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We present a coupled moving mesh and level set method for computing incom-
pressible two-phase flow with surface tension. This work extends a recent work
of Di et al. [(2005). SIAM J. Sci. Comput. 26, 1036–1056] where a moving
mesh strategy was proposed to solve the incompressible Navier–Stokes equa-
tions. With the involvement of the level set function and the curvature of the
interface, some subtle issues in the moving mesh scheme, in particular the solu-
tion interpolation from the old mesh to the new mesh and the choice of mon-
itor functions, require careful considerations. In this work, a simple monitor
function is proposed that involves both the level set function and its curvature.
The purpose for designing the coupled moving mesh and level set method is to
achieve higher resolution for the free surface by using a minimum amount of
additional expense. Numerical experiments for air bubbles and water drops are
presented to demonstrate the effectiveness of the proposed scheme.
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1. INTRODUCTION

In this paper, we will describe a moving mesh level set approach for com-
puting incompressible two-phase flow with surface tension. The flow we
consider has discontinuous density and viscosity, and is characterized by
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large density and viscosity ratios at the free surface, e.g. air and water.
The main existing computational methods used to solve incompressible
two-phase flow problems include front-tracking methods, boundary inte-
gral methods, volume-of-fluid methods, and level set methods (see, e.g.,
[5,26,36,45]). Alternative sharp interface works include boundary condi-
tion capturing methods [20,25] and finite element based level set methods
[44] for simulating multiphase incompressible flows.

Our goal in this work is to use the ideas in the level set approach [32]
and in the moving mesh method for incompressible flow simulations of
[12] to compute incompressible two-phase flow with surface tension. The
level set method was devised by Osher and Sethian [32] as a simple and
versatile method for computing and analyzing the motion of an interface
in two or three space dimensions. Assume that Γ bounds a (possibly mul-
tiply connected) region Ω. The goal is to compute the subsequent motion
of Γ under a velocity field u. This velocity can depend on position, time,
the geometry of the interface, and the external physics. The interface is
captured for later time as the zero level set of a smooth (at least Lipschitz
continuous) function φ(x, t); i.e., Γ (t)= {x|φ(x, t)= 0}. This deceptively
trivial statement is of great significance for numerical computation, pri-
marily because it can naturally capture the change of topology in the fluid
interface, such as merging and breaking. Furthermore, the level set method
can be generalized easily to three dimensions.

One of the purposes of this work is to apply the level set method
on a dynamically moving grid. The basic idea of moving mesh method
is to construct a transformation from a logical domain (or called com-
putational domain) to the physical domain. A fixed mesh is given on
the logical domain, and the transformation is realized by solving moving
mesh PDEs or minimization problems for a mesh functional. By connecting
points in the physical space corresponding to discrete points in the
parameter space, the physical domain can be covered with a computa-
tional mesh suitable for the solution of finite difference/element equations
(see, e.g., [3,23,47]). The key ingredients of the moving mesh methods
include:

• Mesh equations. The mesh equations determine a one-to-one mapping
from a regular domain in a parameter space to an irregularly shaped
domain in physical space. By connecting points in the physical space
corresponding to discrete points in the parameter space, the physical
domain can be covered with a computational mesh suitable for the
solution of finite difference/element equations. Choosing suitable mesh
equations and solving them efficiently are very crucial for an effective
moving mesh method.
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• Monitor function. A monitor function is used to guide the mesh redistri-
bution. It may depend on the solution arc-length (in 1D), curvature, and
a posteriori errors. In practice, local (spatial) smoothing of the monitor
function is necessary (see, e.g., [8,39]).

• Interpolations. If the mesh equations are time-dependent and are solved
simultaneously with the given differential equations, then interpolation
of dependent variables from the old mesh to the new mesh is unneces-
sary. Otherwise, some kind of interpolation is required to pass the solu-
tion information on the old mesh to the newly generated mesh.

