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Abstract
In this paper, we are concerned with the stochastic Galerkin methods for time-dependent
Maxwell’s equations with random input. The generalized polynomial chaos approach is first
adopted to convert the original random Maxwell’s equation into a system of deterministic
equations for the expansion coefficients (the Galerkin system). It is shown that the stochastic
Galerkin approach preserves the energy conservation law. Then, we propose a finite element
approach in the physical space to solve the Galerkin system, and error estimates is presented.
For the timedomain approach,wepropose twodiscrete schemes, namely, theCrank–Nicolson
scheme and the leap-frog type scheme. For the Crank–Nicolson scheme, we show the energy
preserving property for the fully discrete scheme. While for the classic leap-frog scheme, we
present a conditional energy stability property. It iswell known that for the stochasticGalerkin
approach, the main challenge is how to efficiently solve the coupled Galerkin system. To this
end, we design a modified leap-frog type scheme in which one can solve the coupled system
in a decouple way—yielding a very efficient numerical approach. Numerical examples are
presented to support the theoretical finding.

Keywords Maxwell’s equations · Finite element method · Random inputs · Polynomial
chaos methods · Stochastic Galerkin

Mathematics Subject Classification 65N30 · 35L15 · 78-08

1 Introduction

With the increase of computer power, simulation of complex physical systems governed by
various partial differential equations (PDEs) with random inputs becomes necessary, since
uncertainty is ubiquitous in many complex physical systems. For example, in simulating
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electric current flow in coaxial cables [21], the cables may be corrugated, which leads to a
physical domain with some randomness. In the producing process of electromagnetic mate-
rials, random fluctuations often allow researchers to treat the permittivity and permeability
as uncertain parameters (e.g., [4,6]). In the past two decades, the study of uncertainty quan-
tification (UQ) got great attentions across different disciplines of sciences and engineering.
For stochastic PDEs (SPDEs), uncertain inputs can appear in coefficients, forcing terms,
boundary and initial conditions, and physical domains, etc (cf. [7,9,11,28]).

Due to the high dimensionality of random variables, it is very challenging to efficiently
solve PDEs with random inputs. Through the great efforts of many researchers, two major
class of numerical methods have become very popular in solving random PDEs. One is
the so-called non-intrusive stochastic collocation method (cf. [1,30,36]), which is simple in
implementation and the system of resulting equations is decoupled and hence is efficient
to solve. The stochastic collocation method can achieve fast convergence when the solu-
tions are sufficiently smooth in the random space. Another popular approach is the intrusive
stochastic Galerkin method [2,13–15], which shows fast convergence rates with increasing
order of expansions, provided that the solution of the underlying differential equation is suf-
ficiently smooth in the random space. However, the system of equations resulting from the
stochastic Galerkin methods is in general coupled and quite expensive to solve especially
for problems requiring high-dimensional random spaces. The stochastic Galerkin method
is based on the polynomial chaos (PC) approximation, originally developed by Ghanem
and Spanos [13] using Wiener–Hermite expansion and finite element discretization for a
wide range of problems. It was later extended by Xiu and Karniadakis [35] to general-
ized polynomial chaos (gPC) expansion by using general orthogonal polynomials. Based
on gPC expansion and stochastic Galerkin projection, a given random PDE can be trans-
formed into a system of deterministic PDEs (the Galerkin system) which can be solved by
any existing popular numerical methods. So far, both the stochastic Galerkin method and
the stochastic collocation method have been widely used to solve various problems, such as
elliptic problems (e.g., [8,10,27,32,38]), parabolic equations (e.g., [25]), hyperbolic equa-
tions (e.g., [16,17,24,31,33,39], to name a few. More details can be found in recent review
articles [15,26,29]) and monographs [22,34].

Compared to many papers published for those PDEs mentioned above, there are much
less existing works for solving stochastic Maxwell’s equations. In 2006, Chauviere et al. [6]
developed both the stochastic Galerkinmethod and stochastic collocationmethod to solve the
time-dependent Maxwell’s equations. Detailed comparisons of both methods are made for
uncertainties caused by physical materials, by the source wave and by the physical domain. In
2015,Benner andSchneider [4] described several techniques for uncertainty quantification for
the time-harmonic Maxwell’s equations by using stochastic collocation method. However,
how uncertainty propagates through the stochastic Maxwell’s equations and the relevant
regularity analysis are not investigated yet asChauviere et al. pointed out [6, p. 774]. Recently,
these issues were investigated through the stochastic collocation method in [18,19].

We arewell aware that the collocationmethods as investigated in [19] are non-intrusive and
can be easily applied. However, the stochastic Galerkin methods, which is mathematically
elegant, can also be a good candidate. In particular, to get the same polynomial accuracy, the
Galerkin methods use much less degree of freedom compared to the stochastic collocation
methods. However, it is well known that the main drawback in using stochastic Galerkin
methods is that one has to deal with a coupled Galerkin system. In this work, we shall
explore stochastic Galerkin methods by designing efficient solvers to the Galerkin system.
More precisely, we propose a finite element approach in the physical space and error estimates
will be presented. For the time domain approach, we propose two discrete schemes, namely,
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the Crank–Nicolson scheme and the leap-frog type scheme. For the Crank–Nicolson scheme,
we show the energy preserving property for the fully discrete scheme. While for the classic
leap-frog scheme, we present a conditional energy stability property. To further reduce the
computational cost, we design a revised leap-frog type scheme in which one can solve the
coupled system in a decouple way—yielding a very efficient numerical approach. Numerical
examples are presented to support the theoretical finding.

The rest of the paper is organized as follows. In Sect. 2, we first carry out some analysis
of the gPC method for Maxwell’s equations. In Sect. 3, we develop and analyze both the
semi-discrete and fully-discrete finite element schemes for solving the system resulting from
the gPCmethod. Numerical results are presented in Sect. 4 to support our theoretical analysis.
We conclude the paper in Sect. 5.

2 The gPC Approach for Maxwell’s Equations

Consider the three-dimensional Maxwell’s equations with random coefficients

ε(x, y)∂t E(t, x, y) = ∇ × H(t, x, y), (1)

μ(x, y)∂tH(t, x, y) = −∇ × E(t, x, y), (2)

where x denotes the spatial variable in the three-dimensional domain D and y =
(y1, y2, . . . , yN )T ∈ RN , N ≥ 1, is a random vector with independent and identically
distributed components. Furthermore, we assume that the Eqs. (1)–(2) are subject to the
initial conditions

E(0, x, y) = E0(x, y), H(0, x, y) = H0(x, y), (3)

and the perfectly conducting (PEC) boundary condition

n × E = 0, on ∂�, (4)

where n denotes the unit outward normal vector on ∂�, and E0 and H0 are some given
functions.

