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On Robust and Adaptive Finite Volume
Methods for Steady Euler Equations

Guanghui Hu, Xucheng Meng and Tao Tang

Abstract In this paper, a robust and adaptive framework of finite volume solutions1

for steady Euler equations is introduced. On a given mesh, the numerical solutions2

evolve following the standard Godunov process and the algorithm consists of a3

Newton method for the linearization of the governing equations and a geometrical4

multigrid method for solving the derived linear system. To improve the simulations,5

an h-adaptive method is proposed for more efficient discretization by means of local6

refinement and coarsening of the mesh grids. Several numerical issues such as the7

regularization of the system, selection of the reconstruction patch, treatment of the8

curved boundary, as well as the design of the error indicator will be discussed in detail.9

The effectiveness of the proposed method is successfully examined on a variety of10

benchmark tests, and it is found that all simulations can be implemented well with11

one set of parameters, which shows the robustness of the method.12

Keywords ����13

1 Introduction14

In the study of the compressible flow, Euler equations are one fundamental governing15

equations and have been playing an important role in a variety of practical applica-16

tions such as optimal design of the vehicle shape [15], physical-based simulations in17

animation [31]. AQ118
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2 G. Hu et al.

Steady-state flow is a typical phenomenon in the fluid dynamics in which the19

distributions of the physical quantities will not change with the time evolution. Such20

phenomena exist in several realistic fluid dynamics applications. For example, when21

an aeroplane is in its cruise state in the stratosphere, the fluid dynamics around22

the aeroplane can be described reasonably by the steady state. The theoretical and23

numerical studies on the steady-state flow have great importance on the applications24

such as the optimal design on the vehicle shape. In a classical optimization framework25

for the optimal design, the objective functional is optimized subject to several shape26

parameters. In the whole simulation, dozens of, or maybe hundreds of, steady-state27

flows need to be determined with different configurations. Hence, efficiency of the28

steady-state solver becomes crucial in the practical simulations.29

Although there have been lots of work available in the market for solving steady30

Euler equations by using finite difference methods [54], finite element methods [16],31

spectral methods [28], the existence of the discontinuous solutions such as shock32

and contact discontinuity makes the use of the finite volume methods [29, 33], dis-33

continuous Galerkin methods [10], spectral volume methods [51] more competitive.34

Besides the ability on representing discontinuous solutions, these methods also intro-35

duce the flux to preserve the conservation property of the simulation, which makes36

these methods more attractive towards delivering physical simulations. It is worth37

mentioning that, recently, the fast sweeping method [12, 13] was proposed to solve38

steady Euler equations, and excellent numerical results were obtained. In our pre-39

vious works [21–26], an adaptive framework of finite volume solutions has been40

developed for solving steady Euler equations.41

There are several challenges on developing quality high-order finite volume meth-42

ods for solving Euler equations. One of the most important challenges is the solution43

reconstruction. In the original Godunov scheme, the cell average is used directly44

to evaluate the numerical flux. The advantage of Godunov is very attractive, i.e.45

the maximum principle can be preserved naturally. However, the piecewise con-46

stant approximation makes the scheme too dissipative to generate high-resolution47

solution; hence, the solution variation needs to be recovered to deliver high-order48

approximation for the exact solution. In the solution reconstruction, a nontrivial issue49

is to develop quality limiter functions to restrain the possible nonphysical oscillation,50

which is listed in [52] as one challenge for developing high-order numerical methods51

for computational fluid dynamics. Another challenge is efficiency of the algorithm.52

By propagating the time-dependent system for sufficiently long time is obviously53

not a good idea for obtaining the steady state of the system since the low efficiency.54

To effectively accelerate the simulation, several classical techniques such as local55

time-stepping, enthalpy damping, residual smoothing, multigrid methods and pre-56

conditioning techniques [6] have been developed and applied. Towards the efficient57

discretization of the governing equations, adaptive methods such as r -adaptive meth-58

ods [37, 38, 46], h-adaptive methods [5, 18, 39, 43], and hp-adaptive methods [19,59

