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COMBINED HERMITE
SPECTRAL-FINITE DIFFERENCE METHOD

FOR THE FOKKER-PLANCK EQUATION

JOHNSON C. M. FOK, BENYU GUO, AND TAO TANG

Abstract. The convergence of a class of combined spectral-finite difference
methods using Hermite basis, applied to the Fokker-Planck equation, is stud-
ied. It is shown that the Hermite based spectral methods are convergent with
spectral accuracy in weighted Sobolev space. Numerical results indicating the
spectral convergence rate are presented. A velocity scaling factor is used in
the Hermite basis and is shown to improve the accuracy and effectiveness of
the Hermite spectral approximation, with no increase in workload. Some basic
analysis for the selection of the scaling factors is also presented.

1. Introduction

In the studies on Brownian motion we are principally concerned with the per-
petual irregular motions exhibited by small grains or particles of colloidal size im-
mersed in a fluid. The perpetual motions of the Brownian particles are maintained
by fluctuations in the collisions with the molecules of the surrounding fluid. Under
normal conditions, in a liquid, a Brownian particle will suffer about 1021 collisions
per second and this is so frequent that we cannot really speak of separate collisions.
Also, since each collision can be thought of as producing a kink in the path of
the particle, it follows that we cannot hope to follow the path in any detail. The
modern theory of the Brownian motion of a free particle (i.e., in the absence of an
external field of force) generally starts with Langevin’s equation

du
dt

= −β0u + A(t),(1.1)

where u denotes the velocity of the particle. According to this equation, the influ-
ence of the surrounding medium on the motion of the particle can be split into two
parts: first, a systematic part −β0u representing a dynamical friction experienced
by the particle and second, a fluctuating part A(t) which is a characteristic of the
Brownian motion.

In an analysis of the Brownian movement we regard as impracticable a detailed
description of the motions of the individual particles. Instead, we emphasize the
essential stochastic nature of the phenomenon and seek a description in terms of
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the probability distributions of velocity and/or position at a later time starting from
given initial distributions. The Fokker-Planck equation deals with those probabil-
ity distribution of position and velocity under quite general circumstances. For
example, let ∆t denote a time interval long compared to the periods of fluctuations
of the acceleration A(t) occurring in the Langevin equation but short compared
to intervals during which the velocity of a Brownian particle changes by appre-
ciable amounts. In this case we should expect to derive the distribution function
W (u, t+ ∆t) governing the probability of occurrence of u at time t+ ∆t from the
distribution W (u, t) at time t and a knowledge of the transition probability that
u suffers an increment ∆u in time ∆t. By expanding W (u, t ±∆t) in the form of
Taylor series and passing to the limit ∆t→ 0, we can obtain a special form of the
Fokker-Planck equation in velocity space to describe the Brownian motion of a free
particle:

∂W

∂t
= β0divu(uW ) + β0q

2∇2
uW(1.2)

where q is a positive constant called thermal velocity. Equation (1.2) is one of the
simplest Fokker-Planck equations. By solving (1.2) starting with W (u, 0) for t = 0
and subject to the appropriate boundary conditions, one obtains the distribution
function W (u, t) for all later times. Once we have found W (u, t), any averaged
value of the velocity can be calculated based on simple integrations. The derivations
for (1.2) and more general forms of the Fokker-Planck equations can be found in
Chandrasekhar [13] and Risken [35]. The Fokker-Planck equation is now used in a
number of different fields in natural science, such as solid-state physics, quantum
optics, chemical physics, theoretical biology and circuit theory. The theoretical
analysis for the Fokker-Planck equation can be also found in many literatures (see,
e.g., Diperna and Lions [15] and Perthame [34]).

Over the past decades it has turned out that the Fokker-Planck equation provides
a powerful tool with which the effects of fluctuations close to transition points can
be adequately treated and that the approaches based on the Fokker-Planck equa-
tion are superior to other approaches, e.g., based on Langevin equations (1.1) (see,
e.g., [25, 35]). Quite generally, the Fokker-Planck equation plays an important role
in problems which involve noise, e.g., in electrical circuits. Various methods of
solutions for the Fokker-Planck equation have been proposed, including transfor-
mation to Schrodinger equations, WKB methods, and matrix continued-fraction
methods (see, e.g., Chapters 5 and 6 of [35]). Although analytic solutions of the
Fokker-Planck equations can be found in some special cases, in general it is difficult
to obtain them especially if separation of variables is impossible or if boundary
values are prescribed. In general cases, numerical methods have become important
in obtaining the approximate solutions of the Fokker-Planck equation. One class
of works to solve the Fokker-Planck equation analytically is based on a proposal
by Brinkman to expand the velocity part of the probability distribution function in
Hermite functions [7]. Recursion relations for the position and time-dependent ex-
pansion coefficients follow from the recursion relations for Hermite polynomials and
eigensolutions of the Fokker-Planck equation are sought. His approach has become
one of the most popular methods used for solving the Fokker-Planck equation, not
only for the Cauchy problems (for which some analytical solutions can be obtained)
but also for the initial-boundary value problems (for which analytical solutions are
in general unavailable).
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Motivated by the work of Brinkman, a class of numerical methods have been
proposed to solve the Fokker-Planck equation by using the Hermite functions in
velocity as spectral basis (see, e.g., Boyd [4, 5] and Tang et al. [39, 40]). To
better illustrate the ideas of the methods, we will consider only a special class of
the Fokker-Planck equation, namely, the Kramers equation [28]. The numerical
and analysis techniques used in this work can be easily extended to other types
of the Fokker-Planck equations. The Kramers equation is an equation of motion
for distribution functions in position and velocity space describing the Brownian
motion of particles in an external field. In the one-dimensional case it has the form,
W = W (x, v, t),

∂W

∂t
= −v ∂W

∂x
+ β1

∂(vW )
∂v

− F1(x)
m

∂W

∂v
+
β1kT

m

∂2W

∂2v
.(1.3)