Following the standard gPC notation [37, p. 268], we let {�m( y)}Mm=1 be the N -variate

orthonormal polynomials of degree up to p, where M =
(
N + p
N

)
. Note that {�m( y)}Mm=1

are constructed as products of univariate polynomials in each direction yi , i = 1, . . . , N ,

i.e.,
�m( y) = φm1(y1)φm2(y2) . . . φmN (yN ), m1 + · · · + mN ≤ p, (5)

wheremi is the degree of the univariate polynomial φmi (yi ) for 1 ≤ i ≤ N . These univariate
polynomials are orthonormal, i.e.,

∫
φ j (yi )φk(yi )ρi (yi )dyi = δ jk, 1 ≤ i, j, k ≤ N , (6)

where δ jk is theKronecker delta function andρi (yi ) is the probability distribution function for
the randomvariable yi .Note that the choice of polynomialsφmi (yi )depends on the underlying
probability density functions ρi (yi ). For example, Hermite polynomials are associated with
the Gaussian distribution, and Legendre polynomials are adopted for uniformly distributed
random variables. More details can be found in [35]. Let ρ( y) = 	N

i=1ρi (yi ), the N -variate
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basis polynomials {�m( y)}Mm=1 are also orthonormal

E[�m( y)�n( y)] :=
∫

�m( y)�n( y)ρ( y)d y = δmn, 1 ≤ m, n ≤ M, (7)

We expand the solution of (1)–(2) using polynomial chaos expansions

E(t, x, y) =
∞∑

m=1

Em(t, x)�m( y), H(t, x, y) =
∞∑

m=1

Hm(t, x)�m( y). (8)

Substituting (8) into (1)–(2), we obtain

∞∑
m=1

(ε∂t Em(t, x) − ∇ × Hm(t, x))�m( y) = 0, (9)

∞∑
m=1

(μ∂tHm(t, x) + ∇ × Em(t, x))�m( y) = 0. (10)

Multiplying (9)–(10) by �k( y)ρ( y) for any k ≥ 1, and integrating the resultant, and using
the orthonormality (7), we obtain

∞∑
m=1

Aε
k,m(x)∂t Em(t, x) − ∇ × Hk(t, x) = 0, (11)

∞∑
m=1

Aμ
k,m(x)∂tHm(t, x) + ∇ × Ek(t, x) = 0, (12)

where

Aε
k,m(x) =

∫
ε(x, y)�m( y)�k( y)ρ( y)dy, Aμ

k,m(x) =
∫

μ(x, y)�m( y)�k( y)ρ( y)dy.

If we consider the pth-order gPC approximations of E and H , i.e.,

EM (t, x, y) :=
M∑

m=1

Êm(t, x)�m( y), HM (t, x, y) :=
M∑

m=1

Ĥm(t, x)�m( y). (13)

The the coefficients Êm and Ĥm satisfy the following Galerkin system:

M∑
m=1

Aε
k,m(x)∂t Êm(t, x) − ∇ × Ĥk(t, x) = 0, (14)

M∑
m=1

Aμ
k,m(x)∂t Ĥm(t, x) + ∇ × Êk(t, x) = 0. (15)

Let us denote Ê = (
Ê1, . . . , ÊM

)′
, Ĥ = (

Ĥ1, . . . , ĤM
)′
, and matrices Aε(x) =

(Aε
k,m)1≤k,m≤M and Aμ(x) = (Aμ

k,m)1≤k,m≤M . Then the above gPC Galerkin system can be
written as

Aε(x)∂t Ê(t, x) − ∇ × Ĥ(t, x) = 0, (16)

Aμ(x)∂t Ĥ(t, x) + ∇ × Ê(t, x) = 0, (17)
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which are subject to the PEC boundary condition

n × Ê = 0, on ∂�, (18)

and the initial conditions

Ê(0, x) = Ê0(x), Ĥ(0, x) = Ĥ0(x). (19)

Here Ê0(x) and Ĥ0(x) are the gPC expansion coefficient vectors obtained by expressing
the initial condition of (3) in the form of (13).

For practical applications, we shall assume that the random permittivity and permeability
are bounded below and above, i.e., there exist constants εmin, εmax, μmin and μmax such that

0 < εmin ≤ ε(x, y) ≤ εmax, 0 < μmin ≤ μ(x, y) ≤ μmax, ∀ x ∈ D, y ∈ RN . (20)

Theorem 1 Under the assumption (20), the matrices Aε(x) and Aμ(x) are positive definite
for any x ∈ D, and satisfy the following

0 < εmin‖u‖2L2(D) ≤ (Aε(x)u, u) ≤ εmax‖u‖2L2(D), (21)

0 < μmin‖u‖2L2(D) ≤ (Aμ(x)u, u) ≤ μmax‖u‖2L2(D), (22)

hold true for any M dimensional non-zero vector u.

Proof Let u = (̂u1, . . . , ûM )T be an arbitrary non-zero vector, and u( y) = ∑M
k=1 ûk�k( y)

be a random variable constructed by the vector u. Using the definition of Aε(x), we easily
have: for any x ∈ D,

uT Aε(x)u =
M∑
k=1

M∑
m=1

ûk

∫
ε(x, y)�k( y)�m( y)ρ( y)dyûm

=
∫

ε(x, y)u2( y)ρ( y)dy > 0, (23)

which shows the positive definiteness of Aε(x). The boundness (21) is straightforward from
(23) and (20). The conclusion for Aμ(x) follows the same argument. 
�

Furthermore, we can show that the Galerkin system of (16)–(17) satisfies the energy
conservation property.

Theorem 2 For the solution (Ê(t, x), Ĥ(t, x)) of (16)–(17) subject to the PEC boundary
condition (18), the following energy identity holds true for any t ∈ [0, T ] and k ≥ 0:

(∥∥Aε/2∂tk Ê
∥∥2
L2(D)

+ ∥∥Aμ/2∂tk Ĥ
∥∥2
L2(D)

) ∣∣∣
t

=
(∥∥Aε/2∂tk Ê

∥∥2
L2(D)

+ ∥∥Aμ/2∂tk Ĥ
∥∥2
L2(D)

) ∣∣∣
t=0

. (24)

Proof Multiplying (16) and (17) by Ê and Ĥ and integrating over D, respectively, then
summing up the resultants and using the PEC boundary condition (18), we easily see that
(24) holds true for k = 0.

