the other
hand, the instability is observed numerically, as seen in section 6. To overcome this
difficulty, a similarity transformation was introduced by Funaro and Kavian [6], which
is defined by

s = ln(1 + t), y = x(1 + t)−
1
2 .(1.5)

With this transformation, they were able to obtain the optimal error estimate of the
Hermite function approximation for the linear problem (1.1). This similarity trans-
formation technique has been extended recently to study the nonlinear convection-
diffusion equations; see, e.g., [7, 10]. By using this transformation, the diffusion
operator in (1.1) is changed into an operator whose eigenfunctions are the Hermite
functions. This property can lead to a desired stability result. However, the trans-
formation may make the underlying equations more complicated, which leads to diffi-
culties in theoretical analysis and practical implementation. It is desirable to develop
some simpler and more efficient Hermite spectral methods.

In this paper, we present a Petrov–Galerkin Hermite spectral method which uses a
time-dependent weight function. On the one hand, the method keeps the advantage of
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the similarity transformation method, namely, it gives a positive definite bilinear form.
On the other hand, the scheme can be easily formulated in the classical form of (1.3),
without introducing any extra new terms. As a result, a priori explicit transformation
is not needed. Moreover, the time-dependent weight function behaves like a spatial
scaling. The importance of the scaling factor has been demonstrated by Tang [22] and
Schumer and Holloway [20]. We will apply the proposed method to the analysis of the
nonlinear convection-diffusion equations. Stability and optimal error estimates for the
Hermite spectral methods, in both semidiscrete and fully discrete forms, are obtained
for the nonlinear equation. It will be shown by numerical experiments that the time-
dependent weight works well for solutions with time-dependent and time-independent
decays.

An outline of the paper is as follows. In section 2 we briefly discuss the Hermite
spectral methods with a time-dependent scaling. Section 3 presents some basic prop-
erties of the Hermite functions in weighted spaces, which will be useful in the stability
and convergence analysis. In sections 4 and 5, stability and convergence analysis is
carried out for the semidiscrete and fully discrete schemes, respectively. The analysis
is devoted not only to the linear parabolic equation (1.1), but also to the nonlinear
convection-diffusion problems. In section 6, numerical results will be presented.

2. Hermite method with time-dependent scaling. We present a Petrov–
Galerkin Hermite spectral method with a time-dependent scaling for the simple model
problem (1.1). Let α = α(t) > 0. We take

α(t) =
1

2
√
νδ0(δt + 1)

,(2.1)

where δ0 and δ are some positive parameters. It can be verified that

α′(t) = −2νδ0δα
3(t).

The motivation for this choice of α can be found in Remark 4.1 in section 4. The
semidiscrete Hermite spectral method for (1.1) is to find uN(t) ∈ VN(t) such that for
any ϕN ∈ PN(R),{

(∂tuN(t), ϕN) + ν(∂xuN(t), ∂xϕN) = (f(t), ϕN), t > 0,

(uN(0), ϕN) = (U0, ϕN),
(2.2)

where the trial space VN(t) is defined by

VN(t) =
{
vN(x) = ωα(t)φN(x) | φN(x) ∈ PN(R)

}
.(2.3)

The scheme (2.2) is almost the same as (1.3): the only difference is that here the
weight function ωα in the trial function space VN varies with time. The scheme (2.2)
can be rewritten as

d

dt
(uN(t), ϕN(t)) + (uN(t), L∗ϕN(t)) = (f(t), ϕN(t)),(2.4)

where L∗ := −∂t − ν∂2
x. To simplify the computation, let

uN(x, t) =
ωα√
π

N∑
l=0

ûl(t)Hl(αx) , ϕN(x, t) =
α(t)

(2mm!)
Hm(α(t)x) (0 ≤ m ≤ N).

(2.5)
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In other words, we expand the unknown solution using the scaled Hermite functions
with a time-dependent scaling factor. The test function ϕN is now also dependent on
t. It can be verified that

(ωαHl(αx), L∗(αHm(αx)))

= −α′α−1(‖Hm‖2
ω1
δlm + (yHl, H

′
m)ω1

) − 2να2(yHl, H
′
m)ω1

+ να2‖H ′
m‖2

ω1
δlm

= δ0δνα
2‖Hm‖2

ω1
δlm + (δ0δ − 1)να2(Hl+1 + 2lHl−1, 2mHm−1)ω1

+ να2|Hm|21,ω1
δlm

= να22mm!
√
π(2δ0δδlm + (δ0δ − 1)(δ(l+2)m + 2mδlm) + 2mδlm).

Applying the above result to (2.2) gives

⎧⎨
⎩

du(t)

dt
+ να(t)2Au(t) = f(t), t > 0,

(u(0))m = α(0)(2mm!)−1(U0, Hm(α(0)x)), 0 ≤ m ≤ N,

(2.6)

where α(0) = 1/2
√
νδ0, u = (û0, û1, . . . , ûN )T . The elements of the matrix A are

given by

(A)ml =

⎧⎪⎨
⎪⎩

2(m + 1)δ0δ, l = m,

δ0δ − 1, l = m− 2,

0 otherwise, 0 ≤ l,m ≤ N,

and the entries fm of f are given by

f̂m := (f)m = α(2mm!)−1(f,Hm(αx))

= (2mm!)−1(ey
2

f(α−1y), Hm(y))ω1
.

