
Front. Math. China 2009, 4(1): 49–61
DOI 10.1007/s11464-009-0010-z

Spectral methods for pantograph-type

differential and integral equations

with multiple delays∗

Ishtiaq ALI1,2, Hermann BRUNNER3,4, Tao TANG4

1 Institute of Computational Mathematics, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100080, China

2 Department of Mathematics, COMSATS Institute of Information Technology,
Islamabad, Pakistan

3 Department of Mathematics and Statistics, Memorial University of Newfoundland,
St. John’s, NL A1C 5S7, Canada

4 Department of Mathematics, Hong Kong Baptist University, Hong Kong, China

c© Higher Education Press and Springer-Verlag 2009

Abstract We analyze the convergence properties of the spectral method
when used to approximate smooth solutions of delay differential or
integral equations with two or more vanishing delays. It is shown that
for the pantograph-type functional equations the spectral methods yield the
familiar exponential order of convergence. Various numerical examples are
used to illustrate these results.
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1 Introduction

Consider the multiple-delay pantograph differential equation
⎧
⎪⎨

⎪⎩

y′(t) = a(t)y(t) +
r∑

l=1

bl(t)y(qlt), t ∈ I := [0, T ],

y(0) = y0,

(1.1)

and the analogous multiple-delay Volterra integral equation
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y(t) = g(t) +
r∑

l=1

∫ qlt

0

Kl(t, s)y(s)ds, t ∈ I, (1.2)

where 0 < q1 < · · · < qr < 1 (r � 2). It will be assumed that the given
functions in (1.1)-(1.2) are smooth on their respective domains. This implies
that the solutions of (1.1)-(1.2) are (globally) smooth on I. Thus, it
appears natural to employ spectral methods for the numerical solution of
these functional equations since the resulting spectral approximations are
globally smooth, too, and in addition exhibit high-order convergence.

For ease of exposition, and without essential loss of generality, we will
describe and analyze the spectral methods for the case of two proportional
delays; that is, for the functional equations

{
y′(t) = a(t)y(t) + b1(t)y(q1t) + b2(t)y(q2t), t ∈ I,

y(0) = y0,
(1.3)

and the delay Volterra integral equation

y(t) = g(t) +
∫ q1t

0

K1(t, s)y(s)ds +
∫ q2t

0

K2(t, s)y(s)ds, (1.4)

with 0 < q1 < q2 < 1.
The (quantitative and qualitative) theory of linear pantograph-type

delay differential and integro-differential equations with multiple delays have
been analyzed by, e.g., Iserles [8], Iserles and Liu [9], Derfel and Vogl [5], Qiu,
Mitsui and Kuang [14], and Liu and Li [12]. To our knowledge, the numerical
solution of such functional equations by high-order methods, in particular
by collocation and spectral methods, has not yet been studied in detail.
Compare, however, Refs. [10,17] where the optimal order of the collocation
error at t = t1 = h was analyzed, and Refs. [11,12,14] in which the asymptotic
stability of numerical solutions was studied. We also note that the power-
ful software package RADAR5, based on the 3-stage (fifth-order) Radau IIA
Runge-Kutta method and developed by Guglielmi and Hairer (Ref. [7]; see
also Ref. [6]) is designed to handle multiple-delay delay differential equations
(DDEs).

It is known that the Fredholm-type integral equations behave more or
less like a boundary value problem. As a result, some efficient numerical
methods useful for boundary value problems (such as spectral methods) can
be used directly to handle the Fredholm-type integral equations However,
the Volterra equations of the second kind behave similar to an initial value
problem. Therefore, it is very difficult and seems inappropriate to apply
the spectral approximations to the Volterra-type integral equations. The
main reason is that the second-kind Volterra equations uses the information
from [0, t] while the spectral methods use global basis functions in [0, T ]. The
main difficulty is how to implement the method so that spectral accuracy
can be eventually obtained. On the other hand, the numerical methods for
the Volterra equations will differ from those for the standard initial value
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problems in the sense that the former requires storage of all values at grid
points while the latter only requires information at a fixed number of previous
grid points. The storage requirement also makes the use of the global basis
functions of the spectral methods more acceptable. For (1.4) without delay
(i.e., q1 = q2 = 1), a spectral-collocation method is proposed in Ref. [16].
It was shown that the errors decay exponentially provided that the kernel
function and the source function are sufficiently smooth. In Ref. [1], this
idea was extended to the pantograph DDEs with a single delay.