Here W is the probability density, β1 is the damping constant (τ = 1/β1 is the
relaxation time), m is the mass of the particle, T is the temperature of the fluid,
k is the Boltzmann’s constant, and F1(x) = −mf ′(x) is the external force where
mf(x) is the potential. For Brownian motion of particles, whose probability density
W in phase space is a solution of the Fokker-Planck equation (1.3), the boundary
conditions become complicated. For one-dimensional boundary value problems, it
will not be well-posed if we propose boundary conditions on the left and right walls
x = xmin, x = xmax and |v| < ∞. To see this, we consider the case that there are
absorbing walls at the left- and right-hand sides of the domain xmin ≤ x ≤ xmax.
In this case, at the left side of the domain x = xmin we require that the probability
current in x-direction must vanish for those particles leaving the wall into the
domain, i.e., for the particles with positive velocities. Therefore, we must require
that the probability density for positive velocities is zero at x = xmin,

W (xmin, v, t) = 0, for v > 0.(1.4)

Similarly, since we have an absorbing wall at x = xmax, we have

W (xmax, v, t) = 0, for v < 0.(1.5)

Kramers was able to derive rate expressions for various ranges of the damping con-
stant β1. For a piecewise parabolic potential, Blomberg [8] derived an analytical
solution for strong damping in terms of parabolic cylinder functions and a numeri-
cal scheme useful towards weaker damping based on a truncated expansion in the
same functions. Voigtlaender and Risken [44, 45] have performed extensive studies
of other potentials by a method of matrix continued fractions. Burschka and Titu-
later [9, 10] calculated probability densities for the equation (1.3) with the absorbing
boundary conditions (1.4)–(1.5). Several numerical methods, such as finite differ-
ence methods [12], Galerkin method [33] and mixed Hermite spectral-finite differ-
ence method [14, 40] have also been developed to solve the Fokker-Planck problems.
Tang et al. [40] developed a mixed Hermite spectral-finite difference method, i.e.,
the Hermite spectral approximation in the velocity direction and finite-difference
in the x-direction, for solving the Fokker-Planck equation with finite boundaries
in space. The advantages for using Hermite basis in velocity are the following: (i)
they form a complete system; (ii) they have correct natural boundary conditions
in velocity space −∞ < v < ∞; and (iii) they lead to the tridiagonal structure
of the coupling system. Spectral methods based on Hermite functions have been
implemented before but were dismissed because of their poor resolution properties
[19, 18]. However, recent works of Tang [39] and Holloway et al. [26, 36] suggest
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that with proper selection of the scaling factors the Hermite basis can be quite
competitive when modeling functions with Gaussian-shaped profiles. In solving
the Vlasov equations [18, 27], it was found that without careful velocity scaling of
the Hermite functions, spectral expansions with 500 to 1500 Hermite modes are
required to achieve only moderate accuracy levels. For plasma kinetics simulation,
a recent paper by Schumer and Holloway [36] indicates that the Hermite based
spectral methods are very efficient and extremely stable when velocity scaling and
symmetric weighting are used.

While the Legendre- and Chebyshev-spectral approximations for PDEs in
bounded domains have achieved great success and popularity in recent years (see,
e.g., [3, 11, 16, 19]), spectral approximations for PDEs in unbounded domains have
received only limited attention. Some earlier works on the convergence analysis
of spectral methods in unbounded domains have been given by Funaro and Ka-
vian [17], Guo [23] (on Hermite spectral approximations); by Mavriplis [32], Shen
[37] (on Laguerre approximations); by Boyd [6], Grosch and Orszag [20] (on ratio-
nal polynomial approximations). Although Hermite-spectral approximations have
been used successfully in approximating the solutions to the Fokker-Planck equa-
tions (and also the Vlasov equations), there has been little convergence analysis for
these numerical schemes. The main objective of this work is to provide a rigorous
theoretical analysis for this class of spectral methods. For ease of notation, we con-
sider the following normalized form of the Fokker-Planck equation with boundary
and initial conditions:

∂W

∂t
+ v

∂W

∂x
− β ∂

∂v
(vW ) + F (x)

∂W

∂v
− βµ∂

2W

∂v2
= 0, |x| < Y, |v| <∞, t > 0,

W (−Y, v, t) = bL(v, t) for v ≥ 0, t > 0,

W (Y, v, t) = bR(v, t) for v ≤ 0, t > 0,

W (x, v, 0) = w(x, v) |x| ≤ Y, |v| <∞ .

(1.6)

Since problem (1.6) is hyperbolic-like in the x-direction, we will adopt the upwinding
approximations for the term involving ∂xW . Three types of combined Hermite
spectral-upwinding difference schemes for (1.6) will be constructed and analyzed.
Roughly speaking, the main result of this paper is the following: If the solutions
of (1.6) decay exponentially to zero as |v| → ∞, then the error between the exact
solution W and the mixed spectral-difference solution satisfies

‖Error‖ = O(∆tα + ∆x) +O(N−γ)(1.7)

where ∆t and ∆x are stepsizes in the time- and x-directions respectively, N is the
number of the basis functions used in the v-direction, α = 1 or 2 depending on the
order of the truncation errors associated with the finite difference approximations
in time, and γ > 0 is a large number depending on the regularity of the exact
solution of (1.6). In order to obtain the first part of the error bounds O(∆tα+∆x),
we will do the following:

• Use the energy-type methods to deal with the hyperbolic system induced by
the spectral approximation in velocity:

∂f
∂t

+A
∂f
∂x

= Bf + G .
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With the classical energy analysis, we can show that the errors for suitable
numerical approximations should be bounded by the truncation error times
e‖B‖∗t with ‖B‖∗ being some norm of B. The problem is that the norm
for B may be proportional to N , the number of expansion terms for the
spectral expansions. As a consequence, the classical results may not be applied
directly. Instead some special treatment for the matrix B should be employed
in order to obtain appropriate energy estimates.
• Use some new estimates developed in the next section to bound the coefficients

of the Hermite expansions. In order to estimate the spectral convergence rate,
one of the key ingredients is the use of the approximation theory results of
Lubinsky et al. [29, 30].