Fully discrete methods can be designed by using (2.6) based on the method-of-lines
approach. Here we consider the Crank–Nicolson scheme. Let τ be the time-step
tk = kτ (k = 0, 1, . . . , n

T
; T = n

T
τ), and let vk = v(tk). The fully discrete Petrov–

Galerkin method for (1.1) is to find

uk
N =

ωα(tk)√
π

N∑
l=0

ûk
l Hl(α(tk)x)

such that⎧⎪⎨
⎪⎩

uk+1 − uk

τ
+ να2(tk + τ/2)A

uk+1 + uk

2
=

fk+1 + fk

2
, 0 ≤ k ≤ n

T
− 1,

(u0)m = (2mm!)−1(ey
2

U0(y/α(0)), Hm(y))ω1 , 0 ≤ m ≤ N.

(2.7)

Since the matrix A is independent of time, the above scheme can be solved easily.

Remark 2.1. Note that the matrix A is an upper triangular matrix whose diagonal
entries are 2(m+1)δ0δ. By the classical stability theory, both the semidiscrete scheme
(2.6) and fully discrete scheme (2.7) are stable and convergent provided that δ0δ > 0.
However, δ0 = 0 in the classical approach (1.3) yields numerical instability.
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3. Approximation properties of Hermite functions. In this section, we
present some basic approximation properties for the Hermite functions and the Her-
mite polynomials. Some of them are similar to those obtained in [5, 6, 7, 19, 23, 24]
and we will only briefly outline the proofs.

Let Hσ(R) := W σ,2(R) be the Sobolev spaces with the norm ‖ · ‖σ and seminorm
| · |σ. For a nonnegative weight ω(x) on R, the inner product and norm of L2

ω(R) are
denoted by (·, ·)ω and ‖ · ‖ω, respectively. The subscript ω will be dropped whenever
ω(x) ≡ 1. For a positive integer σ, the weighted Sobolev space Hσ

ω(R) is defined by

Hσ
ω(R) =

{
v | ∂r

xv ∈ L2
ω(R), 0 ≤ r ≤ σ

}
with the seminorm and norm

|v|σ,ω = ‖∂σ
xv‖ω, ‖v‖σ,ω =

(
σ∑

r=0

|v|2r,ω

)1/2

.

Denote by Hl(x) the Hermite polynomial of degree l:

Hl(x) = (−1)lω−1
1 (x)∂l

x(ω1(x)).

In theoretical analysis, it seems more convenient to use the normalized Hermite poly-
nomials

H l(x) := (2ll!
√
π)−1/2Hl(x).

We will work with the scaled Hermite polynomial H
(β)
l (x) :=

√
βH l(βx), where β > 0

is a constant. For nonnegative integers r and l, let

Ar
l =

⎧⎪⎨
⎪⎩

l!/(l − r)!, l ≥ r ≥ 1,

1, l ≥ 0, r = 0,

0, l < r.

We have

(∂r
xH

(β)
l , ∂r

xH
(β)
m )ωβ

= β2r(∂r
xH l, ∂

r
xHm)ω1

= (2β2)r
√
Ar

lA
r
m δlm(3.1)

so that {∂r
xH

(β)
l } are orthogonal on R with respect to the weight ωβ = e−(βx)2 . Let

P β
N : L2

ωβ
(R) → PN(R) be the L2

ωβ
-orthogonal projection operator defined by

(P β
Nv − v, ϕN)ωβ

= 0 ∀ ϕN ∈ PN(R).(3.2)

For v ∈ Hr
ωβ

(R) (r < N), we have ∂r
xP

β
Nv = P β

N−r∂
r
xv and

(∂r
x(P β

Nv − v), ϕN−r)ωβ
= 0 ∀ ϕN−r ∈ PN−r(R).(3.3)

We consider the approximation by the Hermite functions; i.e., we approximate
vω−1

β by using the Hermite polynomials. Let Pβ
N : L2

ω−1
β

(R) → VN be the L2
ω−1

β

-

orthogonal projection operator defined by

(Pβ
Nv − v, ϕN)ω−1

β
= 0 ∀ ϕN ∈ VN .(3.4)
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It is easy to verify that Pβ
Nv = ωβP

β
N (vω−1

β ). For v ∈ Hr
ω−1

β

(R) (r < N), we have

∂r
xP

β
Nv = Pβ

N+r∂
r
xv and

(∂r
x(Pβ

Nv − v), ϕN+r) = 0 ∀ ϕN+r ∈ PN+r(R).(3.5)

Lemma 3.1. If r is a nonnegative integer, then v ∈ Hr
ω−1

β

(R) is equivalent to

vω−1

β ∈ Hr
ωβ

(R). Moreover,

r∑
j=0

(2β2)r−j‖∂j
x[(I − P β

m)(vω−1

β )]‖2
ωβ

≤ ‖∂r
x[(I − Pβ

m)v]‖2
ω−1

β

∀m ≥ 0,(3.6)

‖∂r
x[(I − Pβ

N)v]‖ω−1
β

≤ C(r)‖∂r
x[(I − P β

N )(vω−1

β )]‖ωβ
∀N > r,(3.7)

where P β
0 = Pβ

0 = 0 and C(r) is a constant depending only on r.
Proof. By a direct calculation,

∂r
x(ωβH

(β)
l (x)) = (−β)r2r/2

√
Ar

l+r ωβH
(β)
l+r(x).(3.8)

Using this result we can verify that {∂r
x(ωβH

(β)
l )} are orthogonal with respect to the

weight ω−1

β on R:

(∂r
x(ωβH

(β)
l ), ∂r

x(ωβH
(β)
m ))ω−1

β
= (2β2)r

√
Ar

l+rA
r
m+r(H

(β)
l+r, H

(β)
m+r)ωβ

(3.9)

= (2β2)r
√
Ar

l+rA
r
m+r δlm ∀l, m ≥ r ≥ 0.