In [14], Dvinsky suggests that harmonic function theory may pro-
vide a general framework for developing useful mesh generators. Unlike
most other generalizations, which add terms or functionals to the basic
Winslow grid generator, Dvinsky’s approach uses a single functional to
accomplish the adaptive mapping. The critical points of this functional are
harmonic maps. Motivated by the work of Dvinsky, a moving mesh finite
element strategy based on harmonic mapping was proposed and studied
by the authors in [21,22]. The key idea of this strategy is to construct the
harmonic map between the physical space and a parameter space by an
iteration procedure. The idea of iterative mesh generations was used before
(e.g., in spectral methods with co-ordinate transformations [24,42]). The
overall scheme proposed in [21] contains two parts: a solution algorithm
and a mesh generation algorithm. These two parts are independent in the
sense that the change of the physical PDEs will affect the first part only.
In [12], a moving mesh scheme for solving the incompressible Navier–
Stokes equations in the primitive variables formulation is developed using
the moving mesh finite element strategy of [21]. The main effort in [12]
is to design a divergence-free interpolation which is very essential for the
incompressible problems. By some careful analysis, it is concluded that the
interpolation can be implemented by solving a linearized inviscid Navier–
Stokes-type equations.

Recently, methods that couple two different schemes have been devel-
oped for simulating fluid flows with moving interfaces. Examples are the
coupled level set and volume-of-fluid (VOF) method [35], the hybrid par-
ticle level set method [16], and the mixed markers and VOF method [2].
A coupled method takes advantage of the strengths of each of the two
methods, and are therefore superior to either method alone. More recently,
Yang et al. [46] proposed an adaptive coupled level set and VOF volume
tracking method for unstructured triangular grids. The use of the adaptive
unstructured grids can cluster the grid near the interface, and therefore
enhance the efficiency and accuracy for solving the interface structures.
The adaptive algorithms used in [46] are based on the adaptive mesh
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algorithm developed in [1,48]. The adaptive coupled level set and VOF
volume tracking technique has been demonstrated powerful in resolving
complex interface changes and interfaces of high curvature. The spatially
adaptive techniques for level set methods and incompressible flow have
been recently reviewed by Losasso et al. [27] who discussed both histor-
ical and most recent works in this research direction, including [28] which
proposes the first octree algorithms for free surface flows using the level
set method (see also [19]).

In the present work, we will add an adaptive moving grid subroutine
to the standard level set algorithm for simulating fluid flows with moving
interfaces. Ideally, for the moving interface problems we would like the
mesh to be clustered within the interface region to correctly capture the
effects of surface tension, while at the same time providing sufficient
resolution away from the interface using less grid points. With the involve-
ment of the level set function and the curvature of the interface, some
subtle issues in the moving mesh scheme, in particular the solution inter-
polation from the old mesh to the new mesh, and the choice of monitor
functions, require careful considerations. In this work, a simple monitor
function is proposed that involves both the level set function and its cur-
vature, and the Navier–Stokes equations are solved by using a standard
mixed finite element approximation. It will be demonstrated that the moving-
mesh-level-set approach proposed in this work can resolve complex interface
structures very efficiently. The main advantages of the method are that
it is relatively simple and that, compared to non-adaptive method, fewer
elements are needed while still keeping the mesh sufficiently refined near
the interface regions.

The paper is organized as follows. In Sec. 2, the governing equations
for the level set approach and the incompressible Navier–Stokes equations
involving free surfaces will be described. The level set evolution scheme on
a fixed grid will be described in Sec. 3. A complete moving mesh scheme
designed for two-phase problems will be introduced in Sec. 4. A num-
ber of illustrative examples will be considered in Sect. 5. Some concluding
remarks will be made in the final section.

2. GOVERNING EQUATIONS

The level set approach [32] has been used for computing moving
boundaries, which are singular or extremely thin with sharp gradients. A
level set function φ(x, t) is defined to be a smooth function which is posi-
tive in the liquid and negative in the gas, with the zero level set of φ(x, t)
representing the moving interface at time t .
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When the underlying velocity field u is specified, the advection step
involves the solution of the scalar transport equation for φ,

φt +u ·∇φ=0. (2.1)

The unit normal on the interface, pointing from the gas into the liquid,
and the curvature of the interface can be expressed in terms of φ(x, t):

n = ∇φ
|∇φ|

∣
∣
∣
∣
φ=0

, κ= ∇ ·
( ∇φ

|∇φ|
)∣
∣
∣
∣
φ=0

. (2.2)

Suppose that µg and µl are the viscosity for gas and liquid, respectively,
ρg and ρl are the density for gas and liquid, respectively. Then continuous
nondimensionalized viscosity and density can be defined as

µ(φ)=µg/µl +H(φ)(1−µg/µl), ρ(φ)=ρg/ρl +H(φ)(1−ρg/ρl),

where H(φ) is the Heaviside function defined by

H(φ)=







0, if φ<0,
1
2
, if φ=0,

1, if φ>0.