In Section 2 we describe the spectral method for the multiple-delay pan-
tograph delay differential equation (1.3) and the multiple-delay pantograph
integral equation (1.4). This is followed, in Section 3, by corresponding
results on the attainable order of convergence of these spectral methods and
by remarks on their extension to equations with nonlinear vanishing delays.
Section 4 is used to illustrate the convergence results by numerical examples.

2 Spectral discretizations

Let {tk}N
k=0 be the set of the (N + 1) Gauss-Legendre, or Gauss-Radau,

or Gauss-Lobatto points in [−1, 1], and denote by PN the space of real
polynomials of degree not exceeding N.

2.1 Multiple-delay pantograph differential equation (1.3)

We will describe the spectral method to the integrated form of (1.3).
Integration of (1.3) from [0, ti] leads to

y(ti) = y0 +
∫ ti

0

a(s)y(s)ds +
∫ ti

0

b1(s)y(q1s)ds +
∫ ti

0

b2(s)y(q2s)ds. (2.1)

Employ the linear transformation

si
θ =

ti
2

θ +
ti
2

,

let {ωk}N
i=0 be the corresponding weights, and suppose that the spectral

approximation Y (t) has the form

y(t) ≈ Y (t) :=
N∑

j=0

y(tj)Fj(t), t ∈ [0, T ], (2.2)

where Fj(t) are the Lagrange canonical polynomials with respect to the set
{θk}N

k=0. Then the spectral approximation to the transformed equation (2.1),

y(ti) = y0 +
ti
2

∫ 1

−1

a(si
θ)y(si

θ)dθ +
ti
2

∫ 1

−1

b1(si
θ)y(q1s

i
θ)dθ

+
ti
2

∫ 1

−1

b2(si
θ)y(q2s

i
θ)dθ, (2.3)
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is determined by the spectral approximations

Y (ti) = y0 +
ti
2

N∑

k=0

a(sik)Y (sik)wk +
ti
2

N∑

k=0

b1(sik)Y (q1sik)wk

+
ti
2

N∑

k=0

b2(sik)Y (q2sik)wk, (2.4)

where

Y (sik) :=
N∑

j=0

y(tj)Fj(sik), sik := si
θk

=
ti
2

(θk + 1).

Setting
YN := [Y (t0), . . . , Y (tN )]T, b := [y0, . . . , y0]T

and

Aij :=
ti
2

N∑

k=0

(a(sik)Fj(sik) + b1(sik)Fj(q1sik) + b2(sik)Fj(q2sik))wk

(i, j = 0, 1, . . . , N), we can write the spectral equations (2.4) in the form
(I − AN )YN = b, where AN := [Aij ] ∈ R

(N+1)×(N+1).

2.2 Multiple-delay Volterra integral equation (1.4)

Since the delay Volterra integral equation (1.4) is a generalization of the
integrated form (2.1) of the delay differential equation (1.3), the previous
section contains all the essential ingredients for describing the spectral
approximation for (1.4) (transformed on the interval [−1, 1]). Thus, the
spectral equations for the transformed equation (1.4) with respect to the
points {ti}N

i=0 are given by

y(ti) = g(ti)+
∫ q1ti

0

K1(ti, s)Y (s)ds+
∫ q2ti

0

K2(ti, s)Y (s)ds

= g(ti)+
q1ti
2

∫ 1

−1

K1(ti, θ1)Y (θ1)dθ+
q2ti
2

∫ 1

−1

K2(ti, θ2)y(θ2)dθ, (2.5)

where
θ1 = q1ti(θ + 1)/2, θ2 = q2ti(θ + 1)/2.

