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Abstract--We discuss the application of a class of spline collocation methods to a first-order Volterra 
integro-differential equation arising in fluid dynamics. Since this equation possesses a weakly singular 
kernel its solutions, even for analytic data, are not smooth on the entire interval of integration. It is shown 
that while the use of uniform grids leads to poor  convergence rates, high-order convergence is restored 
on suitably graded grids. 

1. I N T R O D U C T I O N  

The mathematical modelling of the diffusion of discrete particle in a turbulent fluid leads to 
Volterra integro-differential equations (VIDEs) of the type 

f0 y ' ( t ) = f ( t , y ( t ) ) +  (t - s ) - ' k ( t , s , y ' ( s ) ) d s ,  t ~I,=[0,  T], (1) 

with initial condition y(0) = Yo, and with 0 < • < 1 (typically, • = 1/2). Here, f :  I x R --* R and 
k: S x R ~ R  (where S,={(t,s): 0~s~t~<r}) are given (smooth) functions [cf. 1-71. For 
historical reasons, equation (1) is often referred to as the Basset equation. 

Observe that, in contrast to "standard" VIDEs, the kernel function k in (1) depends on the 
derivative 3'" instead of the solution y itself; moreover, the integrand contains the weakly singular 
(i.e. integrable) factor ( t - s )  -~. As will be seen below this factor complicates the numerical 
treatment of (1) since solutions of (1) will, in general, be such that y ~ C~(I) but y"(t) ~ t-~ as t ~ 0: 
this singular behavior has the effect that numerical approximations to y generated by adaptations 
of numerical methods for VIDEs with regular kernel functions (and smooth solutions) will show 
a poor convergence behavior [8, 9]. Thus, new approaches tailored to the nonsmooth structure of 
y have to be found. 

Using modifications of fractional linear multistep methods originally introduced by Lubich [10] 
for second-kind Volterra integral equations with weakly singular kernels, Hairer and Maass [7] 
derived an efficient class of high-order methods on uniform grids. (The product-integration 
methods in [5] and [6] yield high-order convergence on uniform grids only under the assumption 
that the exact solution of (1) exhibit continuous differentiability of sufficiently high order on the 
(closed) interval I.) 

In this paper we study a class of collocation methods (and their discretizations) for (1), using 
suitably graded grids. The underlying ideas were introduced in [8] and [11]; however, here we also 
analyze the attainable order of convergence at the grid points. 

As for the numerical treatment of standard VIDEs, the reader is referred [9, 12-14], [15] VIDEs 
with regular kernels) and [8, 13, 16, 17] (VIDEs with weakly singular kernels); most of these 
references contain information about other relevant papers. 

2. S P L I N E  C O L L O C A T I O N  M E T H O D S  O N  G R A D E D  G R I D S  

As mentioned in Section 1, the analytical solution of the VIDE (1) does not inherit the assumed 
smoothness (i.e. the differentiability properties) of the given functions f(t ,  y) and k(t, s, z) (where 
k(t, s, z) ¢ 0). More precisely, it can be shown using the techniques in [10] (see also [8, 13, 18] for 
linear VIDEs with weakly singular kernels) that i f f  and k have continuous derivatives of order 
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m then there exists a function Y = Y(t, v) possessing continuous derivatives of order m + 1, such 
that the solution of  (1) can be written as 

y(t)  = Y(t, t2- ') ,  (2) 

at least for t ~ [0, c], for some c > 0. This implies that near t = 0 its second derivative behaves like 
y"(t) .~ t-~ 

There are essentially two ways of obtaining numerical methods whose approximations to y(t)  
exhibit an acceptable order of convergence: 

(i) The construction of new ("nonclassical") methods which reflect the specific singular behavior 
of  y( t )  near t = 0. Methods of this type (using uniform grids) are the nonpolynomial spline 
collocation methods suggested in [18] and, above all, the fractional linear multistep methods of [7] 
(here, the construction of the special initial weights can be shown to correspond to an application 
of nonpolynomial spline collocation). 

(ii) The specific implementation, reflecting the behavior of y( t )  near t = 0, of certain methods 
introduced originally for VIDEs with smooth solutions. This implementation is based on certain 
nonuniform (graded) grids depending on the value of  ~. 