The contents of this paper are organized as follows. In Section 2, we establish
some results on the Hermite approximation. In Section 3, we consider several dis-
crete hyperbolic systems and the properties of their solutions. Results in these two
sections will play important roles in the error analysis. Then we construct the com-
bined Hermite spectral-upwinding difference schemes and prove their convergence
rates in Section 4. Numerical experiments are carried out in Section 5, which are
used to verify the theoretical results obtained in Section 4. Some discussions on
the selections of the scaling factors in Hermite functions are also included in this
section. We point out that the theoretical results on the Hermite approximation
and some techniques developed in this paper are also useful for analyzing other
problems in unbounded domains.

2. Some results on Hermite approximation

Based on the choice of the weight function ω(v) there exist several kinds of
Hermite approximations. The first one is to use the standard Hermite polynomials
as the base functions (see Szegö [38], Gottlieb and Orszag [19], Canuto et al. [11],
Bernardi and Maday [3], and Guo [22]). In this case, ω(v) = e−v

2
. Recently,

Guo [23] established some approximation results in the corresponding weighted
Sobolev space, which were successfully used in the analysis of the Hermite spectral
method for some nonlinear problems. Funaro and Kavian employed the Hermite
functions as the basis functions with the weight function ω(v) = ev

2/4. They
also derived some approximation results important in the analysis of the related
Hermite spectral method for differential equations. Tang et al. [39] and Tang
[40] considered orthogonal systems with the weight functions ω(v) = eα

2v2
and

ω(v) ≡ 1, respectively. The orthogonal systems have been used for numerical
simulations on certain differential equations. In general, the choice of ω(v) depends
on the asymptotic behaviour of the solutions of the considered problems. In many
problems arising in quantum mechanics and statistical physics, the solutions decay
exponentially as |v| → ∞. In this case, it is reasonable to take the basis functions
as those used in Funaro and Kavian [17], or as in Tang et al. [40].

In this paper, we will confine our work to the case ω(v) = eα
2v2

with α > 0. We
begin by introducing some notation. Let

L2
ω(R) =

{
u |u is measurable and ‖u‖ω,R <∞

}
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be equipped with the norm

‖u‖ω,R =
(∫

R

u2(v)ω(v)dv
) 1

2

.

The associated inner product is

(u,w)ω,R =
∫

R

u(v)w(v)ω(v)dv.

For any nonnegative integer m,

Hm
ω (R) =

{
u
∣∣∣ dku
dvk
∈ L2

ω(R), 0 ≤ k ≤ m
}

with the following semi-norm and norm,

|u|m,ω,R =
∥∥∥∥∂mu∂vm

∥∥∥∥
ω,R

, ‖u‖m,ω,R =

(
m∑
k=0

|u|2k,ω,R

) 1
2

.

In particular, ‖u‖0,ω,R = ‖u‖ω,R. Moreover, for any r > 0, we define the space
Hr
ω(R) and its norm ‖u‖r,ω,R by space interpolation as in Adams [2].
Now let Hn(v) be the Hermite polynomial of degree n,

Hn(v) = (−1)nev
2 dn

dvn
(e−v

2
).(2.8)

The generalized Hermite function H̃n(v) is given by

H̃n(v) = dnHn(αv)e−α
2v2
, α > 0, n ≥ 0,(2.9)

where dn = 1/
√

2nn! . The function H̃n(v) is the n-th eigenfunction of the following
singular Liouville problem:

d

dv

(
e−α

2v2 d

dv

(
eα

2v2
u(v)

))
+ λu(v) = 0, v ∈ R.(2.10)

The corresponding eigenvalues are λn = 2α2n. It can be shown that, for all n ≥ 0,

αvH̃n(v) =

√
n+ 1

2
H̃n+1(v) +

√
n

2
H̃n−1(v),

dH̃n(v)
dv

= −α
√

2(n+ 1)H̃n+1(v),

v
dH̃(v)
dv

= −
√

(n+ 1)(n+ 2)H̃n+2(v)− (n+ 1)H̃n(v),

d2H̃n(v)
dv2

= 2α2
√

(n+ 1)(n+ 2)H̃n+2(v),

(2.11)

where H̃j(v) ≡ 0 for j < 0. The set of functions H̃n(v) is the L2
ω(R)-orthogonal

system, namely, ∫
R

H̃m(v)H̃n(v)ω(v)dv =
√
π

α
δm,n(2.12)

where δm,n is the Kronecker delta. By the second recurrence relation in (2.11), the
set of derivatives for H̃n(v) is also an orthogonal system, i.e.,∫

R

dH̃m(v)
dv

dH̃n(v)
dv

ω(v)dv = 2α(n+ 1)
√
πδm,n.(2.13)
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For any u ∈ L2
ω(R), we can expand u in the following form:

u(v) =
∞∑
n=0

ûnH̃n(v)(2.14)

with the Hermite coefficients

ûn =
α√
π

∫
R

u(v)H̃n(v)ω(v)dv, n ≥ 0.

We now turn to the approximation theory of the Hermite approximation. Let N be
any positive integer and PN be the set of polynomials of degree at most N . Define

VN :=
{
q(v)e−α

2v2
∣∣∣ q(v) ∈ PN

}
.(2.15)

To analyze the spectral convergence property for the Hermite spectral method, the
following inverse inequalities and imbedding inequalities are needed.

Lemma 2.1. For any φ ∈ VN ,

|φ|1,ω,R ≤ α
√

2(N + 1)‖φ‖ω,R .

Proof. Clearly φ ∈ L2
ω(R). Since φ ∈ VN , there exist coefficients φ̂n such that

φ(v) =
N∑
n=0

φ̂nH̃n(v).

This, together with (2.12)–(2.13), yields

|φ|21,ω,R = 2α
√
π

N∑
n=0

(n+ 1)φ̂2
n ≤ 2α

√
π(N + 1)

N∑
n=0

φ̂2
n = 2α2(N + 1)‖φ‖2ω,R

which implies the desired result.

Lemma 2.2. For any u ∈ H1
ω(R),

‖u‖ω,R ≤
√

2
α
|u|1,ω,R ,

‖vu‖ω,R ≤ 1
α2
|u|1,ω,R .