The governing equations for the two-dimensional incompressible Navier–
Stokes equations separated by a free surface was derived in [10]:

ρ(ut +u ·∇u)=∇ · (2µD)−∇p+σκδ(φ)∇φ+ρg,

∇ ·u =0,
(2.3)

where u= (u, v) is the fluid velocity, ρ=ρ(x, t) the fluid density, µ=µ(x, t)
the fluid viscosity, and D = 1

2 [(∇u)+ (∇u)T ] is the viscous stress tensor.
The only body force being considered is the gravity denoted as g. The sur-
face tension term is considered to be a force concentrated on the interface.
We denote σ as the surface tension coefficient and δ as the Dirac delta
function. After a standard nondimensionalization procedure, we have

ρ(ut +u ·∇u)= 1
Re

∇ · (2µD)−∇p+ 1
Fr
ρg + 1

We
κδ(φ)∇φ. (2.4)

The dimensionless parameters used are Reynolds number, Re= ρlLU/µl,
Froude number, Fr=U2/gL, and Weber number, We=ρlLU2/σ .

It is noted that (2.4) involves a delta function, and it is discovered
recently in [15,43] that level set methods can suffer from O(1) errors with
the typical delta function approach. Therefore, caution has to be taken
when dealing with the delta function.
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3. LEVEL SET EVOLUTION

The level set evolution Eq. (2.1) can be reformulated as

φt +F(∇φ,x)|∇φ|=f (x),
F (∇φ,x)= u ·∇φ

|∇φ| , f (x)=0. (3.1)

The above problem is solved by using the explicit positive coefficient
scheme with triangular elements proposed by Barth and Sethian [4]. The
algorithm can be summarized in Table I.

We will give the interface a thickness as was done in the work of [36].
Numerically, we substitute the smoothed Heaviside function Hε(φ) for the
sharp Heaviside function H(φ). By giving the interface a thickness of 2ε,
the smoothed Heaviside function is defined as

Hε(φ)=







0, φ <−ε,
1
2

+ φ

2ε
+ 1

2π
sin (πφ/ε), −ε�φ� ε,

1, φ >ε.

(3.2)

In order to maintain φ(x, t) as a distance function, we re-initialize a given
level set function φ(x, t) so that it is a distance function for |φ|<ε with-
out changing its zero level set. This is achieved (see [36]) by solving the
following problem to steady state

dτ = S(φ)(1−|∇d|), τ >0,
d(x,0) = φ(x, t),

(3.3)

Table I. The Algorithm of the Explicit Positive Coefficient Scheme for (3.1)

1. Initialize φ∗
i =ωi =0, i=1, . . . , |V |

2. For each triangle T , i=1,2,3:
Ni(x)∈P1, Ni(xj )= δij , j =1,2,3, x ∈T ,

F = 1
meas(T )

∫

T

u ·∇φ
|∇φ| dx, ni =2meas(T )∇Ni, ∇φ=

3
∑

j=1

∇Njφj ,

Ki = F∇φ ·ni
2|∇φ| , δφ=

3
∑

l=1

Klφl, δφi =K+
i

3
∑

l=1

K−
l (φi −φl)/

3
∑

l=1

Kl,

αi =max(0, δφi/δφ)/
3
∑

l=1

max(0, δφl/δφ), φ∗
i =φ∗

i +αδφ, ωi =ωi +αimeas(T )

3. For each vi ∈V ,
φn+1
i =φni −∆t(φ∗

i )
n/ωni
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where S is the sign function and τ is an artificial time. It can be shown
that the steady state solution of (3.3) is a distance function. Furthermore,
S(0)= 0 implies that d(x, τ ) has the same zero level set as φ(x, t). For
numerical purposes it is useful to smooth the sign function using

Sε(φ)= φ
√

φ2 + ε2
.

Our discretization for approximating (3.3) is also based on the explicit
positive coefficient scheme [4], which is outlined in Table II.