In the present paper we analyze the second of these two approaches. The methods (collocation 
and Runge--Kutta-type methods) generate as approximations to the solution y of (1) elements of 
the polynomial spline space 

S~)(Zu).'= {u e C(I): u I o , =  u. ~ rim, 0 ~ n ~< N - 1}, (3) 

associated with a given partition 

H u : O = t ~ u ) < t ~ m < . . . < t ~ = T ,  N>~I 

of the interval I = [0, T]. Here, n,. is the set of (real) polynomials of degree not exceeding m (with 
m/> 1), and we have set a,..= [t~, u), ~m t,+ ~] (n = 0 , . . . ,  N - 1), ZN,= {t~,u): 1 ~< n ~ N -  1} (the set of 
interior grid points). For ease of notation we shall subsequently omit the subscript N in t~, m etc.; 
note, however, that quantities like h, ,= t, + 1 - t,, 

h := max{h,: O <~ n <~ N - 1 } ,  h':= min{h,: O <~ n <<. N - 1 }  (4) 

depend on N (i.e. on the particular partition under consideration). The quantity h is often called 
the diameter of the grid/-/u. 

The desired approximation to y is the element u ~ S~)(Zu) satisfying 

u'(t) = f ( t ,  u(t)) + I t (t - s ) - 'k( t ,  s, u'(s)) ds, t ~ X(N),  (5) 
30 

with 

and 

N - I  

X(N),= U X. 
n = 0  

X. ,={t . , j ,=t .+ejh . :  O~c l  < - .  • <c,.~< 1}. 

In other words, the collocation solution for (1) is the element in the polynomial spline space 
St°,.)(Zu) which solves (1) on the set of collocation points X(N),  This set is characterized, for a given 
partition l lu,  by the collocation parameters {cj}. 

Using standard contraction mapping arguments it is straightforward to show that, under suitable 
assumptions on f ( t , y )  and k( t , s , z )  (e.g. Lipschitz conditions with respect to y and z), the 
collocation equation (5) and the initial condition u(0)=  Y0 define a unique collocation solution 
u ~ S~)(Zu) whenever the grid diameter h is sufficiently small. 

In the following convergence analysis two types of grids will occur: 
(i) Quasi-uniform grids: here, the quotient h/h' (cf. definition 4) is bounded by some finite 

constant ~ I> 1 for all values o f  N. This implies that 

h <~ ~TN -I = O(N-I ) .  (6) 
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For ~ = 1 we have, of course, uniform grids, with h = h '  ffi T N - I .  
(ii) Graded grids: the grid points are given by 

t. = (n /N) 'T ,  n = 0 . . . . .  N,  (7) 

where the grading exponent r satisfies r >I 1. It is easily seen that grids of this type are not 
quasi-uniform if r > 1; however, we have 

h <~ r T N  -~ = O ( N  - l )  (8) 

for all r I> 1. For r = 1 we obtain the uniform grid. 

Theorem 2.1 

Let  f ( t , y )  and k ( t , s , z )  in (1) be m times continuously differentiable and such that the 
initial-value problem (1) has a unique solution y on L 

(a) If {Hn} is a quasi-uniform grid sequence, then the collocation solution u ¢ S~)(ZN) defined 
by (5) satisfies 

II y(k) _ u(k)II ~o = O( N-° -~')), k ~ {0, I} (9) 

as N --. oo. This holds for any set {c/} of collocation parameters and any value of m I> I. 
(b) If {fin } is the sequence of graded grids given by (7) and with grading exponent r chosen as 

r f~ t / ( 1 - -~ ) ,  l - - ~ < / t ~ < m ,  (10) 

then the collocation solution u ¢ S~)(ZN) determined by (5) satisfies 

][y(k)--U(k)ll ~ = O(N-~), k u{0, 1}, (11) 

as N - * ~ .  [ ]  
The proof of Theorem 2.1 is based on techniques introduced in [8], using the result (2) on the 

form of the analytical solution of (1) and the theory of weakly singular discrete Gronwall 
inequalities [19, 20]. We omit the details. 