Proof. Since u ∈ H1
ω(R), u(v)ω1/2(v)→ 0 as |v| → ∞. By integration by parts,∣∣∣∣∫

R

vu2(v)ω(v)dv
∣∣∣∣ =

1
2α2

∣∣∣∣∫
R

u2(v)dω(v)
∣∣∣∣

=
1
α2

∣∣∣∣∫
R

u(v)
du(v)
dv

ω(v)dv
∣∣∣∣ ≤ 1

α2
‖u‖ω,R|u|1,ω,R.(2.16)

The boundedness of the last term implies that vu2(v)ω(v) → 0 as |v| → ∞. As a
result, using integration by parts gives

‖vu‖2ω,R =
1

2α2

∫
R

vu2(v)dω(v)

= − 1
2α2

∫
R

u2(v)ω(v)dv − 1
α2

∫
R

vu(v)
du(v)
dv

ω(v)dv,

whence
‖vu‖2ω,R +

1
2α2
‖u‖2ω,R ≤

1
α2
‖vu‖ω,R|u|1,ω,R.

Then the desired results follow from the above inequality and (2.16).
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Lemma 2.3. For any u ∈ H1
ω(R) and all v ∈ R,

|u(v)| ≤
√

2e−α|v|‖u‖1,ω,R.

Proof. By Lemma 2.2,

u2(v)eα
2v2

=
∫ v

−∞

d

dv

(
u2(v)eα

2v2
)
dv

= 2
∫ v

−∞
u
du

dv
eα

2v2
dv + 2α2

∫ v

−∞
vu2eα

2v2
dv

≤ ‖u‖21,ω,R + α4‖vu‖2ω,R + ‖u‖2ω,R
≤ 2‖u‖21,ω,R .

This completes the proof of this lemma.

Next we consider the orthogonal projections. The L2
ω(R)-orthogonal projection

PN : L2
ω(R)→ VN is a mapping such that, for any u ∈ L2

ω(R),

(u− PNu, φ)ω,R = 0, ∀φ ∈ VN .
Equivalently,

PNu(v) =
N∑
n=0

ûnH̃n(v).

We also introduce the operator A as

Au(v) = − d

dv

(
e−α

2v2 d

dv

(
u(v)eα

2v2
))

.(2.17)

It follows from Lemma 2.2 that A is a continuous mapping from H2
ω(R) to L2

ω(R).
Let c be a generic positive constant independent of N , which may be different in
different places.

Theorem 2.1. For any u ∈ Hr
ω(R) and r ≥ 0,

‖u− PNu‖ω,R ≤ c(α2N)−
r
2 ‖u‖r,ω,R.(2.18)

Proof. It follows from the orthogonal relation (2.12) and the Hermite expansion
(2.14) that

‖u− PNu‖2ω,R =
√
π

α

∞∑
n=N+1

û2
N .(2.19)

We first consider any even integer r. Then by the singular Liouville equation (2.10)
and integration by parts,∫

R

u(v)H̃n(v)ω(v)dv =
1

2α2n

∫
R

AH̃n(v)u(v)ω(v)dv

= − 1
2α2n

∫
R

d

dv

(
u(v)ω(v)

) d
dv

(
H̃n(v)ω(v)

)
ω−1(v)dv

=
1

2α2n

∫
R

Au(v)H̃n(v)ω(v)dv

= · · ·
= (2α2n)−

r
2

∫
R

A
r
2 u(v)H̃n(v)ω(v)dv.(2.20)
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Consequently

|ûn| =
α√
π

(2α2n)−
r
2

∣∣∣∣∫
R

A
r
2 u(v)H̃n(v)ω(v)dv

∣∣∣∣ .(2.21)

Furthermore

‖v − PNv‖2ω,R ≤ c(α2n)−r
∞∑

n=N+1

∣∣∣∣∫
R

A
r
2 u(v)H̃n(v)ω(v)dv

∣∣∣∣
≤ c(α2n)−r‖A r

2u‖2ω,R ≤ c(α2n)−r‖u‖2r,ω,R .(2.22)

Next, let r be any odd integer. Using Liouville equation (2.10) and arguments
similar to above gives∫

R

u(v)H̃n(v)ω(v)dv = (2α2n)−
r−1

2

∫
R

A
r−1

2 u(v)H̃n(v)ω(v)dv

= −(2α2n)−
r+1

2

∫
R

d

dv

(
A
r−1

2 u(v)ω(v)
) d
dv

(
H̃n(v)ω(v)

)
ω−1(v)dv .

(2.23)

By virtue of the first two recurrence equations in (2.11), we have

ω(v)−1 d

dv
(H̃n(v)ω(v)) = 2α2vH̃n(v)− α

√
2(n+ 1)H̃n+1(v)

= α
√

2nH̃n−1(v),

ω(v)−1 d

dv

(
A
r−1

2 u(v)ω(v)
)

=
d

dv
A
r−1

2 u(v) + 2α2vA
r−1

2 u(v) .(2.24)

Substituting the above two results into (2.23) and using Lemma 2.2 leads to the
same result as (2.22) for the case that r is odd. Therefore, we have proved the
inequality (2.18) when r is an integer. The inequality (2.18) can be established for
any r ≥ 0 by using space interpolation.

Theorem 2.2. For any u ∈ Hr
ω(R) and 0 ≤ µ ≤ r,

‖u− PNu‖µ,ω,R ≤ c(α2N)
µ
2−

r
2 ‖u‖r,ω,R.

Proof. By space interpolation, we only have to use induction to prove the conclusion
for any integer µ. Obviously Theorem 2.1 implies the desired result with µ = 0.
Now assume it is true for µ− 1, which yields

∥∥∥∥dudv − PN dudv
∥∥∥∥
µ−1,ω,R

≤ c(α2N)
µ−r

2

∥∥∥∥dudv
∥∥∥∥
r−1,ω,R

≤ c(α2N)
µ−r

2 ‖u‖r,ω,R.