We use an improvement to the re-distance step as described in [37].
The idea is based on the fact that the volume filled by each fluid must stay
constant when the re-distance step is applied. In order to minimize volume
variation, we project the current values of the level set function, denoted
as d̃ki , onto new values, denoted as dki , using

dki = d̃ki +λiH ′
ε(d

0), (3.4)

where H ′
ε(φ) is the derivative for the smoothed Heaviside function Hε(φ)

(3.2), and λi is given by

λi =
− ∫

Ωi
H ′
ε(d

0)(d̃k −d0)dx
∫

Ωi
H ′
ε(d

0)2dx
. (3.5)

Table II. The Algorithm of the Explicit Positive Coefficient Scheme for (3.3)

1. Initialize φ∗
i =ωi =0, i=1, . . . , |V |

2. For each triangle T, i=1,2,3,
Ni(x)∈P1, Ni(xj )= δij , j =1,2,3, x ∈T ,

F = 1
meas(T )

∫

T

Sε(φ)dx, ni =2meas(T )∇Ni, ∇φ=
3
∑

j=1

∇Njφj ,

Ki = F∇φ ·ni
2|∇φ| , δφ=

3
∑

l=1

Klφl , δφi =
(

K+
i

3
∑

l=1

K−
l (φi −φl)/

3
∑

l=1

K−
l

)

,

αi =max(0, δφi/δφ)/
3
∑

l=1

max(0, δφl/δφ),

φ∗
i =φ∗

i +α(δφ−Fmeas(T )), ωi =ωi +αimeas(T )
3. For each vi ∈V ,

φn+1
i =φni −∆τ(φ∗

i )
n/ωni
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4. MOVING MESH METHOD

4.1. Fixed Mesh Solution

Let V ⊂ H 1
0 (Ω)

2 and P ⊂ L2
0(Ω) be two finite element spaces. We

use a standard mixed finite element approach to discretize the governing
Eq. (2.4) together with the divergence free constraint. More precisely, we
need to find a pair (u, p) in the space V ×P such that

1
∆t
(ρnun+1,ψ)+ 1

Re
[(2µnun+1

x ,ψx)+ (µnun+1
y +µnvn+1

x ,ψy)]− (pn+1,ψx)

= 1
∆t
(ρnun,ψ)− (ρnun ·∇un,ψ)+

(
1
We

κδφx,ψ

)

(4.1a)

1
∆t
(ρnvn+1,ψ)+ 1

Re
[(µnun+1

y +µnvn+1
x ,ψx)+ (2µnvn+1

y ,ψy)]− (pn+1,ψy)

= 1
∆t
(ρnvn,ψ)− (ρnun ·∇vn,ψ)+

(
1
We

κδφy,ψ

)

−
(

1
Fr
ρn,ψ

)

(4.1b)

(q, un+1
x +vn+1

y )=0, (4.1c)

for any ψ ∈ V and q ∈ P . In other words, we use a very typical finite
element discretization to solve the 2D incompressible Navier–Stokes
equations.

4.2. Moving Mesh Strategy

Assume that at time t = tn+1 a finite element solution (un+1
h ,pn+1

h )

and φn+1
h are obtained using the methods described in Secs. 4.1 and 3,

respectively. These solutions are obtained in the old mesh, i.e., the mesh
used at t= tn. Now the question is how to obtain a new mesh T n+1

h using
(un+1
h ,pn+1

h , φn+1
h ) and T n

h . Moreover, after obtaining the new mesh, the
finite element solutions at t= tn+1 available on T n

h need to be redistributed
on T n+1

h .
The outline of the mesh generation scheme is as follows.

• Step 1: minimization of a mesh functional. We redistribute interior
domain and boundary points by solving the following optimization
problem:

min
∑

k

∫

Ω

Gij
∂ξk

∂xi

∂ξk

∂xj
d �x,

s.t. ξ |∂Ω = ξb ∈K,
(4.2)

where the inverse of the matrix (Gij ) is called monitor function which
is in general dependent on the solution (un+1

h ,pn+1
h , φn+1

h ), K is a
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mapping set from the physical boundary ∂Ω to the computational
boundary ∂Ωc, where the mapping keeps the geometrical character of
the physical domain unchanged during the boundary grid redistribution.
The minimization procedure is well described in Li et al. [22].

• Step 2: grid redistribution. Denote the initial (fixed uniform) mesh in
the logical domain as Tc (with nodes A(0)), and the new logical mesh
obtained by solving (4.2) as T ∗

c (with nodes A∗). Their difference

δA=A(0)−A∗ (4.3)

is used to determine the displacement δXi in the physical domain. Then
select a suitable ratio-parameter µ, and move the old mesh in the phys-
ical domain to a new one by using

X
(n+1)
i =X(n)i +µδXi. (4.4)

Again, the details of this grid redistribution procedure can be found in
Li et al. [22].