It is well known [12, 13] that the global convergence rate of collocation approximations to 
solutions of VIDEs with regular kernels (and smooth solutions) is given by O ( N - m ) .  Part (b) of 
Theorem 2.1 shows that this rate can be attained also for VIDEs with weakly singular kernels, 
provided we employ graded grids of the form (7) with grading exponent r = m/(1 - ~ ) .  The 
motivation for using graded grids in the approximation of nonsmooth functions like 
f ( t )  = t # (/~ > 0) on [0, 1] by spline functions was given by Rice [21] (see also [22, pp. 44-47] or 
[23, pp. 254-257]). Collocation and related methods for weakly singular Fredholm integral 
equations of the second kind, using graded grids, were studied, for example, by Schneider [24] and 
Vainikko and Uba [25] (compare also the survey paper [26]). The convergence properties of spline 
collocation methods on graded grids for Volterra integral and integro-differential equations with 
weakly singular kernels were analyzed in [11] and [8], respectively. 

We now turn our attention to the order of convergence of y ( t . )  - u (t,) where t, ¢ ZN,= ZM u { T} 
is a grid point; i.e. we shall analyze the discrete (or local) convergence properties of the collocation 
solution u ~ S~)(Z#) .  This is of interest since in many applications one is interested in generating 
approximations to y ( t )  at the right endpoint t = T of I which exhibit a high order of convergence 
at that point. To our knowledge, results of this kind for VIDEs with weakly singular kernel, e.g. (1), 
have not yet been obtained, not even in the linear case. 

Theorem 2.2 

Let f(t ,  y) and k( t ,  s, z )  in (1) be m + 1 times continuously differentiable and such that (1) has 
a unique solution on L Assume that u E S~)(Z~)  is the collocation solution defined by (5), with 
collocation parameters {cj} such that 

10,= (s - cj) ds  = 0. (12) 
d O i = l  
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(a) The use of quasi-uniform grids HN yields 

max [y(t.) - u(t.)[ = O(N -2~' -~)), (13) 
(n) 

as N ~ .  
(b) If, however, one employs graded grids (7) with grading exponent satisfying 

r =/~/(1 - a), with /~ >/(m + 2 - a)/2, (14) 

max ly(t ,)  - u(t,)l = O(N -( '÷'  -~)), (15) 
(n) 

as N ~ o o .  [] 
Before turning to the proof of Theorem 2.2 we add some remarks. 
(i) For VIDEs with smooth kernels and smooth solutions, a much higher rate of convergence 

than (15) can be obtained on uniform grids: if, for example, the collocation parameters {cj} are 
the Gauss points for (0, 1) (i.e. the zeros of the shifted Legendre polynomial Pm(2S -- 1)), then 

max ly(t ,)  - u(t,)l = O(N -~m) 
(n) 

(cf. [9, 12, 13]). 
(ii) For m I> 2, the optimal (i.e. smallest) grading exponent for attaining the convergence rate 

of (15), 

r = (m + 2 -- ~)/(2(1 -- ~)), (16) 

is smaller than the grading exponent used in Theorem 2.1 (b) to obtain global convergence of  order 
m. This is of practical relevance since, for given and m, the initial step size h0 = T N - '  of the graded 
grid (7) will become very small as N is increased, thus representing a potential source of rounding 
errors in subsequent calculations. As an example, assume that we have m = 3 (cubic splines), 

= 1/2, and T --- 1. If  we choose r as in (10), wi th / t  = m, then h 0 = N -6. However, if the value 
of (16) is chosen, then the initial step size is h0 = N -45. 

(iii) Of the many sets {c j} satisfying the orthogonality condition (12) we mention the Gauss points 
[zeros of Pm (2S -- 1)], and the Radau points---given by either the zeros of P,, (2s - 1) + P m -  ,(2s - 1) 
[Radau (I)] or the zeros of  P,,(2s - 1) - Pro_ ,(2s - 1) [Radau (II)]. Condition (12) is also satisfied 
for the "Simpson points" c, = 0, cz = 1/2, c3 = 1 (a special case of the Lobatto points). Observe that 
in this case (since Cl = 0 and Cm = 1) the resulting collocation solution u is in the smoother space 
S ~ ( z ~ )  := S~(z~ , )  n C~(I). 