(2.25)

It follows from the triangular inequality that

‖u− PNu‖µ,ω,R ≤
∥∥∥∥dudv − PN dudv

∥∥∥∥
µ−1,ω,R

+
∥∥∥∥PN dudv − d

dv
(PNu)

∥∥∥∥
µ−1,ω,R

+ ‖u− PNu‖ω,R.(2.26)
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Using the second equation of (2.11) gives

PN
du

dv
(v) = −α

N∑
n=1

√
2nûn−1H̃n(v),

d

dv
(PNu(v)) = −α

N+1∑
n=1

√
2nûn−1H̃n(v) .

As a consequence,

PN
du

dv
(v)− d

dv
(PNu(v)) = α

√
2(N + 1)ûNH̃N+1(v).(2.27)

Next, using Theorem 2.1 yields

√
π

α
|ûN |2 ≤

√
π

α

∞∑
n=N

|ûN |2 ≤ ‖u− PN−1u‖2ω,R ≤ c(α2N)−r‖u‖2r,ω,R.

(2.28)

Moreover, it follows from Lemma 2.1 and (2.12) that

‖H̃N+1‖2µ−1,ω,R ≤ c(α2N)µ−1‖H̃N+1‖2ω,R ≤
c

α
(α2N)µ−1.(2.29)

Combining the results (2.27)–(2.29) leads to∥∥∥∥PN dudv − d

dv
(PNu)

∥∥∥∥2

µ−1,ω,R

≤ c(α2N)µ−r‖u‖2r,ω,R.(2.30)

By inserting (2.25) and (2.30) into (2.26), and also by applying Theorem 2.1 to the
last term of (2.26), we complete procedure for the induction.

In order to obtain the optimal error estimation of Hermite approximation to
differential equations, we often need to compare the numerical solutions with the
Hn
ω (R)-orthogonal projections of the exact solutions. The Hm

ω (R)-orthogonal pro-
jection PmN : Hm

ω (R)→ VN is a mapping such that, for any u ∈ H1
ω(R),(

dm

dvm
(u− P 1

Nu),
dm

dvm
φ

)
ω,R

= 0, ∀φ ∈ VN .(2.31)

Now, let m = 1 and assume that

P 1
Nu(v) =

N∑
n=0

anH̃n(v) .

By the second equation of (2.11),

d

dv
P 1
Nu(v) = −α

N∑
n=0

√
2(n+ 1)anH̃n+1(v) .

Similarly
d

dv
u(v) = −α

∞∑
n=0

√
2(n+ 1)ûnH̃n+1(v).

By substituting the above two equalities into (2.31) and taking φ = H̃n(v), 0 ≤
n ≤ N , we know from the second equation of (2.11) and (2.12) that an = ûn for all
0 ≤ n ≤ N . It means that P 1

N is exactly the same as PN . It is also true for PmN . So it
suffices to compare the numerical solutions with the L2

ω(R)-orthogonal projections
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of the exact solutions in the numerical analysis of Hermite spectral approximation
to differential equations of any order. This feature is one of advantages of the
Hermite function (2.9).

Remark 2.1. If α = 1
2 , then the H̃n(v) becomes the Hermite function as discussed

in Funaro and Kavian [17]. Theorem 2.1 generalizes the corresponding results in
[17], while other results in this section are new, which make the use of the method
of Funaro and Kavian possible for more general problems.

3. Some results on discrete hyperbolic systems

In this section, we investigate some discrete hyperbolic systems arising in the
combined Hermite spectral-upwinding difference schemes for (1.6). Without loss
of generality, we assume that the solution interval in x is [−1, 1], i.e., Y = 1 in
(1.6). To begin with, we introduce some notation useful in our error analysis. Let
I = (−1, 1) and h = 1/M , with M a fixed positive integer. Let

Ih =
{
x = jh

∣∣∣ −M + 1 ≤ j ≤M − 1
}

and Īh = Ih ∪ {−1, 1}.

For any scalar functions u,w ∈ C(Ī), the discrete inner product and the discrete
norm are defined by

(u,w)h = h
∑
x∈Ih

u(x)v(x), ‖u‖h = (u, u)
1
2
h .

For any vector functions u = [u0, . . . , uN ]T and w = [w0, . . . , wN ]T

(u,w)h = h
∑
x∈Ih

uT (x)w(x), ‖u‖h = (u,u)
1
2
h .

Next, let τ be the mesh size of the variable t,

Qτ =
{
t = kτ

∣∣∣ 1 ≤ k ≤
[T
τ

]}
and Q̄τ = Qτ ∪ {0}.

We shall use the following notation:

∆xu(x, t) =
1
h

(u(x+ h, t)− u(x, t)), ∇xu(x, t) = ∆xu(x− h, t),

∆tu(x, t) =
1
τ

(u(x, t+ τ) − u(x, t)), ∇tu(x, t) = ∆tu(x, t − τ),

ū(x, t) =
1
2

(u(x, t) + u(x, t + τ)),(3.32)

where the first four represent the usual forward or backward difference quotients,
and the last one is the average in time. Let λn be (N + 1) distinct real numbers,
arranged as

λ0 < λ1 < · · · < λq < 0 < λq+1 < · · · < λN .

We then split the diagonal matrix Λ = diag(λ0, λ1, · · · , λN ) into the positive and
nagative parts respectively, i.e., Λ = Λ+ + Λ−, where

Λ± = diag
(
λ±0 , λ

±
1 , · · · , λ±N

)
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with λ+ = max(λ, 0) and λ− = min(λ, 0). We also denote D1 and D2 as the
following constant matrices:

D1 = diag[1, . . . , 1,︸ ︷︷ ︸
q+1

0, . . . , 0], D2 = diag[0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
N−q

].
(3.33)

The main purpose of this section is to provide an energy-type analysis for the
numerical approximations of the hyperbolic system of the following type:

∂f
∂t

+A
∂f
∂x

= Bf + G .(3.34)

In dealing with the above equation, the matrix B requires some special attention
since the matrix norm of B may be dependent of N , the number of terms for the
Hermite spectral expansion. We make two assumptions on B:
• (H1): The 2-norm of the coefficient matrix B is uniformly bounded with

respect to N . Namely, there exists a constant C1, independent of N , such
that for any vector u ∈ R(N+1)

(u, Bu)h ≤ C1‖u‖2h .
• (H2): The 2-norm of the coefficient matrix B is not uniformly bounded

with respect to N , but instead there exist a constant C2, independent of N ,
and a constant dN , such that for any vectors u,v ∈ R(N+1)

(u, (dNI +B)v)h ≤
dN
2

(
‖u‖2h + ‖v‖2h

)
+ C2

(
‖u‖2h + ‖v‖2h

)
.