50] have been developed and still attract more and more research attention. Nowa-60

days, with the dramatic development of the computer hardware, the capacity of the61

high-performance computing cluster is also improved significantly. Hence, parallel62
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On Robust and Adaptive Finite Volume Methods for Steady Euler Equations 3

algorithms based on OpenMP [1], OpenMPI [2] as well as GPU [53] become more63

and more popular in the community of computational fluid dynamics [34].64

In this paper, we introduce an adaptive framework of finite volume solutions for65

the steady Euler equations. On a given mesh, the solver consists of a Newton iteration66

for the linearization of the governing equations and a geometrical multigrid method67

for solving the linear system. To resolve the issue on the quality high-order solution68

reconstruction, the non-oscillatory k-exact reconstruction is proposed which provides69

a unified strategy for high-order reconstruction. To handle the efficiency issue, h-70

adaptive method is introduced in our method and an adjoint-based a posteriori error71

estimation method is developed to generate quality error indicator. Some numerical72

issues such as regularization of the linearized system are also introduced. Numerical73

tests successfully show the robustness and effectiveness of the proposed method.74

The rest of the paper is organized as follows. In Sect. 2, the steady Euler equations75

and finite volume discretization are introduced. In Sect. 3, the solution reconstruction76

will be introduced and the non-oscillatory k-exact reconstruction method will be77

described in detail. In Sect. 4, our methods on partially resolving the efficiency issue78

of the simulations are summarized and the adjoint weighted residual indicator as79

well as implementation are introduced in detail. Three numerical tests are delivered80

in Sect. 5 in which the robustness and effectiveness of the proposed framework are81

successfully demonstrated. Finally, the conclusion is given.82

2 Finite Volume Framework for Steady Euler Equations83

2.1 Governing Equations84

The inviscid two-dimensional steady Euler equations are given as85

∇ · F(U ) = 0, (1)86

where U and F(U ) denote the conservative variables and flux given by87

U =

⎡
⎢⎢⎣
ρ

ρu
ρv

E

⎤
⎥⎥⎦ , and F(U ) =

⎡
⎢⎢⎣

ρu ρv

ρu2 + p ρuv
ρuv ρv2 + p

u(E + p) v(E + p)

⎤
⎥⎥⎦ , (2)88

respectively. Here (u, v)T , ρ, p, and E denote the velocity, density, pressure, and89

total energy, respectively. To close the system, we use the following equation of state90

in this paper,91

E = p

γ − 1
+ 1

2
ρ(u2 + v2), (3)92
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4 G. Hu et al.

where γ = 1.4 is the ratio of the specific heats of the perfect gas.93

Before we get involved in the numerical methods for solving (1), let us introduce94

the notations as follows to facilitate the description. The computational domain is95

denoted by Ω , and T = {Ki }, i = 1, 2, . . . , Ntri is its associated triangulation in96

which Ki is the i th triangle in the mesh, and Ntri is the total number of the triangle97

elements in the mesh.98

2.2 Newton Linearization99

Certain linearization is needed since the nonlinearity of the governing Eq. (1), and100

Newton iteration is employed in our work. Below we would briefly summarize the101

implementation of the Newton iteration on our problem. People may refer to [21,102

23, 24, 26, 39] for the details.103

The governing Eq. (1) is discretized as follows. First of all, the integral form of104

(1) on Ω is given by105

∫
Ω

∇ · F(U )dxdy =
∑
K i

∫
K i

∇ · F(U )dxdy = 0. (4)106

Then Green’s theorem gives the following equation,107

∑
K i

∑
ei, j ∈∂K i

∫
ei, j

F(U ) · ni, j ds = 0, (5)108

where ei, j means the common edge of the element Ki and its neighbour element K j ,109

and ni, j means the unit out normal vector of ei, j with respect to the element Ki . In110

the simulation, numerical flux F̄(Ui ,U j ) is used to replace the unknown flux F(U ).111

Hence, the above equations are approximated by the following ones112

∑
K i

∑
ei, j ∈∂K i

∫
ei, j

F̄(Ui ,U j ) · ni, j ds = 0. (6)113

To resolve the nonlinearity of (6), Newton method is employed here. We assume114

that the approximation of the solution at the kth step, U (k), is known, and then the115

approximation of the solution at the (k + 1)th step, U (k+1) = U (k) +ΔU (k), can be116

found by solving117
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On Robust and Adaptive Finite Volume Methods for Steady Euler Equations 5