To prove (24) for any k ≥ 1, we take the kth time derivative of (16)–(18), and follow the
same step as for the k = 0 case. 
�

123

Author's personal copy



Journal of Scientific Computing

3 The Finite Element Time-Domain Schemes

To solve the problem (16)–(17) by a finite element method, we partition the physical domain
� by a family of regular cubic or tetrahedral mesh T h with maximummesh size h, and adopt
the r th (r ≥ 1 order Raviart–Thomas–Nédélec (RTN) mixed finite element spaces Uh and
VVV h [20,23]: For any r ≥ 1,

Uh =
{
uh ∈ H(div;�) | uh |K ∈ (pr−1)

3 ⊕ p̃r−1x, ∀ K ∈ T h
}

,

V h =
{
vh ∈ H(curl;�) | vh |K ∈ (pr−1)

3 ⊕ Sr , ∀ K ∈ T h
}

,

Sr = { p ∈ ( p̃r )
3, x · p = 0

}
,

or RTN cubic elements:

Uh =
{
uh ∈ H(div;�) | uh |K ∈ Qr ,r−1,r−1 × Qr−1,r ,r−1 × Qr−1,r−1,r , ∀ K ∈ T h

}
,

V h =
{
vh ∈ H(curl;�) | vh |K ∈ Qr−1,r ,r × Qr ,r−1,r × Qr ,r ,r−1, ∀ K ∈ T h

}
.

Here p̃r denotes the space of homogeneous polynomials of degree r , and Qi, j,k denotes
the space of polynomials whose degrees are less than or equal to i, j, k in variables x, y, z,
respectively. To impose the PEC boundary condition, we denote V 0

h = {v ∈ V h : v × n =
0 on ∂�}.

3.1 The Semi-discrete Scheme and Its Analysis

Let us first consider a semi-discrete scheme for the Galerkin system: find Êh ∈ (V 0
h)

M ,
Ĥh ∈ (Uh)

M such that

(Aε∂t Êh, φE,h)D − (Ĥh,∇ × φE,h)D = 0, ∀ φE,h ∈ (V 0
h)

M , (25)

(Aμ∂t Ĥh, φH ,h)D + (∇ × Êh, φH ,h)D = 0, ∀ φH ,h ∈ (Uh)
M , (26)

subject to the initial conditions

Êh(0, x) = 	c
h Ê0(x), Ĥh(0, x) = 	d

h Ĥ0(x), (27)

where we denote 	c
h for the Nédélec interpolation operator and 	d

h for the L2 projection
into the space Uh . It is known that [20,23]:

‖u − 	c
hu‖L2(D) + ‖∇ × (u − 	c

hu)‖L2(D) ≤ Chr‖u‖Hr (curl;D),

∀ u ∈ Hr (curl; D), (28)

‖v − 	d
hv‖L2(D) ≤ Chr‖u‖Hr (D), ∀ v ∈ Hr (D). (29)

Below we provide the error estimate for the semi-discrete scheme (25)–(27). Let E(t, x, y)
and H(t, x, y) be the analytical solution of (1)–(2) subject to the initial conditions (3) and
the PEC boundary condition (4), and Eh(t, x, y) and Hh(t, x, y) be the numerical solution

Eh(t, x, y) =
M∑

m=1

Ê
t
m,h�m( y), Hh(t, x, y) =

M∑
m=1

Ĥ
t
m,h�m( y), (30)
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where Êm,h and Ĥm,h are the mth component of Êh(t, x) and Ĥh(t, x) of (25)–(27). We
consider the errors

E − Eh = (E − EM ) + (EM − Eh), H − Hh = (H − HM ) + (HM − Hh), (31)

where EM and HM are the gPC approximations given in (13). We shall will show that the
error bound is optimal and the error grows only linearly in time.

Theorem 3 Denote the M-dimensional vectors RE and RH with kth components given by

RE
k =

∞∑
m=M+1

Aε
k,m(x)∂t Em(t, x), RH

k =
∞∑

m=M+1

Aμ
k,m(x)∂tHm(t, x), 1 ≤ k ≤ M . (32)

Then we have the optimal error estimate: for any t ∈ [0, T ],
(
E

[
‖E − Eh‖2L2(D)

])1/2 +
(
E

[
‖H − Hh‖2L2(D)

])1/2

≤ C max
0≤t≤T

( ∞∑
m=M+1

‖Em(t, x)‖2L2(D) +
∞∑

m=M+1

‖Hm(t, x)‖2L2(D)

)1/2

+CThr max
0≤t≤T

(∥∥∂t Ê∥∥2Hr (curl;D)
+ ∥∥Ê∥∥2Hr (curl;D)

+ ∥∥∂t Ĥ∥∥2Hr (D)
+ ∥∥Ĥ∥∥2Hr (D)

)1/2

+CT max
0≤t≤T

(∥∥∥A−ε/2RE
∥∥∥2
L2(D)

+
∥∥∥A−μ/2RH

∥∥∥2
L2(D)

)1/2

, (33)

where the constant C > 0 is independent of T and h.

Proof The proof is divided into twomajor parts, corresponding to bounds for the gPC approx-
imation error and the semi-discretization error, respectively.

(I) By the expansions (8) and (13), and the orthonormality condition of �n( y), we easily
see that the mean of the gPC approximation error

E

[
‖E − EM‖2L2(D)

]
:=

∫
‖E − EM‖2L2(D) ρ( y)dy

=
∫ ∫

D

∣∣∣∣∣
M∑

m=1

(Em − Êm)�m( y) +
∞∑

m=M+1

Em�m( y)

∣∣∣∣∣
2

dxρ( y)dy

=
∫
D

∫ ⎡
⎣
∣∣∣∣∣

M∑
m=1

(Em − Êm)�m( y)

∣∣∣∣∣
2

+
∣∣∣∣∣

∞∑
m=M+1

Em�m( y)

∣∣∣∣∣
2
⎤
⎦ ρ( y)dydx

=
M∑

m=1

∥∥Em(t, x) − Êm(t, x)
∥∥2
L2(D)

+
∞∑

m=M+1

‖Em(t, x)‖2L2(D) . (34)

By the same argument, we have

E

[
‖H − HM‖2L2(D)

]
=

M∑
m=1

∥∥Hm(t, x) − Ĥm(t, x)
∥∥2
L2(D)

+
∞∑

m=M+1

‖Hm(t, x)‖2L2(D) .