Let v = ωβ

∑∞
l=0 v̂lH

(β)
l . Then we have

(I − Pβ
m)v = ωβ(I − P β

m)(vω−1

β ) = ωβ

∑
l≥m

v̂lH
(β)
l .

The above result, together with (3.9), gives

‖∂r
x[(I − Pβ

m)v]‖2
ω−1

β

= (2β2)r
∑
l≥m

Ar
l+r|v̂l|2

≥ (2β2)r
∑
l≥m

r∑
j=0

Aj
l |v̂l|2 ≥ (2β2)r

r∑
j=0

∑
l≥max{m,j}

Aj
l |v̂l|2

=

r∑
j=0

(2β2)r−j‖∂j
x[(I − P β

m)(vω−1

β )]‖2
ωβ

.

This proves the result (3.6). The inequality (3.7) can be established similarly.
Lemma 3.2. If 0 ≤ r ≤ σ < N , then

‖∂r
x(v − P β

Nv)‖ωβ
≤C(r, σ)(2β2N)(r−σ)/2‖∂σ

xv‖ωβ
∀ v ∈ Hσ

ωβ
(R),(3.10)

‖∂r
x(v − Pβ

Nv)‖ω−1
β

≤C(r, σ)(2β2N)(r−σ)/2‖∂σ
xv‖ω−1

β
∀ v ∈ Hσ

ω−1
β

(R),(3.11)

where C(r, σ) is a constant depending only on r and σ.
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Proof. Let v =
∞∑
l=0

v̂lH
(β)
l . Then, it follows from (3.1) that

‖∂r
x(v − P β

Nv)‖2
ωβ

=
∑
l>N

(2β2)rAr
l |v̂l|2

= (2β2)r−σ
∑
l>N

(Aσ−r
l−r )−1(2β2)σAσ

l |v̂l|2 ≤ (2β2)r−σ(Aσ−r
N+1−r)

−1‖∂σ
x (v − P β

Nv)‖2
ωβ

= (2β2)r−σ
σ−2∏

m=r−1

(
1 − m

N

)−1

Nr−σ‖∂σ
x (v − P β

Nv)‖2
ωβ

,

which gives (3.10). Using (3.7), (3.10), and (3.6) gives

‖∂r
x(v − Pβ

Nv)‖2
ω−1

β

≤ C(r)‖∂r
x[(I − P β

N )(vω−1

β )]‖ωβ

≤ C(r, σ)(2β2N)(r−σ)/2‖∂σ
x [(I − P β

N )(vω−1

β )]‖ωβ

≤ C(r, σ)(2β2N)(r−σ)/2‖∂σ
x [(I − Pβ

N)v]‖ω−1
β

,

which gives (3.11).
Lemma 3.3. Let r, σ be nonnegative integers. We have

lim
|x|→∞

x(∂r
xv)

2(x)ω−1

β (x) → 0 ∀ v ∈ Hσ
ω−1

β

(R), r ≤ σ − 1,(3.12)

‖v2ω−1

β ‖L∞(R) ≤ 2|v|1,ω−1
β

‖v‖ω−1
α

∀ v ∈ H1
ω−1

β

(R),(3.13)

|ϕN |σ,ω−1
β

≤ (4β2N)(σ−r)/2|ϕN |r,ω−1
β

∀ ϕN ∈ VN , r ≤ σ ≤ N,(3.14) ∥∥∥√ω−1

β ϕN

∥∥∥
L∞(R)

≤ 2(β2N)1/4‖ϕN‖ω−1
β

∀ ϕN ∈ VN , r ≤ σ ≤ N.(3.15)

Proof. The first two results, (3.12) and (3.13), can be obtained by the arguments

similar to those given in [5, 7]. Let ϕN = ωβ

∑N
l=0 ϕ̂lH

(β)
l ∈ VN . It follows from (3.9)

that

|ϕN |2σ,ω−1
β

= (2β2)σ−r(2β2)r
N∑
l=0

Aσ−r
l+σ A

r
l+r|ϕ̂l|2

≤ (2β2N)σ−r
σ∏

j=r+1

(
1 +

j

N

)
|ϕN |2r,ω−1

β

,

which gives (3.14). Moreover, using (3.13) and (3.14) gives

‖ω−1

β ϕ2
N‖L∞(R) ≤ 2(4β2N)1/2‖ϕN‖2

ω−1
β

≤ 4βN1/2‖ϕN‖2
ω−1

β

.

This completes the proof of this lemma.