∑
K i

∑
ei, j ∈∂K i

∫
ei, j

F̄(U (k+1)
i ,U (k+1)

j ) · ni, j ds

=
∑
K i

∑
ei, j ∈∂K i

∫
ei, j

F̄(U (k)
i +ΔU (k)

i ,U (k)
j +ΔU (k)

j ) · ni, j ds = 0,

(7)118

forΔU (k)
i which is increment of the conserved quantity on the element Ki to the kth119

approximation of the solutions. By Taylor theorem and only keeping the linear part,120

the linear system for ΔU can be written as121

∑
K i

∑
ei, j ∈∂K i

∫
ei, j

∂ F̄

∂Ui
· ni, j dsΔU (k)

i +
∑
K i

∑
ei, j ∈∂K i

∫
ei, j

∂ F̄

∂U j
· ni, j dsΔU (k)

j

= −
∑
K i

∑
ei, j ∈∂K i

∫
ei, j

F̄(U (k)
i ,U (k)

j ) · ni, j ds.
(8)122

Regularization is necessary to solve the linear system (8). The issue is resolved123

by introducing the local residual L Ri = ∑
ei, j ∈∂K i

∫
ei, j

F̄(U (k)
i ,U (k)

j ) · ni, j ds, i.e. the124

regularized system is written as125

α
∑
K i

||L Ri ||1ΔU (k)
i +

∑
K i

∑
ei, j ∈∂K i

∫
ei, j

∂ F̄

∂Ui
· ni, j dsΔU (k)

i

+
∑
K i

∑
ei, j ∈∂K i

∫
ei, j

∂ F̄

∂U j
· ni, j dsΔU (k)

j = −
∑

i

L Ri ,

(9)126

where || · ||1 is the l1 norm, and α > 0 is a parameter to weight the regularization.127

So far, the only unknown quantity in (9) is the numerical flux F̄ . In the simulation,128

this quantity is obtained by solving a local Riemann problem in which the left and129

right states are determined by the solutions in the element Ki and its neighbour K j .130

There are several Riemann solvers available in the market, and HLLC [48] is used131

in our simulations.132

A natural choice for the left and right states for Riemann problem is the cell133

average of each conserved quantity. In this case, a piecewise constant approximation134

of the conserved quantity is supposed, and only first-order numerical accuracy can135

be expected. To improve the numerical accuracy, more accurate left and right states136

in Riemann problem are desired and this can be achieved by high-order solution137

reconstruction.138
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6 G. Hu et al.

3 Solution Reconstruction139

With the assumption of sufficient regularity, Taylor theorem gives the following140

substitution for the unknown function U (x, y) in the element K141

U (x, y) = U (xK , yK )+ ∂U

∂x
|xK ,yK (x − xK )+ ∂U

∂y
|xK ,yK (y − yK )

+1

2

∂2U

∂x2
|xK ,yK (x − xK )2 + ∂2U

∂x∂y
|xK ,yK (x − xK )(y − yK )

+1

2

∂2U

∂y2
|xK ,yK (y − yK )2

+ · · · ,

(10)142

where (xK i , yK i ) is the barycentre of the element Ki . The task of the reconstruction143

is to recover those coefficients ∂αU/(∂xα1∂yα2), α = α1 + α2, with the cell average144

Ūi = 1/|Ki |
∫
K i

U (x, y)dxdy of the conserved quantity U (x, y) in the element Ki ,145

where |Ki | is the area of the element Ki .146

The most popular reconstruction in the market is the linear reconstruction, i.e.147

U (x, y) ≈ U (xK , yK )+ ∂U

∂x
|xK ,yK (x − xK )+ ∂U

∂y
|xK ,yK (y − yK ) := P1(x, y).

(11)148

It is noted that with the assumption of the linear distribution of U (x, y) in Ki , the149

constant term in (11) is the cell average, i.e. U (xK , yK ) = Ūi . Hence, the linear150

reconstruction is to recover the gradient of U (x, y) in Ki . There are two ways to151

evaluate the gradient ∇U = (∂U/∂x, ∂U/∂y)T . One is the following Green–Gauss152

theorem [6],153 ∫
K i

∇Udxdy =
∫
∂K i

Unds. (12)154

Since the linearity of U , ∇U is a constant. Hence,155

∇U |K i = 1

|Ki |
∫
∂K i

Unds. (13)156

Replacing U on the edge ei, j by using the average (Ūi + Ū j )/2, the above integral157

can be approximated by158

∇U |K i ≈ 1

|Ki |
∑
ei, j

1

2
(Ūi + Ū j )ni, j |ei, j |. (14)159

The implementation of Green–Gauss approach is quite simple. However, the numer-160

ical accuracy of such approximation heavily depends on the regularity of the mesh161

grids. Also, it is not trivial to extend the method to the high-order cases. People may162

refer to [11] for the quadratic reconstruction with Green–Gauss method.163
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On Robust and Adaptive Finite Volume Methods for Steady Euler Equations 7