We can approximate the integral by using Gauss quadrature and y(t) by
using Y (t) :

Y (ti) = y0 +
q1ti
2

N∑

k=0

K1

(
ti,

q1ti
2

(θk + 1)
)
YjFj

(q1ti
2

(θk + 1)
)
wk

+
q2ti
2

N∑

k=0

K2

(
ti,

q2ti
2

(θk + 1)
)
YjFj

(q2ti
2

(θk + 1)
)
wk, (2.6)
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If we write it into matrix form, we obtain (I−AN )YN = g, where the elements
of the matrix AN := [A(i,j)] are given by

A(i,j) =
q1ti
2

N∑

k=0

K1

(
ti,

q1ti
2

(θk + 1)
)
Fj

(q1ti
2

(θk + 1)
)
wk

+
q2ti
2

N∑

k=0

K2

(
ti,

q2ti
2

(θk + 1)
)
Fj

(q2ti
2

(θk + 1)
)
wk. (2.7)

3 Convergence analysis

3.1 Some auxiliary results

To carry out the convergence analysis of our spectral methods we first
introduce some useful lemmas.

Lemma 3.1 [4] Assume that an (N + 1)-point Gauss-Legendre, or Gauss-
Radau, or Gauss-Lobatto quadrature formula relative to the Legendre weight
is used to integrate the product yφ, where y ∈ Hm(I) with I := (−1, 1) for
some m � 1 and φ ∈ PN . Then there exists a constant C independent of N
such that

∣
∣
∣
∣

∫ 1

−1

y(x)φ(x)dx − (y, φ)N

∣
∣
∣
∣ � CN−m|y|H̃m,N (I)‖φ‖L2(I), (3.1)

where

|y|H̃m,N+1(I) =
( m∑

k=min(m,N)

‖y(k)‖2
L2(I)

)1/2

, (y, φ)N =
N∑

k=0

ωky(xk)φ(xk).

Lemma 3.2 Assume that y ∈ Hm(I) and denote by INy the interpolation
polynomial associated with the (N + 1) Gauss-Legendre, or Gauss-Radau, or
Gauss-Lobatto points {xk}N

k=0. Then

‖y − INy‖L2(I) � CN−m|y|H̃m,N (I), (3.2)

‖y − INy‖L∞(I) � CN
1
2−m|y|H̃m,N (I). (3.3)

Proof Estimate (3.2) is given on p. 289 of Ref. [4]. The estimate

‖y − INy‖Hs(I) � CN2s− 1
2−m|y|H̃m,N (I), 1 � s � m,

is also given in Ref. [4]. Using the above estimate and the inequality

‖v‖L∞(a,b) �
√

1
b − a

+ 2 ‖v‖1/2
L2(a,b) ‖v‖1/2

H1(a,b), ∀ v ∈ H1(a, b),

we obtain (3.3). �
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From Ref. [13], we have the following result on the Lebesgue constant for
Lagrange interpolation based on the zeros of the Legendre polynomials.

Lemma 3.3 Assume that Fj(t) is the j-th Lagrange interpolation poly-
nomial with respect to the (N + 1) Gauss-Legendre, or Gauss-Radau, or
Gauss-Lobatto points {tk}N

k=0. Then

max
t∈I

N∑

j=0

|Fj(t)| � C
√

N. (3.4)

The next lemma presents the extension of the classical Gronwall lemma to
integral equations with two proportional delays; its version for an arbitrary
number of such delays is obvious.

Lemma 3.4 (Gronwall inequality) Let T > 0 and C1, C2, C3 � 0. If a
non-negative continuous function E(t) satisfies

E(t) � C1

∫ t

0

E(q1s)ds + C2

∫ t

0

E(q2s)ds + C3

∫ t

0

E(s)ds + G(t),

∀ t ∈ [0, T ], (3.5)

where q1, q2 ∈ (0, 1) are constants and G(t) is a continuous function. Then

‖E‖L∞(I) � C‖G‖L∞(I). (3.6)

Proof For E � 0, since q1 ∈ (0, 1) and G(s) � 0, it follows from (3.5) and a
simple change of variables that

∫ q1t

0

E(s)ds = q−1
1

∫ q1t

0

E(s)ds � C1q
−1
1

∫ t

0

E(s)ds.

Similarly
∫ q2t

0

E(s)ds = q−1
2

∫ q2t

0

E(s)ds � C2q
−1
2

∫ t

0

E(s)ds,

which implies that

E(t) � C

∫ t

0

E(s)ds + G(t),

which is a standard Gronwall inequality. This leads to estimate (3.6). �
We are now ready to state and prove our two main theorems on the

convergence of the spectral method when applied to multiple-delay
pantograph DDE (1.3) and the multiple-delay Volterra integral equation
(1.4).