For implicit schemes below, it can be verified that the assumption (H1) is satisfied,
i.e., the standard 2-norm of the matrix B is bounded. However, for an explicit
scheme, the 2-norm of the matrix B is no longer bounded, which gives some dif-
ficulties in the energy-method analysis. This is the reason that we propose the
assumption (H2). It will be verified in next section that the matrix B associated
with the explicit scheme satisfies the assumption (H2).

3.1. Implicit scheme I. Let f(x, t) be a vector function with the components
fn(x, t), 0 ≤ n ≤ N , defined on Īh × Q̄τ . The first discrete hyperbolic system is as
follows:


∆tf(x, t) +

1
α

Λ−∆xf̄ (x, t) +
1
α

Λ+∇xf̄(x, t) = B(x)f̄ (x, t) + Ḡ(x, t),

x ∈ Ih, t ∈ Q̄τ ,
D1f(1, t) = g1(t), D2f(−1, t) = g2(t), t ∈ Qτ ,
f(x, 0) = f0(x), x ∈ Īh,

(3.35)

where α > 0 is a positive constant, B(x) is a given matrix dependent on x, G(x, t)
is a given source term, f̄ and Ḡ are the averages defined by (3.32), and g1(t) and
g2(t) are given vector functions with the following form:

g1(t) = [g1,0, . . . , g1,q, 0, . . . , 0]T ,

g2(t) = [0, . . . , 0, g2,q+1, . . . , g2,N ]T .

Clearly (3.35) is only a usual upwinding scheme which is implicit in time. There are
many existing results concerning the continuous dependence of ‖f(t)‖h on ‖B‖h,
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‖G(t)‖h, ‖g1(t)‖h, ‖g2(t)‖h and ‖f0(t)‖h (see, e.g., Thomée [42] and Guo [21]). It
is easy to establish the following result.

Theorem 3.1. Let f(x, t) be the solution of (3.35) and time step τ be sufficiently
small. If the matrix B satisfies the assumption (H1), then, for all t ∈ Q̄τ ,

‖f(t)‖2h ≤ cectGh,τ (t),

where c is a positive constant independent of h, τ and N , and Gh,τ (t) is defined by

Gh,τ (t) = ‖f0‖2h +
∑
η∈Q̄τ
η≤t

(
‖G(η)‖2h + ‖Λ−g1(η)‖2 + ‖Λ+g2(η)‖2

)
.

(3.36)

3.2. Implicit scheme II. The second finite-difference system to be considered is
of the following form:


∇tf(x, t) +

1
α

Λ−∆xf(x, t) +
1
α

Λ+∇xf(x, t) = B(x)f(x, t) + G(x, t),

x ∈ Ih, t ∈ Qτ ,
D1f(1, t) = g1(t), D2f(−1, t) = g2(t), t ∈ Qτ ,
f(x, 0) = f0(x), x ∈ Īh.

(3.37)

In other words, this is a finite difference approximation with backward Euler in
time and upwinding in space. Again with the standard energy estimates we have
the following result.

Theorem 3.2. Let f(x, t) be the solution of (3.37) and time step τ be sufficiently
small. If the matrix B satisfies the assumption (H1), then for all t ∈ Q̄τ

‖f(t)‖2h ≤ cectGh,τ (t)

where Gh,τ is defined by (3.36).

3.3. Explicit scheme. In this subsection we consider the following explicit system


∆tf(x, t) +

1
α

Λ−∆xf(x, t) +
1
α

Λ+∇xf(x, t) = B(x)f(x, t) + G(x, t),

x ∈ Ih, t ∈ Q̄τ ,
D1f(1, t) = g1(t), D2f(−1, t) = g2(t), t ∈ Qτ ,
f(x, 0) = f0(x), x ∈ Īh.

(3.38)

This is the standard forward Euler approximation in time and upwinding in space.
For any (x, t) ∈ Ih × Q̄τ , it follows from (3.38) that

f(x, t+ τ) = − τ

αh
Λ−f(x+ h, t) +

(
I +

τ

αh
Λ− − τ

αh
Λ+ + τB

)
f(x, t)

+
τ

hα
Λ+f(x− h, t) + τG(x, t) .(3.39)

Assume that (H2) is satisfied. Then there exist dN and C2 such that(
f(t+ τ), (dN I +B)f(t)

)
h

≤ dN
2

(
‖f(t+ τ)‖2h + ‖f(t)‖2h

)
+ C2

(
‖f(t+ τ)‖2h + ‖f(t)‖2h

)
.(3.40)



1510 J. C. M. FOK, B. GUO, AND T. TANG

If we further assume that the generalized CFL condition
τ

αh
max

0≤j≤N
|λj |+ τdN ≤ 1(3.41)

is satisfied, then we have(
f(t+ τ), (I +

τ

αh
Λ− − τ

αh
Λ+ − τdN I)f(t)

)
h

≤ 1
2

(
f(t+ τ), (I +

τ

αh
Λ− − τ

αh
Λ+ − τdN I)f(t+ τ)

)
h

+
1
2

(
f(t), (I +

τ

αh
Λ− − τ

αh
Λ+ − τdN I)f(t)

)
h
.(3.42)

It is also observed that

−
(
f(t+ τ),Λ−f(• + h, t)

)
h

≤ −1
2

(
f(t+ τ),Λ−f(t+ τ)

)
h
− 1

2

(
f(t),Λ−f(t)

)
h

+ h‖Λ−ḡ1(t)‖2 ,(3.43) (
f(t+ τ),Λ+f(• − h, t)

)
h

≤ 1
2

(
f(t+ τ),Λ+f(t+ τ)

)
h

+
1
2

(
f(t),Λ+f(t)

)
h

+ h‖Λ+ḡ2(t)‖2 .(3.44)

Take the discrete inner product for (3.39) by multiplying it with f(x, t + τ). Then
by using (3.40), together with the estimates (3.42)–(3.44) we obtain

‖f(t+ τ)‖2h ≤
(

1
2

+ C2τ +
τ

2

)
‖f(t+ τ)‖2h +

(
1
2

+ C2τ

)
‖f(t)‖2h

+
τ

2
‖G(t)‖2h +

τ

α

(
‖Λ−g1(t)‖2h + ‖Λ+g2(t)‖2h

)
.