4. Stability and convergence: Semidiscretization. To demonstrate the sta-
bility and convergence analysis for the proposed spectral method, we take the time-
dependent weight

ωα(t) = e−(α(t)x)2 ,(4.1)
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where α(t) is defined by (2.1). We expand

uN(x, t) = ωα(t)

N∑
l=0

ûl(t)H
(α(t))
l (x).(4.2)

It can be verified that ‖uN‖ω−1
α

= ‖u‖. The solution expansion (4.2) is slightly
different from the one in (2.5) but is more suitable for theoretical analysis. With this
expansion, the matrix form for the scheme (2.2) becomes

du

dt
+ να(t)2Bu = f ,(4.3)

where the elements of the matrices B and the vector f are given by

(B)ml =

⎧⎪⎪⎨
⎪⎪⎩

δ0δ(2m + 1), l = m,

(δ0δ − 1)2
√

m(m− 1), l = m− 2,

0 otherwise,

(4.4)

f̂m := (f)m = (f,H(α)
m ), 0 ≤ l,m ≤ N.

The stability and convergence properties can be established following the discussions
in section 2. To be more precise, let

δ = min{1, 2δ0δ − 1} > 0, D = 2diag(0, 1, . . . , N)(4.5)

and let I be the identity matrix. Since

uTBu ≥ δuT (D + I)u,

we obtain

‖u(t)‖2 + δν

∫ t

0

α2‖(D + I)
1/2

u(s)‖2 ds

≤ ‖u(0)‖2 + 4δ0δ
−1

∫ t

0

(δs + 1)‖(D + I)
−1/2

f(s)‖2 ds, t > 0,

(4.6)

or, equivalently,

‖uN(t)‖2
ω−1

α
+ δν

∫ t

0

|uN(t)|2
1,ω−1

α
ds(4.7)

≤ ‖uN(0)‖2
ω−1

α
+ (δν)−1

∫ t

0

‖∂−1
x f(s)‖2

ω−1
α

ds,

where ∂−1
x v(x) =

∫ x

−∞ v(y) dy.
Remark 4.1. In the classical approach (1.3), we fail to obtain the stability due

to the term ‖xφN‖ωβ
in (1.4). However, when α depends on time, an extra term is

gained in the ‖xuN‖ωα term:

d

dt
‖uN(t)‖2

ω−1
α

+ 2ν(|uN |21,ω−1
α

− α2‖uN(t)‖2
ω−1

α
)(4.8)

− 2α(α′ + 2να3)‖xuN(t)‖2
ω−1

α
= 2(f(t), uN(t))ω−1

α
.

Stability can be obtained if α is chosen to satisfy α′ + 2να3 ≤ 0.



66 HEPING MA, WEIWEI SUN, AND TAO TANG

We now briefly outline the convergence of the approximation (2.2). Our rigorous
analysis will be carried out for the nonlinear convection-diffusion equations, which
take (2.2) as a special case. It is interesting to note that the solutions of (1.3) and
(2.2) are both of the same form: uN = Pα

NU . In fact, assuming U ∈ C(0, T ;H1
ωα

(R)),
we have from (3.5) that for any ϕN ∈ PN(R),

{
(∂tPα

NU(t), ϕN) + ν(∂xPα
NU(t), ∂xϕN) = (∂tU(t), ϕN) + ν(∂xU(t), ∂xϕN) = (f(t), ϕN),

(Pα
NU(0), ϕN) = (U0, ϕN).

(4.9)

However, the scheme (1.3) may not work since the bilinear form is not coercive. Since
uN = Pα

NU , it follows from (3.11) that if U ∈ C(0, T ;Hσ
ω−1

α
(R)) (σ ≥ 1), then

‖uN(t) − U(t)‖r,ω−1
α

≤ CN (r−σ)/2‖U(t)‖σ,ω−1
α

∀ 0 ≤ r ≤ σ, t ∈ (0, T ),(4.10)

which is analogous to the result obtained in [6] by using the similarity transformation.
The above method can be easily applied to some nonlinear equations. Consider

the nonlinear convection-diffusion equation{
∂tU + ∂xF (U) − ν∂2

xU = f(x, t), (x, t) ∈ R × (0, T ),

U(x, 0) = U0(x), x ∈ R,
(4.11)

where F is a smooth function, the constant ν > 0, and U and ∂xU satisfy certain
decay conditions at infinity. The semidiscrete Hermite function method for (4.11) is
to find uN ∈ VN such that for any ϕN ∈ PN(R),

{
(∂tuN(t), ϕN) + (∂xF (uN(t)), ϕN) + ν(∂xuN(t), ∂xϕN) = (f(t), ϕN), t ∈ (0, T ),

(uN(0), ϕN) = (U0, ϕN).

(4.12)

We investigate the stability property of the scheme (4.12). Suppose that uN and the
term on the right-hand side of (4.12) have the errors ũN and f̃ , respectively. Then,
we have

(∂tũN , ϕN) + (∂xF̃ , ϕN) − ν(∂2
xũN , ϕN) = (f̃ , ϕN) ∀ϕN ∈ PN(R), t ∈ (0, T ),(4.13)

where F̃ := F (uN + ũN)−F (uN). Taking ϕN = ω−1
α ũN in (4.13), we obtain, similarly

to (4.8),

d

dt
‖uN(t)‖2

ω−1
α

+ δν(|uN(t)|2
1,ω−1

α
+ |ω−1

α uN(t)|21,ωα
)(4.14)

= 2(f̃(t) − ∂xF̃ (t), ũN(t))ω−1
α

≤ 2(δν)−1(‖∂−1
x f̃(t)‖2

ω−1
α

+ ‖F̃‖2
ω−1

α
) + δν|ω−1

α ũN(t)|21,ωα
.