(35)
To investigate the error E − EM and H − HM , let us introduce Ẽ = (E1, . . . , EM )′ and
H̃ = (H1, . . . , HM )′, where Ei and H i are the coefficients in the expansion (8). From
(11)–(12), we see that Ẽ and H̃ satisfy the following equations
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Aε(x)∂t Ẽ(t, x) − ∇ × H̃(t, x) = RE , (36)

Aμ(x)∂t H̃(t, x) + ∇ × Ẽ(t, x) = RH , (37)

subject to the PEC boundary condition

n × Ẽ = 0, on ∂�, (38)

and the initial conditions

Ẽ(0, x) = Ẽ0(x), H̃(0, x) = H̃0(x), (39)

where Ẽ0(x) and H̃0(x) are the gPC expansion coefficient vectors obtained by expressing
the initial condition of (3) in the form of (8). Moreover, the kth components of RE and RH

are given by (32).
By (16)–(17) and (36)–(37), we can obtain the following error equations in theweak form:

(
Aε∂t (Ẽ − Ê), φE

)
D − (

H̃ − Ĥ,∇ × φE
)
D =

(
RE , φE

)
D

,

∀φE ∈ (
H0(curl; D)

)M
, (40)(

Aμ∂t (H̃ − Ĥ), φH
)
D + (∇ × (Ẽ − Ê), φH

)
D =

(
RH , φH

)
D

,

∀φH ∈ (
H(div; D)

)M
, (41)

subject to the PEC boundary condition

n × (Ẽ − Ê) = 0, on ∂�, (42)

and the initial conditions

(Ẽ − Ê)(0, x) = 0, (H̃ − Ĥ)(0, x) = 0. (43)

Choosing φE = 2(Ẽ − Ê)(t, x) and φH = 2(H̃ − Ĥ)(t, x) in (40) and (41), respectively,
adding the resultants together, and using the Cauchy–Schwarz inequality, we have

d

dt

(∥∥Aε/2(Ẽ − Ê)
∥∥2
L2(D)

+ ∥∥Aμ/2(H̃ − Ĥ)
∥∥2
L2(D)

)

= 2
(
RE , Ẽ − Ê

)
D

+ 2
(
RH , H̃ − Ĥ

)
D

≤ δ
(∥∥Aε/2(Ẽ − Ê)

∥∥2
L2(D)

+ ∥∥Aμ/2(H̃ − Ĥ)
∥∥2
L2(D)

)

+ 1

δ

(∥∥∥A−ε/2RE
∥∥∥2
L2(D)

+
∥∥∥A−μ/2RH

∥∥∥2
L2(D)

)
.

Integrating the above inequality from t = 0 and any t ≤ T and taking the maximum of right
hand side with respect to t ∈ [0, T ], we obtain

(∥∥Aε/2(Ẽ − Ê)
∥∥2
L2(D)

+ ∥∥Aμ/2(H̃ − Ĥ)
∥∥2
L2(D)

)
(t)

≤ δT max
0≤t≤T

(∥∥Aε/2(Ẽ − Ê)
∥∥2
L2(D)

+ ∥∥Aμ/2(H̃ − Ĥ)
∥∥2
L2(D)

)

+ T

δ
max
0≤t≤T

(∥∥∥A−ε/2RE
∥∥∥2
L2(D)

+
∥∥∥A−μ/2RH

∥∥∥2
L2(D)

)
. (44)
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Taking the maximum of left hand side with respect to t ∈ [0, T ], and choosing δ such that
δ = 1

2T , we obtain

max
0≤t≤T

(∥∥Aε/2(Ẽ − Ê)
∥∥2
L2(D)

+ ∥∥Aμ/2(H̃ − Ĥ)
∥∥2
L2(D)

)

≤ 4T 2 max
0≤t≤T

(∥∥∥A−ε/2RE
∥∥∥2
L2(D)

+
∥∥∥A−μ/2RH

∥∥∥2
L2(D)

)
, (45)

which leads to

max
0≤t≤T

(∥∥Aε/2(Ẽ − Ê)
∥∥2
L2(D)

+ ∥∥Aμ/2(H̃ − Ĥ)
∥∥2
L2(D)

)1/2

≤ CT max
0≤t≤T

(∥∥∥A−ε/2RE
∥∥∥2
L2(D)

+
∥∥∥A−μ/2RH

∥∥∥2
L2(D)

)1/2

. (46)

(II) Multiplying (16)–(17) by φE,h and φH ,h and integrating over D, we obtain(
Aε∂t Ê, φE,h

)
D − (

Ĥ,∇ × φE,h
)
D = 0, ∀ φE,h ∈ (V 0

h)
M , (47)(

Aμ∂t Ĥ, φH ,h
)
D + (∇ × Ê, φH ,h

)
D = 0, ∀ φH ,h ∈ (Uh)

M . (48)

Subtracting (25)–(26) from (47)–(48), we obtain the error equations:(
Aε∂t (Ê − Êh), φE,h

)
D − (

Ĥ − Ĥh,∇ × φE,h
)
D = 0, ∀ φE,h ∈ (V 0

h)
M , (49)(

Aμ∂t (Ĥ − Ĥh), φH ,h
)
D + (∇ × (Ê − Êh), φH ,h

)
D = 0, ∀ φH ,h ∈ (Uh)

M . (50)

Let us introduce the short notations

Ê I := 	c
h Ê, Ĥ I := 	d

h Ĥ .

Choosing φE,h = 2(Ê I − Êh) and φH ,h = 2(Ĥ I − Ĥh) in (49)–(50), respectively, we have

d

dt

(∥∥Aε/2(Ê I − Êh)
∥∥2
L2(D)

+ ∥∥Aμ/2(Ĥ I − Ĥh)
∥∥2
L2(D)

)

= 2
(
Aε∂t (Ê I − Ê), Ê I − Êh

)
D + 2

(
Ĥ − Ĥ I ,∇ × (Ê I − Êh)

)
D

+ 2
(
Aμ∂t (Ĥ I − Ĥ), Ĥ I − Ĥh

)
D − 2

(∇ × (Ê − Ê I ), Ĥ I − Ĥh
)
D

≤ Aε
max

(
1

δ

∥∥∂t (Ê I − Ê)
∥∥2
L2(D)

+ δ
∥∥Ê I − Êh

∥∥2
L2(D)

)

+ Aμ
max

(
1

δ

∥∥∂t (Ĥ I − Ĥ)
∥∥2
L2(D)

+ δ
∥∥Ĥ I − Ĥh

∥∥2
L2(D)

)

+ 1

δ

∥∥∇ × (Ê − Ê I )
∥∥2
L2(D)

+ δ
∥∥Ĥ I − Ĥh

∥∥2
L2(D)

≤ Aε
max

(
Ch2r

δ

∥∥∂t Ê∥∥2Hr (curl;D)
+ δ

∥∥Ê I − Êh
∥∥2
L2(D)

)

+ Aμ
max

(
Ch2r

δ

∥∥∂t Ĥ∥∥2Hr (D)
+ δ

∥∥Ĥ I − Ĥh
∥∥2
L2(D)

)

+ Ch2r

δ

∥∥Ê∥∥2Hr (curl;D)
+ δ

∥∥Ĥ I − Ĥh
∥∥2
L2(D)

, (51)

where we used the fact that ∇ × (Ê I − Êh) ∈ Uh , the Cauchy–Schwarz inequality, and the
interpolation and projection error estimates (28)–(29).
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Integrating (51) from t = 0 to any t ≤ T , and taking the maximum of the right hand side
with respect to t , we obtain(∥∥Aε/2(Ê I − Êh)