We obtain the following result from the above Gronwall type inequality.

Theorem 3.3. Assume that (H2) and the generalized CFL condition (3.41) are
satisfied. Then for all t ∈ Q̄τ

‖f(t)‖2h ≤ cectGh,τ (t)

where Gh,τ is defined by (3.36).

Remark 3.1. If λ0 < λ1 < · · · < λq−1 < λq = 0 < λq+1 < · · · < λN , then
by slightly modifying the definitions of D1, D2,g1 and g2, we can recover all the
results obtained in this section.

4. The Hermite spectral-finite difference schemes

In this section, we consider the Hermite spectral-finite difference schemes for
(1.6) and their error analysis. We begin by introducing some notation. Let ∂t =
∂
∂t , ∂x = ∂

∂x and

V m,rω = Cm
(
I;Hr

ω(R)
)

with norm ‖u(•, •, t)‖m,r,ω = max
0≤k≤m

max
x∈I
‖∂kxu(x, •, t)‖r,ω,R .

(4.1)
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We further define

‖u‖p,m,r,ω = max
0≤k≤p

max
0≤t≤T

‖∂kt u(•, •, t)‖m,r,ω,

‖u‖∆,r,ω = max
0≤t≤T

(
h
∑
x∈Ih

‖u(x, •, t)‖2r,ω
) 1

2
.

(4.2)

For W ∈ L2
ω(R), we can expand it in Hermite functions

W (x, v, t) =
∞∑
n=0

Ŵn(x, t)H̃n(v).(4.3)

Its truncated expansion is

WN (x, v, t) =
N∑
n=0

Ŵn(x, t)H̃n(v).(4.4)

If W ∈ C
(

0, T ;V 0,r
ω

)
, then by Theorem 2.2 we have, for all x ∈ I, 0 ≤ t ≤ T and

0 ≤ µ ≤ r,

‖W (x, •, t)−WN (x, •, t)‖µ,ω,R ≤ C(α2N)
µ−r

2 ‖W (x, •, t)‖r,ω,R.(4.5)

Furthermore, it follows from (2.28) that

|Ŵn(x, t)| ≤ Cα1/2−r2−r/2n−r/2‖W (x, •, t)‖r,ω,R .(4.6)

4.1. Hermite spectral expansion. By substituting the expansion (4.3) into
(1.6), we obtain from the recurrence relation (2.11) that

∂Ŵn

∂t
+

1
α

[√
n

2
∂Ŵn−1

∂x
+

√
n+ 1

2
∂Ŵn+1

∂x

]
= −βnŴn + α

√
2nF (x)Ŵn−1

+ β(2α2µ− 1)
√
n(n− 1)Ŵn−2, x ∈ I, 0 ≤ t ≤ T, n ≥ 0,

∞∑
n=0

Ŵn(−1, t)H̃n(v) = bL(v, t), for v ≥ 0, t ∈ (0, T ],

∞∑
n=0

Ŵn(1, t)H̃n(v) = bR(v, t), for v ≤ 0, t ∈ (0, T ],

Ŵn(x, 0) = Ŵ0,n(x), x ∈ Ī , n ≥ 0.

(4.7)

where Ŵ−1 = Ŵ−2 = 0. The system (4.7) is an infinite hyperbolic system and in
order to solve it we have to ignore some terms in (4.7). More precisely, let

F(x, t) = [F0,F1, · · · ,FN ]T ;
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then the Hermite spectral method is to solve the following finite system of hyper-
bolic equations:

∂Fn
∂t

+
1
α

[√
n

2
∂Fn−1

∂x
+

√
n+ 1

2
∂Fn+1

∂x

]
= −βnFn + α

√
2nF (x)Fn−1

+ β(2α2µ− 1)
√
n(n− 1)Fn−2, x ∈ I, 0 ≤ t ≤ T, 0 ≤ n ≤ N,

N∑
n=0

Fn(−1, t)H̃n(v) = bL(v, t), for v ≥ 0, t ∈ (0, T ],

N∑
n=0

Fn(1, t)H̃n(v) = bR(v, t), for v ≤ 0, t ∈ (0, T ],

Fn(x, 0) = Ŵ0,n(x), x ∈ Ī , 0 ≤ n ≤ N.

(4.8)

where F−1 = F−2 = 0,FN+1 ≡ 0. We are now in a position to specify the boundary
conditions for Fn(±1, t). We will do so by using the collocation idea to the second
and third equations in (4.8). To this end, we first denote by λk the zeros of the
Hermite polynomial HN+1(λ). By Szegö [38] and Timan [43], they are distinct real
numbers, situated around the origin symmetrically, arranged as

λ0 < λ1 < · · · < λN−1 < λN , λN = −λN−n.
For simplicity, we assume that N is an odd integer. Then λn < 0 for 0 ≤ n ≤
N1 := (N − 1)/2 and λn > 0 for N1 + 1 ≤ n ≤ N . Letting v = λk/α in the third
equation of (4.8) gives

N∑
n=0

ckdnHn(λk)Fn(1, t) = ckbR(λk/α, t)eλ
2
k , 0 ≤ k ≤ N1(4.9)

where

ck =

(
N∑
n=0

d2
nH

2
n(λk)

)− 1
2

, 0 ≤ k ≤ N.(4.10)

It follows from Christoffel-Darboux formula (see, e.g., Abramowitz and Stegun [1])
and L’Hospital’s rule that

ck =
(

(N + 1)dNHN (λk)
)−1

.