• Step 3: solution interpolation. After obtaining the new mesh Xn+1
i , the

finite element solutions (un+1
h ,pn+1

h , φn+1
h ) at the mesh Xni need to be

interpolated to the new mesh. Here we follow a procedure proposed in
[12] where a moving mesh strategy was proposed to solve the incom-
pressible Navier–Stokes equations. The basic idea is to maintain the
solution surface of uh on Ω unchanged. More precisely, the surface of
the solution formed at the mesh Xni with the solution (un+1

h ,pn+1
h , φn+1

h )

will not be changed, though the nodes of the mesh may be moved to
new locations based on some re-distribution principles. To this end, we
consider a homotopy between uh(tn) (the solution defined on the finite
element space Vh(tn) at t= tn) and uh(tn+1) (the solution defined on the
finite element space Vh(tn+1) at t= tn+1), i.e., ∀vh(x; t)∈Vh(t)

(
∂uh

∂t
, vh(x; t)

)

= 〈Lh(uh), vh(x; t)〉, (4.5)

where Lh is the corresponding spatial differential operator. By also adding
the level set function, the desired solution interpolation can be realized by
solving the system

ρ

(
∂u
∂τ

−∇�xu · δ�x
)

=−∇p, (4.6a)

∇�x ·u =0, (4.6b)
∂φ

∂τ
−∇�xφ · δ�x=0. (4.6c)
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We now give some necessary details for Step 1 above. We assume that ξ
maps a linear boundary segment on ∂Ω to a linear segment on ∂Ωc. Such
assumption leads the constraint in (4.2) to a linear system. More precisely,
we define the energy for a map ξ = ξ(x) as

E (ξ)=
∑

k

∫

Ω

Gij
∂ξk

∂xi

∂ξk

∂xj
dx. (4.7)

It can be demonstrated that the extreme of the functional (4.7) is a har-
monic mapping in the interior of Ω. Moreover, solving problem (4.2) is
equivalent to solving a linear constrained optimization problem

min
ξ
E (ξ) ,

s.t. ξ (∂Ω)= ∂Ωc.
(4.8)

We will demonstrate that the above problem leads to a linear system. Use
piecewise linear discretion, ξkh =ξki λi , where a standard summation conven-
tion is used. Let �kinner and �kbound be the interior and boundary part of
�k = (ξki

)

1�i�N , respectively, and denote

H =
(

Hij
)

, H ij =
∫

Ω

Gαβ
∂λi

∂xα

∂λj

∂xβ
dx, 1� i, j �N. (4.9)

We further split the matrices H into the following form:

H =
(

H11 H12
H21 H22

)

,

where the subscripts 1 and 2 denote the rows and columns correspond-
ing to the interior and boundary nodes, respectively. Assume that the con-
straint leads to a linear system of the form

∑

k Ak�
k = b, or equivalently

∑

k Ak,inner�
k
inner +Ak,bound�

k
bound =b.

With the above preparation, the optimization problem (4.2) is equiv-
alent to

min
�

∑

k

{

�k,T H�k
}

,

s.t.
∑

k Ak�
k =b.

(4.10)

Observe that Ak,inner =0. We then have

min
�

∑

k

{

�
k,T
innerH11�

k
inner +2�k,TboundH21�

k
inner +�k,TboundH22�

k
bound

}

,

s.t.
∑

k Ak,bound�
k
bound =b.

(4.11)
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The above approach also takes care of the boundary grid redistributions.
In fact, the interior and boundary grids are redistributed simultaneously
at each time level. A more detailed description of the above optimization
procedure can be found in [22].

4.3. Monitor Function

It is very important to choose an appropriate monitor function, oth-
erwise the adaptive effect cannot be realized no matter how good a mov-
ing mesh algorithm is. For problems with free interfaces, the singularity
often occurs around the interface where more grid points are required.
Away from the interface, it is hoped that the grids are as uniform as pos-
sible. Hence, it is essential that the monitor function should be inversely
proportional to the values of the level set function. It is also noted that
the moving interface can develop corners, cusps, and undergo topologi-
cal changes. To cluster more points around these places, some information
on κ, the curvature of the level set function as defined in (2.2), should
be included. To this end, the following monitor function is proposed and
used:

G= 1+β|κ|/max |κ|
1+α |φ|/max |φ| , (4.12)

where β and α are user-defined positive constants to determine the density
of the mesh. Roughly speaking, more points will be moved to areas with
large curvature or/and small level set values.