∥∥2
L2(D)

+ ∥∥Aμ/2(Ĥ I − Ĥh)
∥∥2
L2(D)

)
(t)

≤
(∥∥Aε/2(Ê I − Êh)

∥∥2
L2(D)

+ ‖Aμ/2(Ĥ I − Ĥh)‖2L2(D)

)
(0)

+ TCh2r

δ
max
0≤t≤T

(∥∥∂t Ê∥∥2Hr (curl;D)
+
∥∥∥∂t Ĥ‖2Hr (D) + ‖Ê

∥∥∥2
Hr (curl;D)

)

+ CδT max
0≤t≤T

(∥∥Ê I − Êh
∥∥2
L2(D)

+ ∥∥Ĥ I − Ĥh
∥∥2
L2(D)

)
. (52)

Noting that the first term on the right hand side of (52) is zero due to (27), then taking the
maximum of the left hand side with respect to t , and choosing δ such that δ = 1

2CT , we have

max
0≤t≤T

(∥∥Aε/2(Ê I − Êh)
∥∥2
L2(D)

+ ∥∥Aμ/2(Ĥ I − Ĥh)
∥∥2
L2(D)

)1/2

≤ CThr max
0≤t≤T

(∥∥∂t Ê∥∥2Hr (curl;D)
+ ∥∥∂t Ĥ∥∥2Hr (D)

+ ∥∥Ê∥∥2Hr (curl;D)

)1/2
. (53)

Using the interpolation and projection error estimates (28)–(29) and the triangle inequality,
from (53) we have

max
0≤t≤T

(∥∥Aε/2(Ê − Êh)
∥∥2
L2(D)

+ ∥∥Aμ/2(Ĥ − Ĥh)
∥∥2
L2(D)

)1/2

≤ CThr max
0≤t≤T

(∥∥∂t Ê∥∥2Hr (curl;D)
+ ∥∥Ê∥∥2Hr (curl;D)

+ ∥∥∂t Ĥ∥∥2Hr (D)
+ ∥∥Ĥ∥∥2Hr (D)

)1/2
.

(54)

(III) By the error definition (31) and the obtained error estimates (46) and (54),we conclude
the proof of (33). 
�
Remark 1 For any given small number εM > 0, under the assumption that there exists a
sufficiently large M in (13) so that

max
0≤t≤T

⎡
⎣
( ∞∑
m=M+1

‖Em(t, x)‖2L2(D) +
∞∑

m=M+1

‖Hm(t, x)‖2L2(D)

)1/2

+
(∥∥∥A−ε/2RE

∥∥∥2
L2(D)

+
∥∥∥A−μ/2RH

∥∥∥2
L2(D)

)1/2
]

≤ εM , (55)

and the solutions (Ê, Ĥ) of (16)–(17) are smooth enough and bounded above:

max
0≤t≤T

(∥∥∂t Ê∥∥2Hr (curl;D)
+ ∥∥Ê∥∥2Hr (curl;D)

+ ∥∥∂t Ĥ∥∥2Hr (D)
+ ∥∥Ĥ∥∥2Hr (D)

)1/2 ≤ C, (56)

then the optimal error estimate (33) becomes
(
E

[
‖E − Eh‖2L2(D)

])1/2 +
(
E

[
‖H − Hh‖2L2(D)

])1/2 ≤ C(T + 1)εM + CThr . (57)

Of course, rigorous conditions for our assumption (55) to hold true are unclear since they
involve dedicate regularity assumptions for the solution and the underlying polynomial basis.
Such issues have been explored for stochastic Helmholtz equation [5] and stochastic Darcy’s
equation [12].
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3.2 The Fully-Discrete Schemes

To construct a fully discrete finite element scheme, we assume that the time interval [0, T ]
is partitioned uniformly into 0 = t0 < t1 < · · · < tNt = T , where ti = iτ, i = 0, . . . , Nt ,
and τ = T

Nt
denotes the time step size. Furthermore, we introduce the following backward

difference operators: For any discrete time solution un ,

δτu
n+1 := un+1 − un

τ
, δ2τu

n+1 := δτ (δτu
n+1) = δτun+1 − δτun

τ
= un+1 − 2un + un−1

τ 2
,

δk+1
τ un+1 := δτ (δ

k
τu

n+1), k ≥ 1.

Crank–Nicolson Scheme We first consider a Crank–Nicolson scheme (Scheme 1) for
solving (16)–(17): given proper initial approximations Ĥ

0
h ∈ Uh and Ê

0
h ∈ V 0

h , for k ≥ 0

find Ê
k+1
h ∈ V 0

h and Ĥ
k+1
h ∈ Uh such that(

Aε Ê
k+1
h − Ê

k
h

τ
, φE,h

)
D

−
(
Ĥ

k+1
h + Ĥ

k
h

2
,∇ × φE,h

)
D

= 0, ∀ φE,h ∈ V 0
h, (58)

(
Aμ Ĥ

k+1
h − Ĥ

k
h

τ
, φH ,h

)
D

+
(

∇ × Ê
k+1
h + Ê

k
h

2
, φH ,h

)
D

= 0, ∀ φH ,h ∈ Uh .(59)

For the fully discrete Crank–Nicolson scheme (58)–(59), we can prove the following
energy conservation property as that given in Theorem 2 for the continuous case.

Theorem 4 For any k ≥ 0, the solution
(
Ê
k+1
h , Ĥ

k+1
h

)
of (58)–(59) satisfies the energy

identity:∥∥∥Aε/2 Ê
k+1
h

∥∥∥2
L2(D)

+
∥∥∥Aμ/2 Ĥ

k+1
h

∥∥∥2
L2(D)

=
∥∥∥Aε/2 Ê

0
h

∥∥∥2
L2(D)

+
∥∥∥Aμ/2 Ĥ

0
h

∥∥∥2
L2(D)

. (60)

Proof Choosing φE,h = τ
(
Ê
k+1
h + Ê

k
h

)
and φH ,h = τ

(
Ĥ

k+1
h + Ĥ

k
h

)
in (58) and (59),

respectively, then adding the resultants together, we obtain(∥∥∥Aε/2 Ê
k+1
h

∥∥∥2
L2(D)

−
∥∥∥Aε/2 Ê

k
h

∥∥∥2
L2(D)

)

+
(∥∥∥Aμ/2 Ĥ

k+1
h

∥∥∥2
L2(D)

−
∥∥∥Aμ/2 Ĥ

k
h

∥∥∥2
L2(D)