Fig. 1 Reconstruction patch
for the element Ki,0

Ki,0

Ki,12 Ki,1 Ki,5

Ki,10

Ki,6

Ki,2

Ki,7
Ki,11

Ki,3

Ki,4

Ki,8

Ki,9

To overcome the above issues, the least square method becomes a very competitive164

candidate on solution reconstruction since its ability on delivering accurate solution165

even on skewed unstructured grids and on natural extension to high-order cases. To166

implement the least square reconstruction on the element Ki , a reconstruction patch167

Pi is needed first. In the case of the linear reconstruction, a natural choice for Pi168

is Ki itself as well as its three Neumann neighbours. For example, for the element169

Ki,0 = Ki in Fig. 1, the patch of the linear reconstruction for it can be chosen as170

Pi = {Ki,0,Ki,1,Ki,2,Ki,3}.171

With Pi for Ki , the gradient ∇U |K i,0 = (∂U/∂x |K i,0 , ∂U/∂y|K i,0)
T can be172

solved from the following minimization problem,173

argmin
∂U
∂x ,

∂U
∂y

∑
K j ∈P i ,K j �=K i,0

||P1
i (xK j , yK j )− Ū |K j ||22. (15)174

The extension to the high-order reconstruction is straightforward for the least175

square approach. In the case of quadratic reconstruction, a larger patch containing at176

least 6 elements is needed since there are more unknowns included in (10). A method177

to enlarge Pi is to introduce Neumann neighbours of the Neumann neighbours of Ki .178

However, it is found that generating Pi by selecting Ki and its Moore neighbours179

is a better choice, especially when the adaptive strategy is used in the simulation,180

based on our numerical experience. In this case, the patch Pi becomes181

Pi = {Ki,0,Ki,1,Ki,2,Ki,3,Ki,4,Ki,5,Ki,6,Ki,7,Ki,8,Ki,9,Ki,10,Ki,11,Ki,12}.182

Now the unknown quantity U (x, y) is approximated by183

U (x, y) ≈ P1(x, y)+ 1

2

∂2U

∂x2 |xK ,yK (x − xK )2 + ∂2U

∂x∂y
|xK ,yK (x − xK )(y − yK )

+1

2

∂2U

∂y2 |xK ,yK (y − yK )2

:= P2(x, y)
(16)184

185

To preserve the conservative property of the reconstructed polynomial, the mini-186

mization problem we need to solve becomes187
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8 G. Hu et al.

argmin
∂U
∂x ,

∂U
∂y ,

∂2U
∂x2 ,

∂2U
∂∂y ,

∂2U
∂y2

∑
K j ∈P i

∥∥∥ 1

|K j |
∫

K j

P2
i (x, y)dxdy − Ū |K j

∥∥∥
2

2
. (17)188

Remark 1 The above method is k-exact reconstruction [3]. To solve (17) directly,189

a large amount of integrals need to be evaluated during the reconstruction. In [42],190

a numerical trick is introduced to effectively save the computational resource. In191

the trick, several integrals are calculated beforehand, and then the linear system192

consists of those integrals by algebraic operations. Recently, the parallel k-exact193

reconstruction is developed [17], which significantly improves the efficiency of the194

reconstruction.195

Remark 2 The conservative of U in Ki cannot be guaranteed strictly by solving196

(17) in the least square sense. To preserve the conservative property rigorously, the197

constant term in P2
i (x, y) is adjusted to make 1

|K i,0|
∫
K i,0

P2
i (x, y)dxdy = Ūi .198

For all high-order reconstructions (≥ linear reconstructions), limiting process is199

necessary to restrain the nonphysical oscillation, especially when there is shock in the200

solution. For linear reconstruction, there are several mature limiters available for the201

unstructured meshes such as the limiter of Barth and Jespersen [4], and the limiter of202

Venkatakrishnan [49]. Compared with the limiter of Barth and Jespersen, the limiter203

of Venkatakrishnan has better property towards the differentiability; hence, it has204

better performance on the steady-state convergence. Although these limiters work205

well for the linear reconstruction, it is nontrivial for the higher-order extension. People206

may refer to [41] for the contribution towards this direction. It is worth mentioning207

that quality limiter for high-order methods was listed as one of the challenges in208

developing high-order numerical methods for computational fluid dynamics in [52].209

Weighted essentially non-oscillatory (WENO) scheme is well known for its abil-210

ity on delivering high-order and non-oscillatory numerical solutions [30, 55]. For211

WENO implementation on unstructured meshes, people may refer to [30] for details.212