Let M̃ be a positive constant and let

M(u) = max
0≤s≤T

‖uN(s)‖L∞(I), CF = max
|z|≤M(u)+M̃

|F ′(z)|.(4.15)
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For any given t ∈ (0, T ), if

2(α2N)1/4‖ũN(s)‖ω−1
α

≤ M̃ ∀ s ∈ (0, t),

then by (3.15),

‖ũN(s)‖L∞(I) ≤ M̃ ,

‖F̃ (s)‖ω−1
α

=

∥∥∥∥
∫ 1

0

F ′(uN(s) + θũN(s))ũN(s) dθ

∥∥∥∥
ω−1

α

≤ CF ‖ũN(s)‖ω−1
α

∀s ∈ (0, t).

Substituting the above estimates into (4.14) gives

d

dt
‖ũN(t)‖2

ω−1
α

+ δν|ũN(t)|2
1,ω−1

α
≤ 2(δν)−1(CF ‖ũN(t)‖2

ω−1
α

+ ‖∂−1
x f̃(t)‖2

ω−1
α

).(4.16)

Define

E(ũN , t) = ‖ũN(t)‖2
ω−1

α(t)

+ δν

∫ t

0

|ũN(s)|2
1,ω−1

α(s)

ds,(4.17)

ρ(ũN , f̃ , t) = ‖ũN(0)‖2
ω−1

α(0)

+ 2(δν)−1

∫ t

0

‖∂−1
x f̃(s)‖2

ω−1
α(s)

ds.(4.18)

Integrating (4.16) with respect to t yields

E(ũN , t) ≤ ρ(ũN , f̃ , t) + C

∫ t

0

E(ũN , s) ds,(4.19)

where C is a positive constant depending on (δν)−1 and CF . Then, by a nonlinear
Gronwall-like inequality [14],

E(ũN , t) ≤ eCtρ(ũN , f̃ , t) ∀ 0 < t ≤ T,(4.20)

provided that

4α(t)N1/2eCtρ(ũN , f̃ , t) ≤ M̃2.(4.21)

We now consider the convergence for the semidiscrete scheme (4.12). As we have
shown for the linear problem (1.1), the projection Pα

NU is a good comparison function.
Let u∗ = Pα

NU . Then, for any ϕN ∈ PN(R),

{
(∂tu∗(t), ϕN) + (∂xF (u∗(t)), ϕN) + ν(∂xu∗(t), ∂xϕN) = (f(t), ϕN) − (∂xg(t), ϕN),

(u∗(0), ϕN) = (U0, ϕN),

(4.22)

where g(t) = F (U(t)) − F (u∗(t)). Let eN = uN − u∗. We have

{
(∂teN(t), ϕN) + (∂xG(t), ϕN) + ν(∂xeN(t), ∂xϕN) = (∂xg(t), ϕN), t ∈ (0, T ),

(eN(0), ϕN) = 0,

(4.23)
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where G(t) = F (u∗(t) + eN(t)) − F (u∗(t)). Using the same argument as used in
deriving the stability result (4.20), we can obtain

‖eN(t)‖2
ω−1

α(t)

≤ C

∫ t

0

‖g(s)‖2
ω−1

α(s)

ds ≤ CC ′
F

∫ t

0

‖(I − Pα
N)U(s)‖2

ω−1
α(s)

ds

≤ CN−σ

∫ t

0

‖∂σ
xU(s)‖2

ω−1
α(s)

ds ≤ CN−σ‖U‖2
L2(0,T ;Hσ

ω
−1
α

(R)).

Theorem 4.1. Let U and uN be the solutions of (4.11) and (4.12), respectively.
Assume that U ∈ C(0, T ;Hσ

ω−1
α

(R)) (σ ≥ 1), F (z) ∈ C1(R), the function α(t) is

defined by (2.1), and δ defined by (4.5) is positive. Then

‖uN(t) − U(t)‖ω−1
α

≤ CN−σ/2 ∀ 0 < t < T,

where C is a constant depending on (δν)−1, δ0, δ, T , and the regularity of Uand F .

5. Stability and convergence: Fully discrete scheme. In this section, we
further discretize the scheme (4.12) by using the method-of-lines approach. Without
loss of generality, the analysis will be carried out for the nonlinear convection-diffusion
equations. Noting that

(∂xF (uN), H(α)
m ) = −

√
2mα(F (uN), H

(α)
m−1),

we can rewrite the scheme (4.12) in a matrix form as in (4.3):

du

dt
− α(t)D1/2F(uN) + να(t)2Bu = f ,(5.1)

where D,B, f are the same as in (4.4) and (4.5), and the elements of the vector F are
defined by

(F)0 = 0 , (F)m = (F (uN), H
(α)
m−1) (1 ≤ m ≤ N).

For the time discretization, we use a second-order Crank–Nicolson/leapfrog scheme,
which is implicit for the linear term and explicit for the nonlinear term [14, 15]. For
the similarity transformation method (1.5), if the step size Δs for the transformed
variable s is fixed, then the corresponding time-step in t is nonuniform. In our present
approach, a uniform time-step is employed.

Let τ be the time-step size and let tk = kτ (k = 0, 1, . . . , n
T
; T = n

T
τ). We

denote v(x, tk) by vk(x) or simply by vk and v(tk) by vk. Let

vk
t̂

=
1

2τ
(vk+1 − vk−1), vk̂ =

1

2
(vk+1 + vk−1).