)
= 0, (61)

from which we conclude the proof. 
�
Leap-Frog Scheme Due to the high computational cost of the Crank–Nicolson scheme,

we now construct the following leap-frog type scheme (Scheme 2) for solving the Galerkin

system (16)–(17): given proper initial approximations Ĥ
0
h ∈ Uh and Ê

− 1
2

h ∈ V 0
h , for k ≥ 0

find Ê
k+ 1

2
h ∈ V 0

h and Ĥ
k+1
h ∈ Uh such that⎛

⎝Aε Ê
k+ 1

2
h − Ê

k− 1
2

h

τ
, φE,h

⎞
⎠

D

−
(
Ĥ

k
h,∇ × φE,h

)
D

= 0, ∀ φE,h ∈ V 0
h, (62)

(
Aμ Ĥ

k+1
h − Ĥ

k
h

τ
, φH ,h

)
D

+
(

∇ × Ê
k+ 1

2
h , φH ,h

)
D

= 0, ∀ φH ,h ∈ Uh . (63)
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Notice that the above leap-frog scheme decouples the original coupled system by first solving

for Ê
k+ 1

2
h through (62), and then solving Ĥ

k+1
h from (63). We like to remark that the leap-

frog scheme does not conserve the energy anymore due to time staggering, but the scheme
is conditionally stable as shown below.

Theorem 5 Let Cinv > 0 be the constant appearing in the standard inverse estimate

‖∇ × uh‖L2(D) ≤ Cinvh
−1‖uh‖L2(D). (64)

Then under the time step constraint

τ ≤ (εminμmin)
1/2h/Cinv, (65)

for any k ≥ 0, the solution

(
Ê
k+ 1

2
h , Ĥ

k+1
h

)
of (62)–(63) satisfies the energy stability:

∥∥∥∥Aε/2 Ê
k+ 1

2
h

∥∥∥∥
2

L2(D)

+
∥∥∥Aμ/2 Ĥ

k+1
h

∥∥∥2
L2(D)

≤ 3

[∥∥∥∥Aε/2 Ê
− 1

2
h

∥∥∥∥
2

L2(D)

+
∥∥∥Aμ/2 Ĥ

0
h

∥∥∥2
L2(D)

]
.

(66)

Proof In (62) and (63), we choose

φE,h = τ

(
Ê
k+ 1

2
h + Ê

k− 1
2

h

)
, φH ,h = τ

(
Ĥ

k+1
h + Ĥ

k
h

)
.

Then summing up the resultants, we have(∥∥∥∥Aε/2 Ê
k+ 1

2
h

∥∥∥∥
2

L2(D)

−
∥∥∥∥Aε/2 Ê

k− 1
2

h

∥∥∥∥
2

L2(D)

)
+
(∥∥∥Aμ/2 Ĥ

k+1
h

∥∥∥2
L2(D)

−
∥∥∥Aμ/2 Ĥ

k
h

∥∥∥2
L2(D)

)

= τ

(
Ĥ

k
h,∇ ×

(
Ê
k+ 1

2
h + Ê

k− 1
2

h

))
D

− τ

(
∇ × Ê

k+ 1
2

h , Ĥ
k+1
h + Ĥ

k
h

)
D

= τ

[(
Ĥ

k
h,∇ × Ê

k− 1
2

h

)
D

−
(
Ĥ

k+1
h ,∇ × Ê

k+ 1
2

h

)
D

]
. (67)

Summing up (67) from k = 0 to any k ≤ Nt , we obtain

(∥∥∥∥Aε/2 Ê
k+ 1

2
h

∥∥∥∥
2

L2(D)

+
∥∥∥Aμ/2 Ĥ

k+1
h

∥∥∥2
L2(D)

)
−
(∥∥∥∥Aε/2 Ê

− 1
2

h

∥∥∥∥
2

L2(D)

+
∥∥∥Aμ/2 Ĥ

0
h

∥∥∥2
L2(D)

)

= τ

[(
Ĥ

0
h,∇ × Ê

− 1
2

h

)
D

−
(
Ĥ

k+1
h ,∇ × Ê

k+ 1
2

h

)
D

]
. (68)

By using the Cauchy–Schwarz inequality, the inverse estimate (64), and Theorem 2, we
have

τ

(
Ĥ

k+1
h ,∇ × Ê

k+ 1
2

h

)
D

≤ τ

∥∥∥Ĥk+1
h

∥∥∥
L2(D)

Cinvh
−1
∥∥∥∥Êk+ 1

2
h

∥∥∥∥
L2(D)

≤ τμ
−1/2
min

∥∥∥Aμ/2 Ĥ
k+1
h

∥∥∥
L2(D)

Cinvh
−1ε

−1/2
min

∥∥∥∥Aε/2 Ê
k+ 1

2
h

∥∥∥∥
L2(D)

≤ τh−1Cinvε
−1/2
min μ

−1/2
min

2

(∥∥∥Aμ/2 Ĥ
k+1
h

∥∥∥2
L2(D)

+
∥∥∥∥Aε/2 Ê

k+ 1
2

h

∥∥∥∥
2

L2(D)

)
. (69)
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Similarly, we have

τ

(
Ĥ

0
h,∇ × Ê

− 1
2

h

)
D

≤ τh−1Cinvε
−1/2
min μ

−1/2
min

2

(∥∥∥Aμ/2 Ĥ
0
h

∥∥∥2
L2(D)

+
∥∥∥∥Aε/2 Ê

− 1
2

h

∥∥∥∥
2

L2(D)

)
.

(70)

The proof is completed by substituting the estimates (69) and (70) into (68), and using the
time step constraint (65). 
�

We like to remark that Cv := 1√
εminμmin

denotes the wave propagation speed in a medium

with permittivity εmin and permeabilityμmin. Hence the time constraint (65) actually becomes
τ ≤ h

CinvCv
, which is similar to the stability constraint obtained for the leap-frog scheme

developed for solving the metamaterial Drude model (cf. [20, Theorem 3.11]).
Modified Leap-Frog Scheme To further reduce the computational cost, wee consider a

more efficient scheme than both the Crank–Nicolson and leap-frog schemes. Following the
same idea as [37, Lemma 3.3], it can be proved that the matrices Aε(x) and Aμ(x) are strictly
diagonal dominant, and we can rewrite them as

Aε(x) = Dε(x) + Sε(x), Aμ(x) = Dμ(x) + Sμ(x), (71)

where Dε(x), Dμ(x) and Sε(x), Sμ(x) are the diagonal and off-diagonal parts.
By using the Taylor expansion, we can see that

2uk− 1
2 − 3uk− 3

2 + uk− 5
2

τ
= ∂t u

k + O(τ 2). (72)

Using (71) and (74), we propose the following modified leap-frog type scheme (Scheme 3)

for solving (16)–(17): given proper initial approximations Ĥ
0
h ∈ Uh and Ê

− 1
2

h ∈ V 0
h , for

k ≥ 0 find Ê
k+ 1

2
h ∈ V 0

h and Ĥ
k+1
h ∈ Uh such that

⎛
⎝Dε Ê

k+ 1
2

h − Ê
k− 1

2
h

τ
, φE,h

⎞
⎠

D

−
(
Ĥ

k
h,∇ × φE,h

)
D

+
⎛
⎝Sε 2Ê

k− 1
2

h − 3Ê
k− 3

2
h + Ê

k− 5
2

h

τ
, φE,h

⎞
⎠

D

= 0,

(
Dμ Ĥ

k+1
h − Ĥ

k
h

τ
, φH ,h

)
D

+
(

∇ × Ê
k+ 1

2
h , φH ,h

)
D

+
(
Sμ 2Ĥ

k
h − 3Ĥ

k−1
h + Ĥ

k−2
h

τ
, φH ,h

)
D

= 0

hold true for any φE,h ∈ V 0
h and φH ,h ∈ Uh .