Besides the solution reconstruction, WENO has been also used as a limiter in the213

discontinuous Galerkin framework [40, 44, 45, 56]. In our works [21–26], WENO214

reconstruction is introduced for the solution reconstruction. Below is a brief sum-215

marization for the WENO reconstruction with the assumption of the locally linear216

distribution of the solutions.217

In WENO reconstruction, besides the reconstruction patch Pi,0 = Pi for Ki,0218

in Fig. 1, we also solve the optimization problem (15) on patches Pi,1 = {Ki,0,Ki,1,219

Ki,4,Ki,5}, Pi,2 = {Ki,0,Ki,2,Ki,6,Ki,7}, and Pi,3 = {Ki,0,Ki,3,Ki,8,Ki,9}.220

Correspondingly, besides the polynomial P1
i,0 = Pi from Pi,0, we also have the221

candidate polynomials P1
i,1, P1

i,2, P1
i,3 from Pi,1, Pi,2 and Pi,3, respectively. For222

each candidate P1
i, j , j = 0, 1, 2, 3, a smoothness indicator is defined by223

Sj =
(
(
∂U

∂x
| j )

2 + (
∂U

∂y
| j )

2

)
|Ki,0|. (18)224

Then the weight for each polynomial is calculated by225
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On Robust and Adaptive Finite Volume Methods for Steady Euler Equations 9

ω j = ω̃ j∑
k ω̃k

, ω̃ j = 1

(ε + Sj )2
, (19)226

and the final polynomial for the element Ki is given by227

P1
i =

∑
j

ω j P1
i, j . (20)228

Remark 3 In the definition of ω̃ j in (19), a parameter γ j [20, 30] is used as the229

numerator. γ j there is designed for preserving the higher order accuracy of P1
i , i.e.230

P1
i (xG Q, yG Q) = P2

i (xG Q, yG Q)where P2
i (x, y) is a quadratic polynomial obtained231

by solving (16). With γ j and the nonlinear weight ω j , the reconstructed polyno-232

mial Pi can preserve the third-order numerical accuracy and restrain the nonphysical233

oscillation effectively in the meantime [20, 30]. However, an extra quadratic recon-234

struction problem (16) as well as the parameters γ j need to be calculated, which235

would slow down the simulation efficiency. In our algorithm, the numerator 1 is used236

instead of γ j to avoid the extra calculations and the h-adaptive method is introduced237

to remedy the accuracy issue.238

The WENO reconstruction can be extended to higher order directly. People may239

refer to [25, 26] for our works on non-oscillatory k-exact reconstruction.240

In the traditional reconstructions, the polynomial is obtained by certain method241

first, and then the limiter is introduced to remove or restrain the possible oscillation.242

Recently, Chen and Li developed an integrated linear reconstruction (ILR) method243

[8] in which an optimization method is proposed and solved locally for each element244

to construct the polynomial. The advantages of ILR include (i) the reconstruction can245

be finished by solving a single problem, i.e. the reconstructing and limiting processes246

are combined together, (ii) the local maximum principle is preserved theoretically by247

ILR, and (iii) no parameter is used in the reconstruction. An improved ILR method248

can be found in the forthcoming paper [7].249

4 Towards Efficiency250

Efficiency is crucial for an algorithm in its practical applications. Since the Newton251

iteration is used for the linearization, a series of linearized system need to be solved252

in solving a steady Euler system, which means that the efficiency of the linear solver253

is important for an efficient simulation. Furthermore, in one of the most important254

applications for steady Euler solver, i.e. the optimal design of the vehicle shape,255

a series of steady Euler systems with different configurations need to be solved in256

a single design process. Hence, how to improve the efficiency of the steady Euler257

solver is also worth studying in detail.258

For the first issue, a geometrical multigrid solver is developed to solve the lin-259

earized system in our algorithm [21, 23–26, 39]. In this geometrical multigrid solver,260
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10 G. Hu et al.

the coarse meshes are generated by the volume agglomeration method [6, 32]. Then261

the error on the coarse meshes is smoothed by blocked lower-upper Gauss–Seidel262

method proposed in [9]. People may refer to our works for the details of the imple-263

mentation and performance of the solver.264

To resolve the second issue mentioned above, the algorithm can be improved265

from the following aspects. First of all, it is the acceleration of the convergence of266

the Newton iteration. In (9), the local residual of the system is used to regularize267

the system. It is noted that this is a similar acceleration technique to the local time-268

stepping method [6]. In both methods, local information is used to improve the269

simulation. In local time-stepping method, the time-dependent Euler equations are270

solved and the Courant–Friedrichs–Lewy (CFL) number is chosen locally depending271

on the characteristic speed in the current control volume; hence, the evolution of the272