For v = ωα(t)

∑∞
l=0 v̂l(t)H

(α(t))
l , we define

Dtv = ωα

∞∑
l=0

dv̂l
dt

H
(α)
l .

The fully discrete Hermite spectral method to the nonlinear convection-diffusion equa-
tion (4.11) is to find

uk
N = ωα(t)

N∑
l=0

ûk
l (t)H

(α(t))
l ∈ VN
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satisfying ⎧⎪⎪⎨
⎪⎪⎩

uk
t̂
− αkD1/2F(uk

N) + ν(αk)2Buk̂ = fk, 1 ≤ k ≤ n
T
− 1,

(u1)m = (u0)m + τ(DtU(0), H
(α(0))
m ), 0 ≤ m ≤ N,

(u0)m = (U0, H
(α(0))
m ), 0 ≤ m ≤ N,

(5.2)

where (DtU(0), H
(α(0))
m ) can be computed from du

dt (0) using the initial condition and
(5.1).

We now present a stability analysis for the scheme (5.2). Assume that the solution

and the term on the right-hand side of (5.2) have errors ũk := (˜̂u
k

0 ,
˜̂u
k

1 , . . . ,
˜̂u
k

N)T and

f̃k, respectively, with ũk
N = ωα

∑N
l=0

˜̂u
k

l H
(α)
l . Then the errors satisfy

ũk
t̂
− αkD1/2F̃k + ν(αk)2Bũk̂ = f̃k, 1 ≤ k ≤ n

T
− 1,(5.3)

where F̃k = F(uk
N + ũk

N) − F(uk
N). Multiplying both sides of (5.3) with 2ũk̂ and

assuming that δ = min{1, 2δ0δ − 1} > 0, we obtain

(‖ũk‖2)t̂ + 2δν(αk)2‖(D + I)
1/2

ũk̂‖2 ≤ 2(f̃ k̂ + αkD1/2F̃k, ũk̂)(5.4)

≤ 2(δν)−1((αk)−2‖(D + I)
−1/2

f̃k‖2 + ‖F̃k‖2) + δν(αk)2‖(D + I)
1/2

ũk̂‖2.

Let M̃ be a positive constant and let

M(u) = max
0≤k≤n

T

‖uk
N‖L∞(I), CF = max

|z|≤M(u)+M̃
|F ′(z)|.(5.5)

For a fixed n ≤ n
T
, if

‖ũk‖ = ‖ũk
N‖ω−1

α
≤ (4αkN1/2)−1/2M̃ ∀ 1 ≤ k ≤ n− 1,

then, by (3.15), we have ‖ũk
N‖L∞(I) ≤ M̃ and

‖F̃k‖ = ‖Pα
N−1(F (uk

N + ũk
N) − F (uk

N))‖ω−1
α

≤ ‖F (uk
N + ũk

N) − F (uk
N)‖ω−1

α
≤ CF ‖ũk

N‖2
ω−1

α
= CF ‖ũk‖.

Define

En(v) = ‖vn‖2 + 2δντ

n−1∑
k=1

(αk)2‖(D + I)
1/2

vk̂‖2,(5.6)

ρn(v,g) = ‖v0‖2 + ‖v1‖2 + 4(δν)−1τ

n−1∑
k=0

(αk)−2‖(D + I)
−1/2

gk‖2.(5.7)

Summing (5.4) for 1 ≤ k ≤ n− 1 gives

En(ũ) ≤ ρn(ũ, f̃) + 2(δν)−1CF τ

n−1∑
k=1

Ek(ũ).

It follows from a discrete nonlinear Gronwall-like inequality [14] that

En(ũ) ≤ eCnτρn(ũ, f̃) ∀ 0 < n ≤ n
T
,

provided that 4 max0≤k≤n α
kN1/2eCkτρk(ũ, f̃) ≤ M̃2.

Theorem 5.1. Let uN be the solution of (4.12) and let M̃ be a positive number.
Assume that the function α(t) is defined by (2.1) and that δ defined by (4.5) is positive.
For 0 < n ≤ n

T
, if



70 HEPING MA, WEIWEI SUN, AND TAO TANG

4 max
0≤k≤n

αkN1/2eCkτρk(ũ, f̃) ≤ M̃2 ,(5.8)

then

Ek(ũ) ≤ eCkτρk(ũ, f̃) ∀ 0 < k ≤ n,

where Ek and ρk are defined by (5.6) and (5.7), respectively, and C is a constant
linearly proportional to (δν)−1 and CF .

We now analyze the convergence of the fully discrete scheme (5.2). Let u∗ = Pα
NU

with the following Hermite expansion:

u∗ = ωα

N∑
l=0

û∗lH
(α)
l .

Denote the coefficients of the above expansion by u∗ := (û∗0, û∗1, . . . , û∗N )T . It follows
from (4.22) that

uk
∗t̂ − αkD1/2F(uk

∗) + ν(αk)2Buk̂
∗ = fk − gk,(5.9)

where we split gk into gk
1 , gk

2 , gk
3 as follows:

gk =

[(
du∗
dt

)k

− uk
∗t̂

]
+ [αkD1/2(F(uk

∗) − F(Uk))] + [ν(αk)2B(uk
∗ − uk̂

∗)](5.10)

=: gk
1 + gk

2 + gk
3 .