Though we could not rigorously prove the stability of this revised leap-frog scheme at
this moment, it is a second order in time scheme and much more efficient than the leap-frog
scheme (62)–(63) as shown by our numerical results given below.

123

Author's personal copy



Journal of Scientific Computing

4 Numerical Results

In this section, we will perform some numerical tests to verify our theoretical analysis and
present some applications of random Maxwell’s equations. All our numerical experiments
are carried out on a 2017 MacBook Pro laptop with processor of 2.8GHz Intel Core i7, and
memory of 16GB 2133MHz LPDDR3.

To implement the leap-frog scheme (62)–(63) for solving (16)–(17),we assume somegiven

proper initial approximations Ĥ
0
h ∈ Uh and Ê

− 1
2

h ∈ V 0
h , then for k ≥ 0 find Ê

k+ 1
2

h ∈ V 0
h

and Ĥ
k+1
h ∈ Uh such that⎛

⎝Aε Ê
k+ 1

2
h − Ê

k− 1
2

h

τ
, φE,h

⎞
⎠

D

−
(
Ĥ

k
h,∇ × φE,h

)
D

= (
f, φE,h

)
, ∀ φE,h ∈ V 0

h,

(73)(
Aμ Ĥ

k+1
h − Ĥ

k
h

τ
, φH ,h

)
D

+
(

∇ × Ê
k+ 1

2
h , φH ,h

)
D

= (
g, φH ,h

)
, ∀ φH ,h ∈ Uh .

(74)

where f and g are added source terms to allow us to give an exact solution for testing the
convergence rate of the numerical scheme.

We partition the physical domain D into Ne = N 2
t rectangular elements with Nd edges.

By applying the finite element discretization, we assume that the coefficients in (30) have
the following form:

Ê
t
m,h =

NE∑
j=1

Ê
t
m, j,hφE, j,h(x), Ĥ

t
m,h =

NH∑
j=1

Ĥ
t
m, j,hφH , j,h(x),

where NE and NH are the number of basis functions of E and H , respectively. Hence we
obtain the algebraic equations for Eh and Hh as following:

Aε
m,n,i, j ⊗ Ek+1/2

n, j,h = Aε
m,n,i, j ⊗ Ek−1/2

n, j,h + τHk
n, j,hMi, j + τ Fk

n, j , (75)

Aμ
m,n,i, j ⊗ Hk+1

n, j,h = Aμ
m,n,i, j ⊗ Hk

n, j,h + τ Ek+1/2
n, j,h M�

i, j + τGk
n, j , (76)

where Aε
m,n,i, j and Aμ

m,n,i, j are fourth order tensors whose components are given by

Aε
m,n,i, j =

∫
D×�

ε(x, y)�m( y)�n( y)φE,i,h(x) · φE, j,h(x)ρ( y)dxd y,

Aμ
m,n,i, j =

∫
D×�

μ(x, y)�m( y)�n( y)φH ,i,h(x) · φH , j,h(x)ρ( y)dxd y,

and

Fk
n, j =

[∫
D×�

ρ( y)�n( y)f(tk , x, y) · φE, j,h(x)dxd y
]
M×NE

, 1 ≤ n ≤ M, 1 ≤ j ≤ NE ,

Gk
n, j =

[∫
D×�

ρ( y)�n( y)g(tk , x, y) · φH , j,h(x)dxd y
]
M×NH

, 1 ≤ n ≤ M, 1 ≤ j ≤ NH .
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Denote Et
n, j,h and Ht

n, j,h for the two second order tensors:

Et
n, j,h =

[
Ê
t
n, j,h

]
M×NE

, 1 ≤ n ≤ M, 1 ≤ j ≤ NE ,

Ht
n, j,h =

[
Ĥ

t
n, j,h

]
M×NH

, 1 ≤ n ≤ M, 1 ≤ j ≤ NH ,

and ⊗ for a tensor product like operator:

Aε
m,n,i, j ⊗ Et

n, j,h =
M∑

m=1

NE∑
i=1

Ê
t
n, j,h

∫
D×�

ε(x, y)�m( y)�n( y)φE,i,h(x)

· φE, j,h(x)ρ( y)dxd y,

Aμ
m,n,i, j ⊗ Ht

n, j,h =
M∑

m=1

NH∑
i=1

Ĥ
t
n, j,h

∫
D×�

μ(x, y)�m( y)�n( y)φH ,i,h(x)

· φH , j,h(x)ρ( y)dxd y,

and Mi, j for the stiffness matrix:

Mi, j =
[∫

�

φH ,i,h · ∇ × φE, j,h(x)dx
]
NH×NE

, 1 ≤ i ≤ NH , 1 ≤ j ≤ NE .

Therefore, once we have Et
n, j,h and H t

n, j,h , we can compute the numerical solutions Eh and
Hh by the following quadratic forms:

Eh(t, x, y) = (�1( y), . . . , �M ( y)) · Et
n, j,h · (φE,1,h(x), . . . , φE,NE ,h(x))�, at t = tk+1/2,

Hh(t, x, y) = (�1( y), . . . , �M ( y)) · Ht
n, j,h · (φH ,1,h(x), . . . , φH ,NH ,h(x))�, at t = tk .