4.4. Numerical Procedure

We describe the actual numerical discretization described in the pre-
vious sections. The outline of our scheme is as follows.

Given the velocity un and the level set function φn at time tn. We are
also given the density ρn=ρ(φn), viscosity µn=µ(φn) and Heaviside func-
tion Hn=H(φn). We discretize the problem using the following steps:

1. Level set update for φn+1:

φt +un ·∇φ=0.

using the explicit positive coefficient scheme as described in Sec. 3. We
advance in time using third order TVD Runge–Kutta methods formula
in [34].
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2. Re-distance step for φn+1. We maintain the level set function φ as the
signed normal distance to the free surface. Details of the resistance step
are presented in Sec. 3.

3. Solve the Navier–Stokes equations to get un+1. This is done by using of
the mixed finite element methods as described in Sec. 4.1, by using the
new level set function φn+1.

4. Mesh motion and solution interpolation. Compute the monitor function,
move mesh and update the velocity and the level set function on the
new mesh, as described in Sec. 4.2.

The last step above is in fact an iteration step, so it in general requires a few
iterations at each time step (see, e.g., [12,22]). However, for the numerical
computations in this work, only one iteration is sufficient to obtain a satis-
factory mesh at each time level except at the initial stage where the number
of iterations depends on the degree of singularity of the initial data.

5. NUMERICAL EXAMPLES

In this section, we will apply our numerical method to several prob-
lems. The first one is the gas bubble bursting at a free surface, the second
one is the merging of two fluid bubbles, and the last one is the impact
of a water droplet on a pool. In the numerical examples, we use the fol-
lowing constants unless otherwise specified: g=−9.8 m/s2, σ =0.0728 kg/s2,
ρwater = 1000 kg/m3, µwater = 1.137 × 10−3 kg/ms, ρair = 1.226 kg/m3, and
µair =1.78×10−5 kg/ms. We consider flows in a unit square domain Ω and
assume the flow is periodic in the x-direction. The boundary conditions at
y = 0 and y = 1 are assumed to be no-slip and no-flow boundary condi-
tions; i.e., u=0, v=0.

The purpose of our numerical experiments is to demonstrate that
detailed inter-facial structures during a topological transition can be cap-
tured accurately with small number of grid points using our moving mesh
method. For this reason, we have performed a series of resolution stud-
ies. The numerical solutions we present here are mostly carried out using a
80×80 grid. When we compare these solutions with the uniform 250×250
grid calculations, they are almost indistinguishable. Moreover, the param-
eters in the monitor function (4.12) are not very sensitive so we just set
them to β=4 and α=10 in all of our numerical experiments.

5.1. Gas Bubble Bursting at a Free Surface

We consider the problem of a gas bubble rising to the free surface of
a liquid. Above the fluid, the air is same as that in the bubble. When a
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Fig. 1. Time sequence of the jet formation in a 3 mm bubble bursting at a free surface.
Profiles are 0.1 apart, from t=0.1 to 1.0. A 802 moving grid is used.

bubble bursts at a free surface, the surface tension rapidly pulls the rim
where they intersect outward and downward. Eventually, a ring of fluid at
the base of what was the bubble contracts to a point, throwing a plume
of fluid upward in the form of a high-speed jet. Various aspects of this
motion have been studied experimentally (see, e.g., [29]) and numerically
(see, e.g., [6,13,30]). Previous numerical studies have used boundary inte-
gral methods [6,7], VOF-type method [33], and the so-called marker-chain
approach [13].

Figure 1 shows the computational results of the jet formation in a
3 mm bubble bursting at a free surface obtained on a 802 grid. The param-
eters used in Eq. (2.4) are Re= 6649, Fr = 1, and We= 44. It is found
that the moving mesh results obtained with a 802 grid and a 2502 grid are
graphically indistinguishable, indicating that the moving mesh scheme with
a 802 grid can resolve the gas bubble problems. To see the moving mesh
effect, we plot in Fig. 2 the corresponding mesh at the final time, t=1.0.
It is seen that more grid points are clustered around the interface where
the level set function is zero.
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Fig. 2. Gas bubble bursting at a free surface: the mesh at t=1.0 at a 802 moving grid.