system is not uniform in the whole flow field. In the region with low characteristic273

speed, a larger CFL number can be chosen to speedup the convergence to the steady274

state. In our method, there is no temporal term in the equations and we use local275

residual to regularize the system. If the system is far from the steady state locally,276

the local residual is a large quantity, which corresponds to effect in solving time-277

dependent problem with a small CFL number. On the other hand, local residual278

would be a small quantity when the system is close to the steady state locally which279

corresponds to the large CFL number case. Based on our numerical experience, the280

local residual regularization works very well in all cases and the simulations are not281

sensitive to the selection of the parameter α in (9).282

The second way to improve the implementation efficiency is to develop efficient283

discretization. In the case that there is large variation of the solution in the domain,284

especially there is shock in the solution, numerical discretization on a uniform mesh285

is obviously not a good idea since too many mesh grids are wasted in the region286

with gentle solution. In the market, adaptive mesh methods are popular towards the287

efficient and nonuniform discretization of the governing equations. For example,288

r -adaptive methods have been successfully used in solving Euler equations [27,289

36–38, 46, 47]. In our algorithm, h-adaptive methods are introduced towards the290

efficient numerical discretization [21, 22, 25, 26, 39]. To handle the local refinement291

or coarsening of the mesh grids efficiently, an hierarchy geometry tree (HGT) is292

developed. People may refer to [35] for HGT details. It is worth mentioning that293

CPU time on local refinement or coarsening is nothing compared with the whole294

CPU time in the simulation with HGT.295

Another important component in adaptive method is the error indicator. The qual-296

ity of the error indicator determines the quality of the nonuniform discretization.297

There are basically two types error indicators in the market. One is feature-based298

error indicators which depend on the numerical solution, and the other one is error299

indicators based on the a posteriori error estimation. In our works, several feature-300

based error indicators are tested in the h-adaptive framework such as the gradient of301

the pressure [21, 26, 39] and entropy [21, 26]. Recently, an adjoint-based a posteriori302

error estimation method is developed towards minimizing the numerical error of a303

quantity of interest [25]. Adjoint-based analysis is a very useful tool in the applica-304

tions of optimal design of vehicle shape [15] and the error estimation [14]. Below is305
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On Robust and Adaptive Finite Volume Methods for Steady Euler Equations 11

a brief summary of our adjoint-based error indicator, and people may refer to [25]306

for the details.307

Suppose that U H is the solution on the mesh T H , and J (U H ) is the quantity308

of interest. In the practical applications, the quantity of interest J (U H ) could be309

the drag or lift in the simulations of flow through an airfoil, or other application-310

related quantities. Now, we are interested in the error of J (U H ), i.e. J (U )− J (U H )311

where J (U ) is the exact evaluation of the quantity of interest depending on the exact312

solution U . In most cases, J (U ) is nonlinear. Then the linearization of the difference313

gives314

J (U )− J (U H ) ≈ ∂ J

∂U
(U − U H ). (21)315

By defining the residual R(U ) := ∇ · F(U ), the linearization of the difference316

between the exact residual and approximate residual gives317

R(U )− R(U H ) ≈ ∂R

∂U
(U − U H ), (22)318

which follows319

U − U H ≈
(
∂R

∂U

)−1

(R(U )− R(U H )). (23)320

By plugging the above expression into (21), we get321

J (U )− J (U H ) ≈ ∂ J

∂U

(
∂R

∂U

)−1

(R(U )− R(U H )) := ψT (R(U )− R(U H )),

(24)322

where the adjoint ψT can be obtained by solving323

(
∂R

∂U

)T

ψ = ∂ J

∂U
. (25)324

The implementation in [25] is as follows. First, the mesh T H is uniformly refined325

one time to get the new mesh T h . Then the solution U H on T H is interpolated onto326

T h to get an approximation U H
h which is used in (24) to replace U . Since we assume327

that the system is solved completely on T H , the quantity R(U H ) can be reasonably328

ignored in (24). There are two ways mentioned in [25] to solve the adjoint problem329

(25). One is to evaluate two Jacobian matrices in (25) on T h first, and then the330

equation is solved on T h . The other one is to do the same thing on T H . Compared331

with the former one, the advantage of the latter strategy is that the size of the system332

is much smaller, i.e. the size is only 25% of the one in former case. Furthermore,333

since U H is a quality approximation to U on T H , the linear problem (25) can be334

solved smoothly. It is noted that based on our numerical experience, direct evaluation335

of ∂ J/∂U and ∂R/∂U on T h with the interpolation approximation U H
h would bring336

difficulty on solving (25) and several Newton iterations for (9) with U H
h as the initial337
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12 G. Hu et al.