Proof o f  Theorem 2.2 

We begin by writing the collocation equation (5) in "continuous" form, 

u'(t) = f ( t ,  u(t)) - 6(t) + .Io (t - s)- 'k( t ,  s, u'(s)) ds, t ~ I, (17) 

where the residual function 6(0  vanishes on the set X(N)  of collocation points. Since, by 
assumption, f and k have continuous derivatives of order m + 1 I> 2, we may apply Taylor's 
formula to the equation satisfied by the collocation error e ( t ) , = y ( t ) -  u(t), 

:0' e ' ( t ) = f ( t , y ( t ) ) - f ( t , u ( t ) ) + 6 ( t ) +  ( t - s ) - ~ { k ( t , s , y ' ( s ) ) - k ( t , s , u ' ( s ) ) } d s ,  t ~ I, 

to obtain the following result. 

Lemma 2.1 

The collocation error induced by the collocation solution u is the solution of  the initial-value 
problem 

e ' ( t ) = a ( t ) e ( t ) + 6 ( t ) +  ( t - s ) - ' H ( t , s ) e ' ( s ) d s + ( Q e ) ( t ) ,  t ~ I ,  

e(0)----- 0, (18) 
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with 

and 

a(t),=fy(t, y(t)), H(t, s),= kz(t, s, y'(s)), 

(Qe)(t),= -½fyy(t,.)e2(t) - -2 (t - s)-~kzz(t, s, .) (e'(s)) 2 ds. 

In the last expression the unspecified arguments represent intermediate values arising in the 
respective remainder terms of Taylor's formula for f ( t , y ( t ) -  e(t)) and k(t, s , y ' ( s ) -  e'(s)).D 

The following result concerning a representation of the solution of the VIDE (18) is one of the 
keys for establishing the discrete convergence result (15). 

Lemma 2.2 
The function e(t) is a solution of the VIDE (18) on I if, and only if, it solves the equation 

e(t)= I tr(t,s;oO6(s)ds + ~tr(t,s;oO(Qe)(s)ds, t eI. (19) 
Jo Jo 

Here 

r(t ,s;~),=l + f~R(v,s;~)dv,  ( t ,s)¢S,  

where R(t, s; ~) denotes the resolvent kernel of the kernel 

K(t, s; oO,=a(t ) + (t - s)-~H(t, s) (20) 

of the linear integral equation 

z(t) = 6(t) + fo K(t, s; ~)z(s) ds. [] (21) 

I 

Proof Setting 

e(t) = fo e'(s) ds 

(recall that e(0)= 0) we first rewrite equation (18) in the form 

e'(t) = 6(t) + fo {a(t) + (t - s)-~H(t, s)}e'(s) ds + (Qe)(t), (22) 

where the factor of e'(s) under the integral sign equals K(t, s; ~) defined in (20). Equation (22) may 
be viewed as a nonlinearly perturbed linear Volterra integral equation of the second kind for e'(t), 
with perturbation term (Qe)(t) Oven in Lemma 2.1. 

It follows [27, pp. 191-193] that if R(t, s; x) is the resolvent kernel of K(t, s; ~) in (21) then e'(t) 
must also satisfy the equation 

e'(t) -- 6(t) + (Qe)(t) + fo R(t, s; 00{6(s ) + 

I 

(Qe)(s)} ds 

(and vice versa). Integration of the above equation yields (19). 
Let now t = t, be a grid point, and write (19) as 

e(t,) = So(t,; u) + S~(t,; ~), (23a) 

with 

and 
fO 

n 

S0(t,; ~),= r(t,, s; a)6(s) ds (23b) 

S,(t,; o0'= r(t,, s; oO(Qe)(s) ds. (23c) 
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Consider first (23c): it follows from the definition of  (Qe)(t) in Lemma 2.1 that 

1 2 . T l -  [(Qe)(t)J<~½Mollel[ 2 +~Mll le ' l [~  " / ( 1 - ~ ) ,  t E L  

where M0 and M~ denote suitable upper bounds for Ifyy(t,y)l and Ik=(t, s, z)l. Thus, the order of 
II Qe [I ~ is governed by the order of  global convergence of  the collocation solution and its 
derivative; by Theorem 2.1 we have 

Ile(k)l[~=O(N-2~ ) if r = p ( 1 - - ~ t )  (with l - a ~ p ~ < m ) .  