3.2 Convergence of spectral approximations for (1.3)

Theorem 3.1 Consider the pantograph differential equation (1.3) and its
spectral approximation (2.4). If functions a, b1and b2 are sufficiently smooth



Spectral methods for pantograph-type differential and integral equations 55

(which implies that the solution of (1.1) is similarly smooth), then

‖Y − y‖L∞(I) � CN−m− 1
2 |ay|H̃m,N (I) + CN−m− 1

2 |b1y(q1t)|H̃m,N (I)

+ CN
1
2−m(|a| + |b1| + |b2|)H̃m,N (I)‖y‖L2(I)

+CN−m− 1
2 |b2y(q2t)|H̃m,N (I), (3.7)

where Y is the polynomial of degree N associated with the spectral
approximation (2.4), and C is a constant independent of N.

Remark 3.1 We point out that
(i) Theorem 3.1 remains true for any finite number of proportional delays,

and
(ii) for r = 1, Theorem 3.1 reduces to the result in Ref. [1].

Proof of Theorem 3.1 Following the notations of (2.4), let

[Y ]N,s =
ti
2

N∑

k=0

a(sik)Y (sik)wk.

Then the second and third term on the right-hand side of (2.4) can be written
as [Y ]N,q1s and [Y ]N,q2s, respectively. It follows from the numerical scheme
(2.4) that

Y = y0 + [aY ]N,s + [b1Y ]N,q1s + [b2Y ]N,q2s, (3.8)

which gives

Y (ti) = y0 +
ti
2

∫ 1

−1

a(si
θ)Y (si

θ)dθ +
ti
2

∫ 1

−1

b1(si
θ)Y (q1s

i
θ)dθ

+
ti
2

∫ 1

−1

b2(si
θ)Y (q2s

i
θ)dθ + Ii,1 + Ii,2 + Ii,3, 0 � i � N, (3.9)

where

Ii,1 :=
ti
2

∫ 1

−1

a(si
θ)Y (si

θ)dθ − [aY ]N,s,

Ii,2 :=
ti
2

∫ 1

−1

b1(si
θ)Y (q1s

i
θ)dθ − [b1Y ]N,q1s,

Ii,3 :=
ti
2

∫ 1

−1

b2(si
θ)Y (q2s

i
θ)dθ − [b2Y ]N,q2s.

Employing Lemma 3.1 we then obtain the estimates

|Ii,1| � C1N
−m|a|Hm,N ‖Y ‖L2(I), (3.10)

|Ii,2| � C2N
−m|b1|Hm,N ‖Y ‖L2(I), (3.11)

|Ii,3| � C3N
−m|b2|Hm,N ‖Y ‖L2(I). (3.12)
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Multiplying Fj(t) on both sides of (3.9) and summing up from 0 to N yields

Y (t) = IN

(∫ t

0

aY (s)ds

)

+ IN

(∫ t

0

b1Y (q1s)ds

)

+IN

(∫ t

0

b2Y (q2s)ds

)

+ y0 + J1(t), (3.13)

where we have used the fact that

N∑

j=0

Fj(t) ≡ 1

and defined

J1(t) :=
N∑

j=0

(Ii,1 + Ii,2 + Ii,3)Fj(t).

Let
e(t) := Y (t) − y(t)

(with
e(q1t) = Y (q1t) − y(q1t), e(q2t) = Y (q2t) − y(q2t))

denote the spectral error. It follows from (3.13) that

Y (t) = IN

(∫ t

0

ay(s)ds

)

+ IN

(∫ t

0

b1y(q1s)ds

)

+ IN

(∫ t

0

b2y(q2s)ds

)

+ J1(t) + IN

(∫ t

0

ae(s)ds

)

+IN

(∫ t

0

b1e(q1s)ds

)

+ IN

(∫ t

0

b2e(q2s)ds

)

. (3.14)

Thus, combining (3.14) with (2.1) gives

e(t) =
∫ t

0

ae(s)ds +
∫ t

0

b1e(q1s)ds +
∫ t

0

b2e(q2s)ds + J2(t) + J3(t), (3.15)

where

J2(t) := IN

(∫ t

0

ay(s)ds

)