Let ekN = uk
N − uk

∗ and ek = uk − uk
∗. Then it can be verified that

⎧⎨
⎩

ek
t̂
− αkD1/2Gk + ν(αk)2Bek̂ = gk, 1 ≤ k ≤ n

T
− 1,

e0 = 0, e1 = u∗(0) + τ
du∗
dt

(0) − u∗(τ),
(5.11)

where Gk = F(uk
∗ + ekN) −F(uk

∗). By the same arguments as in the stability analysis
above, we can obtain

‖enN‖2
ω−1

α
= ‖en‖2 ≤ C

(
‖e0‖2 + ‖e1‖2 + (δν)−1τ

n−1∑
k=0

(αk)−2‖(D + I)
−1/2

gk‖2

)
.

The last term on the right-hand side can be bounded by using the facts below:

τ
n−1∑
k=0

‖(D + I)
−1/2

gk
1‖2 ≤ Cτ4‖D3

tU‖2
L2(0,T ;H−1

ω
−1
α

(R))
,(5.12)

τ

n−1∑
k=0

‖(D + I)
−1/2

gk
2‖2 ≤ Cτ

n−1∑
k=0

‖F (uk
∗) − F (Uk)‖2

ω−1
α

(5.13)

≤ CC ′
FN

−σ‖U‖2
C(0,T ;Hσ

ω
−1
α

(R)),

τ

n−1∑
k=0

‖(D + I)
−1/2

gk
3‖2 ≤ Cτ4‖D2

tU‖2
L2(0,T ;H1

ω
−1
α

(R)).(5.14)
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The initial errors can be bounded by using the Taylor expansion:

‖e1‖ =

∥∥∥∥
∫ τ

0

(τ − s)
d2u∗
dt2

(s) ds

∥∥∥∥ ≤ τ2 max
0≤s≤τ

∥∥∥∥d2u∗
dt2

(s)

∥∥∥∥(5.15)

≤ τ2‖D2
tU(s)‖C(0,τ ;L2

ω
−1
α

(R)).

Combining the above results, we arrive at the following optimal error estimate.
Theorem 5.2. Let U and uN be the solutions of (4.11) and (4.12), respec-

tively. Assume that U ∈ C(0, T ;Hσ
ω−1

α
(R)) (σ ≥ 1), D2

tU ∈ L2(0, T ;H1
ω−1

α
(R)) ∩

C(0, τ ;L2
ω−1

α
(R)), D3

tU ∈ L2(0, T ;H−1

ω−1
α

(R)), and F (z) ∈ C1(R). Moreover, assume

that the function α(t) is defined by (2.1), δ defined by (4.5) is positive, and τN1/8 ≤ c0
is sufficiently small. Then, for 0 ≤ n ≤ n

T
,

‖un
N − Un‖ω−1

α(tn)
≤ C(τ2 + N−σ/2),

where C is a constant depending on (δν)−1, δ0, δ, T , and the regularity of Uand F .
Remark 5.1. If the underlying PDE solution does not satisfy the exponential

decay property required by the Hermite function approximation, one may use the
Hermite polynomial approximation directly. In this case, the Hermite polynomial
approximation should be used together with a time-dependent scaling,

α(t) =
1

2
√
νδ0(δ(T − t) + 1)

.(5.16)

For the linear parabolic equation (1.1) and the nonlinear convection-diffusion equa-
tion (4.11), it can be verified that with the choice (5.16), the desired stability and
convergence results can be established in some appropriate function space.

6. Numerical results. In this section, we present some numerical examples
using the proposed method for both linear and nonlinear equations. The numerical
results will be compared with those obtained by using the classical method (1.3) and
by using the similarity transformation technique. In the following computations, the
integrals involved are computed by the Hermite–Gauss quadrature rules with N + 1
quadrature points. Let

EN(t) = ‖uN(t) − UN(t)‖ω−1
α

, EN,∞(t) =
max0≤j≤N |uN(yj , t) − U(yj , t)|

max0≤j≤N |U(yj , t)|
,

where UN ∈ VN is the interpolation of U at the Hermite–Gauss points {yj}Nj=0. The
examples used below are taken from [6] and [10], where the diffusion coefficient ν in
(1.1) is chosen as 1. In the linear case our approach is appropriate for the general
choice of ν > 0 due to the use of the scaling factor (2.1). However, for nonlinear
problems (such as Example 6.3 below) with sufficiently small values of ν, steep layers
may be developed, and in this case some special techniques such as the spectral
viscosity method [16] should be applied.

Example 6.1 (linear problem). Consider the parabolic problem (1.1) with ν = 1
and the following source term:

f(x, t) = (x cosx + (t + 1) sinx)(t + 1)−3/2e−x2/4(t+1).(6.1)
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Table 6.1

Example 6.1: Errors at t = 1 with N = 20 using different methods.

Time step Funaro and Kavian’s Classical Proposed

τ scheme [6] scheme (1.3) scheme (2.7)

250−1 2.487E-03 1.948E-04 2.958E-06

1000−1 6.203E-04 1.947E-04 1.189E-06

4000−1 1.550E-04 1.947E-04 1.177E-06

16000−1 3.886E-05 1.947E-04 1.177E-06

Table 6.2

Example 6.1: Errors of the proposed scheme (2.7) with different τ and N .