guess are necessary for the improvement. On the other hand, the disadvantage of the338

latter strategy is that the convergence order of the numerical method will be sacrificed339

a little bit. This is understandable since the information from the finer mesh would340

generate more accurate error estimation.341

The third strategy to improve the efficiency of our steady Euler solver is to resort342

to the parallel computing. Since the operations on solution reconstruction, evaluation343

of the numerical flux, and the cell average update are local, OpenMP [1] has been344

introduced to realize the parallel computing on these operations in [22] in which a345

reactive Euler system is solved to simulate detonation. To handle large-scale sim-346

ulations, the parallelization based on MPI becomes necessary. We are working on347

the parallelization of our algorithm based on domain decomposition method and348

OpenMPI [2], and the results will be reported in the forthcoming paper.349

5 Numerical Tests350

In this section, the following three numerical tests will be implemented to demon-351

strate the effectiveness of our method,352

• Subsonic flow around a circular cylinder,353

• Inviscid flow through a channel with a smooth bump,354

• Transonic flow around a NACA 0012 airfoil.355

All simulations in this paper are supported by AFVM4CFD [21–26, 39] which is356

a C++ library developed and maintained by the authors and collaborators.357

5.1 Subsonic Flow Through a Circular Cylinder358

In this section, the subsonic flow passing a circular cylinder is simulated. The com-359

putational domain is a ring, and the radii for the inner and outer circles are 0.5 and 20,360

respectively. The configuration of the flow in the far field is as follows. The density361

is 1, the Mach number is 0.38, the velocity vector is (cos θ, sin θ)T where θ is attack362

angle and θ = 0◦ in this case. The configuration for far field flow is also used as the363

initial condition for our Newton iteration.364

The method with non-oscillatory 2-exact reconstruction is implemented on five365

meshes with 240, 504, 800, 1776, and 3008 grid points, respectively. Since the366

flow in the domain is subsonic, inviscid, and vortex free, the entropy of the flow367

should be a constant same to that in the far field. Hence, we use the L2 error of368

the entropy production to evaluate the convergence of the method which shown
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Fig. 2 Convergence curves for the inviscid flow through the circle

Fig. 3 Left: The Mach number isolines generated with WENO 2-exact reconstruction. Right: The
corresponding mesh

in Fig. 2. As a comparison, the results obtained with linear reconstruction in [24]369

are also demonstrated here. It can be observed from the figure that both linear and370

quadratic methods successfully generate theoretical convergence curves. The mesh371

grids around the inner circle as well as the isolines of the Mach number can be372

observed from Fig. 3.373
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14 G. Hu et al.

5.2 Inviscid Flow Through a Channel with a Smooth Bump374

In this subsection, the inviscid flow through a channel with a smooth bump is sim-375

ulated by adaptive method with non-oscillatory 2-exact reconstruction. This test is376

a benchmark test listed in [52] in which the detailed setup for the simulation can be377

found.378

In Fig. 4, the following three results are shown. The first result is the conver-379

gence curve generated on four successively and uniformly refined meshes. It can be380

observed obviously the theoretical curve is recovered very well. The second result is381

the convergence curved generated by adaptive method with error indicator obtained382

only by the local residual. It is observed that the adaptive method generates much383

better convergence curve, compared with the one generated by uniformly refining384

the mesh. The nonuniform distribution of the mesh grids with 5940 points as well385

as the corresponding isolines of the Mach number can be observed from Fig. 5 (bot-386

tom). The third result is the convergence curve generated by adaptive method with387

error indicator obtained by adjoint weighted residual. In the simulation, the following388

functional is used as the quantity of interest,389

J (U ) = 1

|Ω|
∫
Ω

|s∞ − s|
s∞

dxdy, (26)390

where s∞ = p∞/ρ
γ
∞ is the far field entropy, and p∞ and ρ∞ are the far field pres-391

sure and density, respectively. From Fig. 4, it can be observed that adjoint weighted392

residual gives the best convergence result among three results. In Fig. 5 (top), the393

distribution of the mesh grids with 3387 points and the isolines of Mach number are394

shown with adjoint weighted residual method. It can be seen that the adjoint method395