−
∫ t

0

ay(s)ds + IN

(∫ t

0

b1y(q1s)ds

)

−
∫ t

0

b1y(q1s)ds + IN

(∫ t

0

b2y(q2s)ds

)

−
∫ t

0

b2y(q2s)ds,

J3(t) := IN

(∫ t

0

ae(s)ds

)

−
∫ t

0

ae(s)ds + IN

(∫ t

0

b1e(q1s)ds

)

−
∫ t

0

b1e(q1s)ds + IN

(∫ t

0

b2e(q2s)ds

)

−
∫ t

0

b2e(q2s)ds.
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According to the Gronwall estimate of Lemma 3.4, we find

‖e‖L∞(I) � C(‖J1‖L∞(I) + ‖J2‖L∞(I) + ‖J3‖L∞(I)). (3.16)

We will now derive estimates for ‖J1‖L∞(I), ‖J2‖L∞(I) and ‖J3‖L∞(I). First,

‖J1‖L∞(I) � C(‖Ii,1‖L∞(I) + ‖Ii,2‖L∞(I) + ‖Ii,3‖L∞(I))max
t∈I

N∑

j=0

Fj(t)

� CN
1
2−m(|a|Hm,N + |b1|Hm,N + |b2|Hm,N )‖Y ‖L2(I)

� CN
1
2−m(|a|Hm,N + |b1|Hm,N + |b2|Hm,N )

×(‖e‖L∞ + ‖y‖L2(I)), (3.17)

where we have used Lemma 3.3. Next, we obtain

‖J2‖L∞(I) � CN−m− 1
2 |y|H̃m,N (I) + CN−m− 1

2 |y(q1t)|H̃m,N (I)

+CN−m− 1
2 |y(q2t)|H̃m,N (I). (3.18)

To derive the final estimate we employ Lemma 3.2 and find

‖J3‖L∞(I) � CN−1/2‖e‖L∞. (3.19)

The above three estimates, together with (3.16), yield

‖e‖L∞(I) � CN
1
2−m(‖e‖L∞(I) + ‖y‖L2(I))CN−m− 1

2 |y(q1t)|H̃m,N (I)

+ CN−m− 1
2 |y|H̃m,N (I) + CN−m− 1

2 |y(q2t)|H̃m,N (I)

+ CN− 1
2 ‖e‖L∞,

from which the result of Theorem 3.1 follows. �
3.3 Convergence of spectral approximations for (1.4)

The analogue of Theorem 3.1, namely the following theorem for the
pantograph-type Volterra integral equation (1.2), can be proved by using
an obvious adaptation of the analysis in Section 3.2.

Theorem 3.2 Consider the pantograph differential equation (1.2) and its
spectral approximation. If the function g = g(t) and the kernels K1(t, s) and
K2(t, s) in (1.4) are smooth (implying that the solution of (1.4) is smooth on
I), then

‖Y − y‖L∞(I) � CN−m− 1
2 |y|H̃m,N (I) +CN

1
2−m max

1�i�N
(|K1(ti, s(ti, .))|H̃m,N (I)

+|K2(ti, s(ti, .))|H̃m,N (I))‖y‖L2(I), (3.20)

where Y is the polynomial of degree N associated with the spectral
approximation, and C is a constant independent of N.
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Remark 3.2 Again we point out that
(i) Theorem 3.2 remains true for any finite number of proportional delays,

and
(ii) for r = 1, Theorem 3.2 reduces to the result in Ref. [1].

3.4 Nonlinear vanishing delays

In the preceding analysis we considered the multi-delay differential
equation (1.1) and the multiple-delay Volterra integral equation (1.2) with
linear (pantograph-type) delay functions θk(t) = qkt (0 < q1 < · · · < qr <
1, r � 2). A close look at the proofs of the convergence theorems in this
section reveals that the analysis and hence the spectral convergence results
in Theorems 3.1 and 3.2 remain valid for smooth nonlinear delay functions
θk = θk(t) (k = 1, . . . , r, r � 2) that are subject to the following assumptions:

(D1) θk(0) = 0 and θk is strictly increasing on I (k = 1, . . . , r);
(D2) 0 < θ1(t) < · · · < θr(t) � q̄t (t ∈ (0, T ]), for some q̄ ∈ (0, 1);
(D3) θk ∈ Cd(I) (k = 1, . . . , r) for some d � 1.