τ N EN (1) EN,∞(1) Order

1E-1 1.697E-03 9.775E-04

1E-2 1.697E-05 9.769E-06 τ2.00

1E-3 30 1.696E-07 9.769E-08 τ2.00

1E-4 1.696E-09 9.798E-10 τ2.00

10 5.161E-03 1.192E-03

1E-4 20 1.177E-06 1.246E-07 N−12.10

30 1.696E-09 9.798E-10 N−16.14

This example was used by Funaro and Kavian [6]. Its exact solution is of the form

U(x, t) =
sinx√
t + 1

e−x2/4(t+1).(6.2)

We solve the above problem with (δ0, δ) = (1.5, 0), which corresponds to the classical
approach (1.3), and with (δ0, δ) = (1, 1), which corresponds to the method proposed
in this work. For ease of comparison, we use the same mesh size as used in [6]. Table
6.1 shows the error E20(t) at t = 1 with different time-steps. Note that the result in
[6] is obtained by using (explicit) first-order forward difference in time.

Table 6.2 shows the order of accuracy for the scheme (2.7) with δ0 = δ = 1.
The numerical results are in good agreement with the theoretical prediction that the
numerical scheme (2.7) is of second-order accuracy in time and spectral accuracy in
space.

Example 6.2 (linear problem). Consider the parabolic problem (1.1) with ν = 1
and the following source term:

f(x, t) = (k(1 + 4c2x) cos k(x + t) − (k2 + 2c2(1 − 2(cx)2)) sin k(x + t)) e−(cx)2 ,

(6.3)

where c is a constant. The exact solution of this example has a time-independent
decay:

U(x, t) = sin k(x + t)e−c2x2

.(6.4)
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Table 6.3

Example 6.2: Comparison of the classical approach and the present method.

Classical method (1.3) Proposed method (2.7)

τ Steps E160(1) E160,∞(1) E160(1) E160,∞(1)

250 5.66E-07 3.93E-07 4.30E-06 1.87E-06

500 1.52E-04 8.50E-06 2.73E-06 2.03E-06
1E-3

750 3.72E+01 2.67E+00 2.08E-06 1.44E-06

1000 8.20E+06 2.02E+05 1.75E-06 1.34E-06

2500 5.66E-09 3.94E-09 4.30E-08 1.87E-08

5000 1.45E-04 8.01E-06 2.73E-08 2.03E-08
1E-4

7500 4.30E+01 2.41E+00 2.08E-08 1.44E-08

10000 8.95E+06 4.97E+04 1.73E-08 1.36E-08

The purpose for choosing this example is to demonstrate that the Hermite spectral
method with a time-dependent scaling also works well for the solutions with time-
independent decays. In our computations, the parameters k and c are taken as 5
and 0.5, respectively. We solve this problem by using a constant weight α(t) ≡
0.5, which not only corresponds to the classical method (1.3) but also matches the
exponential solution-decay exactly. We also solve the problem by using the scheme
(2.7) with (δ0, δ) = (0.6, 1). This choice of the parameters satisfies δ = 0.2 > 0,
and therefore stability and convergence are expected. It is seen from Table 6.3 that
although the classical method (1.3) matches the exponential decay exactly, the error
is accumulated due to numerical instability. On the other hand, the Hermite spectral
method with a time-dependent scaling produces highly accurate and stable numerical
approximations.

Example 6.3 (nonlinear viscous Burgers equation). Consider the viscous Burgers
equation

∂tU + U∂xU − ν∂2
xU = f(x, t), x ∈ R, t > 0.(6.5)

It was computed in [10] via the transformation

y =
x

2
√
ν(t + 1)

, s = ln(t + 1)(6.6)

for a soliton-like solution

U(x, t) = e−y2

sech2(ay − bs− c).(6.7)

We will recompute this problem with parameters a = 0.3, b = 0.5, c = −3, and ν = 1.
We use the fully discrete scheme (5.2) to solve the problem with (δ0, δ) = (1, 1).

The numerical errors at t = e − 1 are presented in Table 6.4, where the comparison
is made with those given in [10]. It is seen that the present method is more accurate
than the similarity transformation solution.

To show the rate of convergence for (5.2), we list in Table 6.5 the numerical
errors at t = 1 with various τ and N . The fully discrete scheme (5.2) is applied to
the viscous Burgers problem with (δ0, δ) = (1, 1). It again confirms the theoretical
prediction that the present method is of second-order accuracy in time and spectral
accuracy in space.
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Table 6.4

Example 6.3: Errors at t = e − 1 with τ = 0.001 ∗ t.

N Guo and Xu’s result [10] Proposed scheme (5.2)

8 1.381E-06 1.563E-05

16 1.381E-06 6.337E-07

32 1.381E-06 1.031E-07

Table 6.5

Example 6.3: Errors of the proposed scheme (5.2) with different τ and N .

τ N EN (1) EN,∞(1) Order

1E-1 5.101E-04 4.677E-03

1E-2 4.508E-06 4.548E-05 τ2.05

1E-3 40 4.454E-08 4.530E-07 τ2.01

1E-4 4.467E-10 4.372E-09 τ2.00

8 6.685E-06 1.163E-04

1E-4 16 2.684E-07 3.121E-06 N−4.64

32 7.888E-10 7.120E-09 N−8.41
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