Fig. 4 Convergence curves
of the entropy production
with different methods
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Fig. 5 Mesh profiles and Mach isolines obtained from adjoint-based mesh adaptation with 3387
mesh grids (upper row) and residual-based mesh adaptation with 5940 mesh grids (lower row)

helps to assign more mesh grids in the region in which the entropy is more sensitive396

to the local residual. Hence, this explains that with adjoint weighted residual, better397

result can be generated with less mesh grids, compared with the second result in398

which only local residual is used.399

5.3 Transonic Flow Around a NACA 0012 Airfoil400

The last numerical test is for the transonic flow through a NACA0012 airfoil. The401

purpose is to show the advantage of adjoint weighted method on accurately calcu-402

lating the quantity of interest in the practical applications such as drag coefficient in403

this test, i.e.404

J (U ) =
∫
∂Ωa

pβ · nds, (27)405

where ∂Ωa is the surface of the airfoil, and n is the unit outer normal vector with406

respect to ∂Ωa . The parameter β in the above formula is given as407

β =
⎧⎨
⎩
(cosα, sin α)T /C∞, for drag calculation,

(− sin α, cosα)T /C∞, for lift calculation,
408

where C∞ = 0.5γ p∞Ma2∞l, and Ma∞ and l are the far field Mach number of the409

flow and the chord length of the airfoil, respectively.410

The far field flow is set up with the following configuration. The density is 1, the411

Mach number is 0.8, and the velocity vector is (cos θ, sin θ)T with the attack angle412

θ = 1.25◦. The far field flow state is again used as the initial guess for the Newton413

iteration.414

In Fig. 6 (left), the convergence history of Newton iteration on 11 successively415

and adaptively refined meshes is shown and it can be observed that the residual can416

be reduced towards the machine epsilon efficiently in all meshes which demonstrates417

the effectiveness of the algorithm. In Fig. 6 (right), the advantage on using adaptive418
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Fig. 6 Left: Residual convergence history with adaptively and successively mesh refinements
for NACA0012 airfoil with 0.8 Mach number and 1.25◦ attack angle; Right: the corresponding
convergence history of the drag coefficient (dashed line), while the solid line shows the results
given by the uniformly refining mesh

Fig. 7 Left: The mesh profile after 5 adaptive refinement. Middle: The corresponding isolines of
the Mach number. Right: The isolines of the x-momentum from the adjoint problem

method with error indicator generated by adjoint weighted residual is demonstrated419

obviously, i.e. the convergence curve of the drag coefficient generated by the adaptive420

method is much superior to that generated by uniformly refining the mesh and to421

reach almost the same numerical accuracy (around 1.0e − 05), only over 10% mesh422

grids are needed by the adaptive mesh method, compared with the uniform refinement423

strategy. Figure 7 shows the mesh grids around the airfoil (left), the isolines of the424

Mach number (middle), and the isolines of x-momentum from the adjoint problem425

(right). It can be seen that with the adjoint weighted residual, the upper and lower426

shocks as well as leading edge and tail region are successfully resolved, which427

guarantee the accurate calculation of drag coefficient.428

Remark 4 It is worth mentioning that in all simulations in this paper and our previous429

works [21, 23–26], the convergence of Newton iteration is smooth and efficient.430

Furthermore, the convergence is not sensitive to the selection of the parameters,431

which shows the robustness of our method.432

Remark 5 In simulations with curved boundary, the direction of the out normal vec-433

tor on the Gauss quadrature point is adjusted according to the exact curve. With this434
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correction, the performance of the method with high-order solution reconstruction435

can be significantly improved and people may refer to the simulation on Ringleb436

problem in [26] for details. However, there are still errors on the other quadrature437

information such as the position and weight of the quadrature point. Moreover, to438

develop a framework for the optimal design of the vehicle, a flexible and powerful439

tool to handle the curved boundary approximation is desirable. In our forthcoming440

paper, the nonuniform rational B-splines (NURBS) will be introduced in our method441

to handle the curved boundary issue and preliminary results show the excellent per-442

formance of the new method.443

6 Conclusion444

In this paper, an efficient and robust framework of adaptive finite volume solutions on445

steady Euler equations is introduced. The governing equations are discretized with446

finite volume method, and the framework consists of the Newton iteration for the447

linearization of the Euler system and a geometrical multigrid method for solving the448

linearized system. A non-oscillatory k-exact reconstruction is developed to deliver449

quality solution reconstruction to linear and higher-order cases. To improve the solver450

efficiency, the h-adaptive method is introduced in the method and an adjoint-based a451

posteriori error estimation method is developed to generate quality error indicator for452

the adaptive method. Numerical results successfully show the desired convergence453

behaviour of the method, and quality nonuniform meshes generated by the adaptive454

method.455
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