4.1 Example 1: Test of Convergence and CPUTime

For simplicity, we solve the two-dimensional TEz mode equation:

ε(x, y)∂t Ex (t, x, y) = ∂y H(t, x, y) + f1(t, x, y),

ε(x, y)∂t Ey(t, x, y) = −∂x H(t, x, y) + f2(t, x, y),

μ(x, y)∂t H(t, x, y) = −(∂x Ey(t, x, y) − ∂y Ex (t, x, y)) + g(t, x, y),

subject to the PEC boundary condition (42). We solve this system on D×�×[0, T ], where
� = D = [0, 1]2 and T = 10−5. The domain D is partitioned uniformly into Ne = N 2

t
rectangular elements with a total edge number Nd , where Nt is the total time steps. We solve
the problem by using the lowest order edge element on D, hence NE = Nd and NH = Ne.
We choose the permittivity and permeability as follows:

ε(x, y) = 1 + 0.1(sin(x1) cos(y1) + cos(x2) sin(y2)),

μ(x, y) = 1 + 0.1(cos(x1) sin(y1) + sin(x2) cos(y2)),

for any x = (x1, x2) ∈ D and y = (y1, y2) ∈ �. The following exact solution is used to test
the accuracy of our numerical scheme:
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Ex (t, x, y) = sin(πx2)e
−t (1 + 0.1(sin(π y1)) cos(π y2)),

Ey(t, x, y) = sin(πx1)e
−t (1 + 0.1(cos(π y1)) sin(π y2)),

H(t, x, y) = π(cos(πx1) − cos(πx2))e
−t (1 + 0.1(sin(π y1)) sin(π y2))

with appropriate source terms f = ( f1, f2) and g = g. We use orthogonal polynomials of
degrees up to 5 and assume that y has a 2-dimensional uniform distribution on [0, 1]2. Hence,
ρ( y) = 1 for y ∈ � and our M = 21. We calculate the errors of E := (Ex , Ey) and H at
the final time T by the following norm:

‖u − uh‖2l2(L2)
:=

∫
�

ρ( y)
Ne∑
i=1

|u(xi , y) − uh(xi , y)|2|Ki |d y,

where xi is the middle point of element Ki , |Ki | is the area of element Ki , and u represents
E or H .

In our test, we let Ne = N 2
t with varying Nt . The solution errors are presented in Table 1,

which clearly shows a second order convergence for both E and H . This is consistent with
the theoretical result of leap-frog scheme [20].

To test the convergence of the gPC expansion on �, we solved the problem by using
different orders of orthogonal polynomials for E and H with a fixed Nt = 20. Observing the
error of H in Fig. 1, we can find that the error is decreasing when the degree p of the gPC
orthonormal polynomials is increasing. Note that the error stops going down further when
p ≥ 4. This is because the gPC error is so small for p ≥ 4 that the spatial and temporal error
of the scheme will dominate the total error. Therefore, in the above numerical example, we
choose p = 5 so that the gPC error will not affect the total error.

Considering that the standard leap-frog scheme (62)–(63) involves the full matrices Aε(x)

and Aμ(x), we expect that the revised leap-frog type scheme (Scheme 3) would be more

Table 1 Errors of E and H obtained by Scheme 2

Mesh ‖E − Eh‖l2(L2) Rate ‖H − Hh‖l2(L2) Rate CPU time (s)

2 × 2 8.517593e−02 – 3.259975e−01 – 13.243185

4 × 4 1.760587e−02 2.2744 8.343959e−02 1.9925 104.981369

8 × 8 4.620225e−03 2.1022 2.110498e−02 2.0072 727.997221

16 × 16 1.323839e−03 1.9953 5.162830e−03 2.0313 5630.592848

Fig. 1 The error of H vs the
degree p of gPC orthonormal
polynomials
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Table 2 Errors of E and H obtained by Scheme 3

Mesh ‖E − Eh‖l2(L2) Rate ‖H − Hh‖l2(L2) Rate CPU time (s)

2 × 2 8.517593e−02 – 3.259975e−01 – 0.893071

4 × 4 1.760587e−02 2.2744 8.343959e−02 1.9847 6.487596

8 × 8 4.520225e−03 2.1180 2.110498e−02 1.9942 44.077161

16 × 16 1.284596e−03 2.0115 5.257084e−03 2.0052 358.162832

efficient. By using this scheme, we just need to handle the diagonal matrices Dε(x) and
Dμ(x). The CPU time and errors calculated by this revised scheme are shown in Table 2,
which shows that the new scheme produces almost the same accuracy with a significant
saving of CPU time.

4.2 Example 2: Application with Random permittivity

Here we will display one numerical experiment for wave scattering problem solved by using
our method. The numerical test is done by using 1600 rectangular edge elements in the
physical domain D = [−0.5, 0.5]2. The time domain for the test is [0, 0.9] with Nt = 100.
We still choose p = 5 for the orthonormal polynomial in � since it is accurate enough as
discussed above. A similar setup as the experiment 5.2.2 of [6] is used. Namely, we solve
the scattered fields Es and Hs governed by the following equations:

ε
∂Es

∂t
= ∇ × Hs + σ Es + SE ,

μ
∂Hs

∂t
= −∇ × Es + SH ,

and the source terms SE and SH are given by

SE = −(ε − εi )
∂Ei

∂t
+ (σ − σ i )Ei ,

SH = −(μ − μi )
∂H i

∂t
.

Here the incident field (Ei , H i ) is a solution of Maxwell’s equation with permittivity εi ,
permeability μi , and conductivity σ i . More specifically, we choose

Ei
x = sin(π y) sin(π t),

Ei
y = sin(πx) sin(π t),

Hi = (cos(πx) − cos(π y)) cos(π t),

σ = σ i = 0, and

εi (x, y) =
{
2.25e0.1y if x ∈ B(0.1),

1 otherwise,

where B(r) denotes a disc located at the center of the physical domain with radius r . In other
words, εi (x, y) is a univariate function on � = [0, 1] and ρ(y) = 1.
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Fig. 2 The plot of vector field E

-0.5 0 0.5
x

-0.5

0

0.5

y

polar angle

R
C

S
 m

ea
n

5

10

15

-2 0 2 -3 -2 -1 0 1 2 3
polar angle

-15

-10

-5

0

5

10
R

C
S

 v
ar

ia
nc

e

Fig. 3 The mean and variance of the RCS

A good measurement of scattering problem is the so-called radar cross section (RCS) [3,
Sec.11.3]:

RCS(φ) = lim
r→∞ 10 ln

(
2πρ

|Es(φ)|2
|Ei |2

)
(77)

where φ ∈ [−π, π] is the polar angle. In Fig. 2 we plot the electronic field E = (Ex , Ey)

on D, and in Fig. 3 we present the mean and variance of the RCS given by (77).

5 Conclusion

In this work, we proposed the stochastic Galerkin methods for time-dependent Maxwell’s
equations with random input. It is shown that the stochastic Galerkin approach preserves the
energy conservation law. Moreover, we propose a finite element approach in the physical
space and propose three schemes to deal with the time discretizition. It is shown that the fully
discrete Crank–Nicolson scheme preserves the energy. While the classic leap-frog scheme
admits a conditional energy stability property. A modified leap-frog type scheme is designed
to further reduce the computational cost. Numerical examples are presented to support our
theoretical analysis and demonstrate the effectiveness of our algorithm in solving the wave
scattering problem.
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