Hence 

fO 
In 

[S,(t.;ct)l<~lIQello~" [ r ( t . , s ;~ ) lds=O(N- :U) ,  

In order to estimate S0(t.; a)(n i> 1) we write (23b) as 

n--I f l i + l  
So(t , ;~)= ~ g,(s;a)a(s)ds,  

i=O** i 

with 

t, E Zu. (24) 

(25) 

l n 
g,(s; ct),=r(t,,s; a ) =  1 + R(v,s;ot)dv 

given in Lemma 2.2. Since R (t, s; ct) is the resolvent kernel of  the (weakly singular) kernel K(t, s; a) 
given by (20), 

K(t, s; ct) = a(t) + (t - s ) - 'H(t ,  s), with H(t, s) ~ O, 

it follows [13, pp. 15-16] that this resolvent must be of  the form 

R(t, s; a) = (t - s)-~. P(t, s; ~), 

where P(t, s; ct) is continuous for (t, s) e S. This implies that g,(s; a) is continuous for 0 ~< s ~< t.; 
however, its derivative, dg,(s; ~)/ds, behaves like (t, - s) -" as s approaches t, (while for 0 ~< s < t,, 
g,(s; a) has continuous derivatives up to order m). In other words, using the terminology 
introduced in [21], the function g,(s; ~) is of  type (1 - ~t, m, {t,}). It is easily seen that the residual 
function 5(t) [cf. (17)] has the same properties. 

If  we now replace each integral in (25) by the sum consisting of  the interpolatory m-point 
quadrature formula based on the collocation parameters and the corresponding error term E,, i, e.g. 

f [ '+ '  
g.(s; e)6(s) ds = wtg.(ti, t)6(ti, t) + E~,i, 

i l = 1  

we obtain, recalling that the residual vanishes at all collocation points, 
n - - I  

S0(t , ;ct)= ~ E,,i, n = l  . . . . .  N. 
i = 0  

It follows from a result of  Schneider [24, pp. 209-212] that, under the hypotheses (12) (choice of  
collocation parameters) and (13) (choice of  grading exponent r) of Theorem 2.2, we have 

. -1 

E,, ,=O(U-(m+'- ' ) ) ,  n = l , . . . , U .  (26) 
i = 0  

(For quasi-uniform grids we only have 
. - - I  

Y, &,, = O(N- : ( , -%)  
i=O 

Combining the results (24) and (26), and using the value r = #/(1 - 0t), with p I> (m + 2 - ~t)/2, for 
the grading exponent, we find by (23a), 

e(t.) = O(N -:u) + O(N -<" + t -:)) = O(N -(m+ 2-')) + O(N -<m+ ~-')) = O(N -<:+ 1 -- ~ t ) ) ,  
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n = 1 ..... N, thus verifying (15). The discrete convergence order of (13) for quasi-uniform grids 
is established in the same way, using the remark following (26). 

3. COMPUTATIONAL FORM OF THE COLLOCATION METHOD 

In order to write the collocation (5) in a form which more clearly exhibits the recursive nature 
of the method, let t = t,. j ¢ X, be a collocation point in the subinterval o~. Then (5) becomes 

n - I  

un(tn, =f( t , .h  u,(tn, j)) + h~ -~4)U)n,~Lfu'l~J + ~ hil-~On.t[uj],°) • 
t -O 

where we have set 

and 

j =  l , . . . , m  (n =0  . . . . .  N -  1), (27) 

Col ru'l f~J ,.,L , , '= (c j -v)- ' .k ( t~ . j , t ,+vh, ,u '~( t~+vh,) )dv  (28a) 

f0 
1 

O~)[u;],= [(t,.j -- t , ) /h,-  v) -"k( t , , j ,  t, + vh,, u;(t, + vh,)] dv (28b) 