5.2. Merging Two Bubbles with the Same Density

In this subsection, we compute the interaction of two fluid bubbles
of the same density under the influence of gravity. The fluid is set at rest
initially. The viscosity for the fluid inside and outside the two bubbles is
equal to µ=0.00025 and 0.0005, respectively. The surface tension is set to
be zero. The initial positions of the two bubbles correspond to two circles,
with the lower one centered at (0.5,0.35) with radius 0.1 and the upper
one centered at (0.5,0.65) with radius 0.15. We take the density inside and
outside the two bubbles to be 1 and 10, respectively.

In Fig. 3, we plot the numerical solutions together with the cor-
responding meshes at t = 0.1,0.3,0.4, and 0.5, obtained by using a 802

grid. The desired effect of the mesh adaptivity can be clearly seen in this
figure. The time sequence of the merging of the two bubbles is plotted in
Fig. 4. In [10], the level set method together with a second-order projec-
tion scheme was used to study the merging of two bubbles with the above
parameters. The overall agreement between our coarse mesh results and
the fine mesh results of [10] (where a 2562 uniform grid is employed) is
very satisfactory.
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Fig. 3. Merging of two bubbles in moving 80 × 80 mesh. The density ratio between
the bubbles and the background is 1 : 10, and µl = 0.0005,µg = 0.00025, and σ = 0.
t=0.1,0.3,0.4, and 0.5.
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Fig. 4. Merging of two bubbles in moving 80×80 mesh. The density ratio between the bub-
bles and the background is 1 : 10, and µl =0.0005,µg =0.00025, σ =0. t=0,0.1,0.2, and 0.3
for the first row, and t=0.35,0.4,0.45 and 0.5 for the second row.

5.2.1. Monitor functions

Figure 5 shows a close-up of the dynamically adaptive mesh of the
two bubbles merging at t = 0.55. On the one hand the level set func-
tion used in the monitor makes the adaptive mesh to follow closely the
interface dynamics; on the other hand, the curvature term helps to move
the grid points to the regions with complex structures, i.e., very singular

Fig. 5. (a) Close-up of the adaptive mesh (80×80) around the roll of two bubbles merging
at t=0.55. (b) The boxed region in the left figure is magnified in the right figure.
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corners and cusps. As a result, the interface is effectively resolved even
when it becomes extremely localized and singular.

5.2.2. Time steps for moving mesh method

The time steps used for computing this problem are found interest-
ing. In general, moving mesh approach has to use smaller time steps com-
pared with the uniform mesh approach when both approaches have the
same smallest mesh scale (the smallest circumradius of the triangles) (see,
e.g., [38,40]). However, an exception is observed in this example. In Fig. 6,
the dotted line is the time step on a 2502 uniform grid and the solid line
is the one on a 802 moving grid. The mesh scale of both grids are all
about 3.5 × 10−3. However, it is observed from Fig. 6 that the time step
for the moving mesh is larger than that for the uniform mesh. The pos-
sible reason for this is as follows. For the bubble merging problem, the
time step is dominated by the CFL condition for the convection term, so
the time step is proportional to the value of minj {∆xj/|u|j }, where ∆xj
and uj are representative mesh size and velocity in the j th cell. In this
problem, the area with the largest velocity is near the exterior interface of
the big bubble where the mesh size is relatively large, while the area with
the smallest mesh is in the interior interface where the velocity is not too
large. Consequently, we end up with larger ratio minj {∆xj/|u|j } for the
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Fig. 6. Time steps used for the bubble merging problems: dotted line is the time step on a
2502 uniform mesh and the solid line is on a 802 moving mesh; both meshes have same value
of the smallest mesh scale.
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moving mesh methods. Consequently, with the same mesh scale the time
step used for the moving mesh methods is larger than that of the uniform
computation.

5.3. Water Droplet Impact

Liquid drop impact on liquid and solid surfaces has important engi-
neering and biological implications. Ink-jet printing and the dispersal of
fungal spores are examples of two processes which are governed by drop
impact dynamics. We compute the impact of a water droplet on a pool
of water along with the “splash” that comes afterward. In our compu-
tations, we use dimensionless parameters based on the impact velocity U
and the radius of the drop R. In Fig. 7, we show results using R= 1 mm
and U = 4.0 m/s. For that we have Re= 28144, Fr = 204, and We= 1760.
The dimensionless impact velocity is 1; we accelerate the drop with a ficti-
tious gravitational force term 1/Fr=4 for a total dimensionless time 0.25.
At dimensionless time t=0.25, the drop will be traveling with dimension-
less speed of 1 and begin to merge into the pool.