The proofs of Theorems 3.1 and 3.2 are then readily adapted to deal
with pantograph-type functional differential and integral equations (1.3) and
(1.4), respectively, containing these more general vanishing nonlinear delays:
the convergence estimates of Theorems 3.1 and 3.2 remain valid since—by
assumption (D2)—the Gronwall estimate in Lemma 3.4 carries over if the
right-hand side of (3.5) contains r terms corresponding to the nonlinear
delays θk. We leave the details of the proof to the reader.

4 Numerical examples

In the following, we use numerical examples to illustrate the accuracy and
efficiency of the spectral methods (2.4) and (2.6). In our computations, we
use the Legendre-Gauss quadrature with weights

ωj =
2

(1 − x2
j )[L

′
N+1(xj)]2

, 0 < j � N.

Example 4.1 Let b1(t) = cos t, b2(t) = sin t and a(t) = 0 in (1.3). Choose
g(t) such that the exact solution is then given by

y(t) = sin(tq−1
1 ) + cos(tq−1

2 ).

In Table 1, we list errors in various norms with q1 = 0.05 and q2 = 0.95
for Example 4.1. This is a quite extreme case with a very small value of the
delay parameter q1. For the polynomial collocation methods, it will require a
few hundred collocation points to reach the errors of about 10−7; while with
the spectral approach only 20 points are needed. For another extreme case,
q1 = 0.5 and q2 = 0.99, it is seen in Fig. 1 that machine accuracy is obtained
with only 14 collocation points.
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Table 1 Example 4.1: point-wise error using (2.4). q1 = 0.05, q2 = 0.95

N L∞ L1 L2

6 9.305e−002 8.120e−002 7.374e−002

8 2.586e−001 2.435e−001 2.119e−001
10 7.635e−002 9.814e−002 7.911e−002
12 1.139e−002 1.311e−002 1.071e−002
14 1.658e−003 1.506e−003 1.248e−003
16 2.073e−004 1.925e−004 1.634e−004
18 1.370e−005 1.506e−005 1.227e−005
20 7.220e−007 6.953e−007 5.908e−007

Fig. 1 Example 4.1: L∞ (solid line) and L2 (circle) errors obtained

by using (2.4) for q1 = 0.5 and q2 = 0.99

Example 4.2 Let K1(t, s) = cos(t − s), and K2(t) = sin(t − s) in (1.4).
The exact solution is given by y(t) = cos t.

In Table 2, we list errors in various norms with q1 = 0.05 and q2 = 0.95
for Example 4.2. With a very small value of the delay parameter q1, machine
accuracy is achieved with about 10 spectral collocation points. For another
extreme case, q1 = 0.5 and q2 = 0.99, it is seen in Fig. 2 that machine
accuracy is obtained with about 10 collocation points.

Table 2 Example 4.2: point-wise error using (2.6). q1 = 0.05, q2 = 0.95

N L∞ L1 L2

6 2.534e−010 2.427e−010 2.125e−010

8 1.908e−013 2.105e−013 1.731e−013
10 2.220e−016 2.762e−016 2.373e−016
12 4.441e−016 3.636e−016 3.454e−013
14 3.331e−016 2.550e−016 2.088e−016
16 4.441e−016 4.317e−016 3.628e−016
18 4.441e−016 3.042e−016 2.593e−016
20 4.441e−016 2.727e−016 2.606e−016
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Fig. 2 Example 4.2: L∞ (solid line) and L2 (circle) errors obtained

by using (2.6) for q1 = 0.5 and q2 = 0.99

5 Concluding remarks

We have shown that the spectral method yields an efficient and very
accurate numerical method for the approximation of solutions to pantograph-
type delay differential and Volterra integral equations with multiple propor-
tional delays. In the quite difficult cases with small q1 or q2 close to 1,
the proposed method can yield very accurate approximations with a small
number of spectral collocation points. The method is readily extended to
equations with nonlinear multiple vanishing delays.
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