(0 ~< i < n ~< N - 1). In general, the integrals (28a) and (28b) cannot be found analytically. Thus 
the fully discretized (i.e. computational) form of (27) is obtained by choosing suitable quadrature 
approximations to these integrals. These approximations should of course be such that the resulting 
discrete collocation solution possesses the same convergence properties as the one defined by the 
exact collocation equation (27) (cf. Theorems 2.1 and 2.2). A natural way to approximate the 
integrals (28a) and (28b) is to use m-point product-integration formulas based on the collocation 

0 9  , parameters {cj}: here, On.~[U~] is replaced by 

(D  ' q/,.,[u~.= Z, wj.,(~)k[t,,j, t, + cjc, h,, u',(t, + cN, h,) ] (29a) 
a--I 

(note that the kernel function k(t, s, z) is, in general, given only for points (t, s)with s ~< t), while 
for the integrals ¢~u).ru'l in the lag term we have n, l t  l J  

~,.ru.'1,- ~ w~,';0(~)k(t,,j, t,,,, u;(t,.,)), 
s - - |  

The quadrature weights are given by 

and 

where 

i < n. (29b) 

~0 I wj,~(~),=c} -~ (1 -v)-~L~(v)dv,  j , s  = 1 . . . . .  m, 

~0 
1 

w(,~; 0 (00,- (( t , . j - t t ) /hl-v)-~L~(v)dv,  j , s  = l . . . . .  m; i  <n, 

L,(v),= ~ (v - cD/(c, - ck) 
kOs 

denotes the s th Lagrange fundamental polynomial with respect to the given collocation parameters. 
Let the derivative of the discrete collocation solution be written in the form 

u'~(t,+vh,)= ~ L,(v)Y, . ,  t~+vh~o~,  (30) 
s-- I 

with Y~,s,=u'(t,,,) (where t~,,¢X, is a collocation point). (Although the discrete collocation 
solution is an element in S~)(Zz¢) which, in general, differs from the exact collocation solution, we 
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use the same notation.) It follows from (30) that on the subinterval a, the discrete collocation 
solution u is given by 

u . ( t . + v h . )  = y . + h .  ~ as (v )Y . , s ,  (31) 
s = l  

where y . , =  u . ( t . ) ( =  u ._  t ( t . ) ,  with Uo(to) = u(O) = Yo) and 

Z f v  at (v )  = Jo Ls ( z )  dz.  

The values Y.. l . . . .  , I1..,. are given by the solution of the system of nonlinear equations replacing 
the exact collocation equations (27), 

Y . , j = f ( t . , / , y . + h .  a s ( c j ) Y . , . ) + h l - ~  ( / ) r u ' l +  ~ h~-~'~(/)ru'lit i~, j = l , . . . , m ,  (32) 
s = l  i = 0  

where the expressions ~e<:)fu'l and ~.:)ru'lCi < n) are defined in (29a) and (29b) respectively. n, n t  n J  ~ n ,  i t  i J \  

It can be shown (along the lines of the analogous proof for standard VIDEs with weakly singular 
kernels in [8]) that the global and discrete convergence results of Theorems 2.1 and 2.2 remain valid 
for the discrete collocation solution u generated by (31) and (32). This is a consequence of the fact 
that the order of  the quadrature errors introduced when replacing the exact collocation 
equation (27) by (32) is given, under the assumptions (12) and (14) of Theorem 2.2, by (26). We 
leave the details of  the proof to the reader. 

4. N U M E R I C A L  EXAMPLE 

We illustrate the performance of the discretized collocation method (30)-(32) by applying it, with 
the value m = 2, i.e. u ~ S~°)(Zu),  to the nonlinear Basset equation 

cos(5t) k q ( t )  - -: (t - s)-1/2 (Y ' (S ) )  2 
y ' ( t ) =  l + ( y ' ( t ) )  2 4J0 l + t  2 ds, y ( 0 ) = l .  

Here, q ( t )  has been chosen so that the equation has the solution y ( t )  = 1 - t 2 - ~ [representative for 
the general form (2)], with ~ = 1/2. The resulting systems of nonlinear equations (32) were solved 
by straightforward fixed-point iteration (using an error tolerance of 10-l0 for the l~-norm of the 
difference of consecutive iterates; the calculations were performed in double precision on a 
VAX 8800). Tables 1 and 2 contain a selection of numerical results obtained by this method; they 
are representative for this and other collocation methods applied to various linear and nonlinear 
VIDEs of the form (1). 