The study of drop impact on liquid surfaces has a long history (see
[17,18,31] and references therein). In [17,18], Harlow and Shannon stud-
ied drop impact on a liquid layer using the MAC method. Their calcula-
tions were very inspiring. Sussman et al. [37] studied this problem using
an adaptive level set method with projection method.

In Fig. 7, we plot the evolution of the water drop at time t =
0.25,0.3,0.46, and 0.67, using a 1002 moving grid. To test the accuracy,
the problem is also computed on an 2502 uniform grid. It is found that
the finer mesh results are graphically indistinguishable with the moving
mesh results on the coarse grid.

6. CONCLUDING REMARKS

In this work, the level set method and the moving mesh technique
is combined to form an efficient algorithm in solving the incompressible
two-phase flow problems. To show the combining approach works, two
issues are considered. First, we demonstrate that the moving mesh results
on coarse grids are comparable with the uniform mesh results on finer
grids. Second, it is demonstrated that to obtain the same resolution the
moving mesh level set approach can save the internal memories and reduce
the overall CPU time. Moreover, the codes related to our moving mesh
level set method are simpler than those for the h-type adaptive level set
approach developed in [37].
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Fig. 7. Impact of water drop with an 1002 moving grid. The parameters used are and
Re=28144, Fr=204, We=1760, ρg/ρl =1/816, µg/µl =1; t=0.25,0.3,0.46, and 0.67.
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We close this work by discussing three issues related to the moving
mesh level set computations performed in this work.

6.1. The Size of the Smoothing Parameter

The first issue is about the size of the smoothing parameter ε which
is used to regularize the delta function. When a topological change takes
place in a free interface, it signals the formation of a singularity. In that
case, it is expected that the numerical smoothing parameter would have a
strong effect for the fine structure of the interface. Usually we relate this
parameter and the grid size parameter h by the relation ε=ch. For exam-
ple, ε=1.5h and ε=2.5h are used in [10,36], respectively. In [37], ε=3h is
used for the gas bubble problem and ε=2h for the water drop problem. In
our computations, it was found that different inter-facial thickness ε pro-
duces similar qualitative results; but they may induce different detail infor-
mation during the topological transition. This is demonstrated in Fig. 8
where numerical results for merging of two bubbles are plotted using a
802 base-grid and ε=0.01 (solid line) and a 1602 base-grid and ε=0.005

Fig. 8. The comparison for simulations of merging of two bubbles between moving 80×80
mesh with ε=0.01 (solid line) and moving 160×160 mesh with ε=0.005 (dashed line). The
two boxed regions in the left figure are magnified in the right two figures. The density ratio
between the bubbles and the background is 1 : 10, and µl = 0.0005, µg = 0.00025, σ = 0, and
t=0.5.
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Fig. 9. Computational mesh from the simulation of droplet impact shown in Fig. 7 at time
t=0.6. Each of the first three figures has a boxed region that is magnified in the next figure
(left to right, top to bottom).

(dashed line). The two boxed regions in the left figure are magnified in
the right two figures. Note that the fine structure of two interfaces are
quite different. However, the general structures produced by the two pair
of parameters are very similar. Since we are interested in capturing the
fine scale structure of the physical solution and the comparison among
the results with different meshes, we fix a small enough value of ε directly
(just like in [9]).

6.2. Memory Savings and Speed-up

The second issue is about the real gaining of using the moving mesh
level set method. For the gas bubble problem considered in Sec. 5.1, by
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comparing the moving mesh computation on a 802 grid and the uniform
mesh computation on a 2502 grid (both yield comparable resolution) we
found that the memory savings for using the moving mesh method is 1:10
and the speed-up is about 4.3. For the water droplet computations consid-
ered in Sec. 5.3, the memory savings for using the moving mesh method
is 1:6.5 and the speed-up is about 2.5. It is found that the speed-up is
less than half of the internal memory savings. This phenomena was also
observed in [37] where an adaptive projection method is used to solve the
two-phase flow problems. For computing the water drop problem (Sec. 5.3,
[37]), it was found that the internal memory savings for using an adaptive
grid was 1:4 while the speed-up was only 1.7.

6.3. Mesh Quality

Finally, we comment on the quality of the grid obtained with the
combined moving-mesh-level-set approach. In Fig. 9, computational mesh
from the simulation of droplet impact at t = 0.6 is replotted and magni-
fied. It is clearly observed that the meshes obtained by using our method
are locally uniform and globally smooth.
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