The grading exponents for the graded grids (7) are those given in Theorem 2.2 
(r = (m + 2 - a)/(2(l - ~<)) = 3.5) and in Theorem 2.1 (r = m / ( l  - ~) = 4). In both cases the 

r 

T a b l e  1. C o l l o c a t i o n  a t  G a u s s  p o i n t s  (c t = (3 - ~ / 3 ) / 6 ,  c 2 = (3 + ~ / 3 ) / 6 )  

m + 2 - ~  m 
r = r ~ 

r = l  2 ( 1 - a )  1 - a  
N 

(tN = 1) l e ( t N ) l  l e ' ( tN) [  l e ( t N ) l  l e ' ( t ~ ) l  l e ( tN) l  l e ' ( t u ) l  

5 6 . 5 7 D  - 4 1 . 0 1 D  - 3 7 . 2 6 D  - 5 8 . 8 4 D  - 3 1 . 5 6 D  - 6 1 . 0 6 D  - 2 

10 2 . 7 8 D  - 4 2 . 6 4 D  - 4 7 . 3 8 D  - 5 2 . 7 6 D  - 3 8 . 6 9 D  - 5 3 . 4 5 D  - 3 
20  1 . 0 9 D  - 4 6 . 8 4 D  - 5 1 . 8 7 D  - 5 7 . 8 1 D  - 4 2 . 3 5 D  - 5 9 . 9 5 D  - 4 
40  4 . 0 5 D  - 5 1 . 7 5 D  - 5 3 . 7 8 D  - 6 2 . 1 0 D  - 4 4 . 8 8 D  - 6 2 . 7 0 D  - 4 

T a b l e  2. C o l l o c a t i o n  a t  R a d a u  (1I) p o i n t s  (c I = I /3 ,  c 2 = 1) 

m + 2 - ~  m 

• = 1 2(I  - - a )  
N 

(t,v ~ 1) l e ( t N ) l  [e ' ( tN) l  l e ( t N ) l  l e ' ( t u ) l  l e ( tN) l  l e ' ( tN)[  

5 3.3 I D  - 3 3 . 4 8 D  - 4 4 . 1 9 D  - 3 1 . 7 9 D  - 3 5 . 4 3 D  - 3 2 . 3 0 D  - 3 
I 0 1 . 0 3 D  - 3 6 . 4 9 D  - 5 7 . 1 9 D  - 4 3 . 6 2 D  - 4 9 . 4 0 D  - 4 4 . 7 6 D  - 4 

20  3 . 3 2 D  - 4  1 . 1 0 D -  5 1 . 2 1 D - 4  6 . 8 8 D -  5 1 . 5 8 D - 4  9 . 1 2 D -  5 
4 0  1 . 1 1 D  - 4 1 . 5 2 D  - 6 2 . 0 4 D  - 5 1 . 2 7 D  - 5 2 . 6 7 D  - 5 1 . 6 9 D  - 5 
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pred ic ted  o rde r  o f  discrete convergence (cf. equa t ion  15) is conf i rmed;  for  the  " o p t i m a l "  value  o f  
r [r = (m + 2 -  a)/(2(1 - ~ ) ) ]  the er rors  le( t~) l  are  somewha t  smaller .  

In  bo th  tables  we have also l isted the er rors  for  the der ivat ive  u '  a t  t =tt¢. I t  can be shown [using 
the represen ta t ion  o f  e ' ( t )  preceding  (23a)] that  on g raded  grids (14) and  under  the o r thogona l i t y  
hypothes is  (12) we have 

m a x l e , ( t , ) l = { O ( N - m )  if  C m < l  

(.) O ( N  -(m+~-~)) if  c ~ =  1 " 

This  expla ins  why for  the R a d a u  (II)  poin ts  bo th  le(tu)l and  le '(tu)l a re  o f  the same magni tude ,  
while for  the G a u s s  po in ts  the er rors  l e ' ( tu ) l  are  subs tant ia l ly  larger  than  [e(tu)l.  
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