The above formula is useful in computation. Similarly we derive that

N∑
n=0

ckdnHn(λk)Fn(−1, t) = ckbL(λk/α, t)eλ
2
k , N1 < k ≤ N.

(4.11)

Furthermore, we define the matrix U in the following way:

uk = [u0,k, · · · , uN,k]T , U = [u0,u1, · · · ,uN ].(4.12)

where
un,k = ckdnHn(λk).

Using the definition of U , we make a linear transformation for F to get F := UTF .
Now we want to obtain governing equations and boundary conditions for F, which
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are also the equations for the numerical computations. Clearly, it follows from (4.9)
and (4.11) that the boundary conditions for F are

D1F(1, t) =
[
c0bR(λ0/α, t)eλ

2
0 , · · · , cN1bR(λN1/α, t)e

λ2
N1 , 0, · · · , 0

]T
,

D2F(−1, t) =
[
0, · · · , 0, cN1+1bL(λN1+1/α, t)eλ

2
N1+1 , · · · , cNbL(λN/α, t)eλ

2
N

]T
.

(4.13)

where the matrices D1, D2 are defined by (3.33). We now need to obtain governing
equations for F. Let

R =


0 α1

α1 0 α2

. . . . . . . . .
αN−1 0 αN

αN 0

 , S =


s0

γ1 s1

δ2 γ2 s2

. . . . . . . . .
δN γN sN



(4.14)

where

αn =
√
n

2
, sn = −βn, γn = α

√
2nF (x), δn = β(2α2µ− 1)

√
n(n− 1).

(4.15)

Lemma 4.1. The matrix R satisfies the following properties :
(i) The eigenvalues of R are λk, the zeros of the Hermite polynomial HN+1(λ);
(ii) The eigenvectors of R corresponding to the eigenvalue λk are Uk, defined by

(4.12);
(iii) U is an orthogonal matrix.

Proof. The above results can be obtained in a way similar to that provided in Tang
et al. [40].

It follows from the first equations of (4.8) that
∂F
∂t

+
1
α
R
∂F
∂x

= SF .(4.16)

Using Lemma 4.1 gives
UTRU = Λ = Λ+ + Λ−

where

Λ− = diag
(
λ0, · · · , λN1 , 0, · · · , 0

)
, Λ+ = diag

(
0, · · · , 0, λN1+1, · · · , λN

)
.

By premultiplying (4.16) by UT , we obtain
∂F
∂t

+
1
α

Λ
∂F
∂x

= BF ,(4.17)

where F = UTF and B = UTSU . Combining (4.13) and (4.17) gives the following
system for F, which will be used for numerical computation:

∂F
∂t

+
1
α

Λ
∂F
∂x

= BF ,

D1F(1, t) = VR , D2F(−1, t) = VL ,

F(x, 0) = UTW (0)(x) ,

(4.18)
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where

VR :=
[
c0bR(λ0/α, t)eλ

2
0 , · · · , cN1bR(λN1/α, t)e

λ2
N1 , 0, · · · , 0

]T
,(4.19)

VL :=
[
0, · · · , 0, cN1+1bL(λN1+1/α, t)eλ

2
N1+1 , · · · , cNbL(λN/α, t)eλ

2
N

]T
,(4.20)

W (0)(x) :=
[
Ŵ0,0(x), · · · , Ŵ0,N (x)

]T
.(4.21)

Here W (0)(x) are the coefficients of the Hermite expansion for W (x, v, 0).

4.2. Combined spectral-difference schemes. We are now in a position to solve
(4.18) numerically. Using the upwinding method introduced in the last section,
the numerical solution f(x, t), which is the approximation for F in (4.17), can be
determined by one of the following discrete hyperbolic systems

(4.22) Second-order in time

∆tf(x, t) +
1
α

Λ−∆xf̄(x, t) +
1
α

Λ+∇xf̄(x, t) = B(x)f̄ (x, t),

x ∈ Ih, t ∈ Qτ ,

(4.23) Backward Euler

∇tf(x, t) +
1
α

Λ−∆xf(x, t) +
1
α

Λ+∇xf(x, t) = B(x)f(x, t),

x ∈ Ih, t ∈ Qτ ,

(4.24) Forward Euler

∆tf(x, t) +
1
α

Λ−∆xf(x, t) +
1
α

Λ+∇xf(x, t) = B(x)f(x, t),

x ∈ Ih, t ∈ Qτ .
In all cases, the boundary and initial conditions are the same:

D1f(1, t) = VR , D2f(−1, t) = VL , t ∈ Qτ ,
f(x, 0) = UTW (0)(x) , x ∈ Īh ,

where VL, VR and W (0)(x) are defined by (4.19)–(4.21). Then the numerical ap-
proximation of (1.6) is given by

W∆(x, v, t) =
N∑
n=0

F∆,n(x, t)H̃n(v),(4.25)

where
F∆ = [F∆,0 ,F∆,1 , · · · ,F∆,N ]T := U f .

4.3. Error analysis. We now turn to the error analysis. Let

W := [Ŵ0(x, t), · · · , ŴN (x, t)]T ,

A =
[
0, · · · , 0,−(

√
2α)−1∂x

√
N + 1 ŴN+1(x, t)

]T
,

g1 = [σ1, · · · , σN1 , 0, · · · , 0]T ,

g2 = [0, 0, · · · , 0, σN1+1, · · · , σN ]T ,

(4.26)
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where Ŵn are the Hermite expansion coefficients for W , given by (4.3), and

σk = −ck
∞∑

n=N+1

dnHn(λk)Ŵn(1, t), 0 ≤ n ≤ N1,

σk = −ck
∞∑

n=N+1

dnHn(λk)Ŵn(−1, t), N1 + 1 ≤ k ≤ N.
(4.27)

Having the above notation, we obtain from (4.7) that
∂W
∂t

+
1
α
R
∂W
∂x

= SW + UTA , x ∈ I, t ∈ (0, T ],

D1U
TW(1, t) = VR + g1 0 < t ≤ T,

D2U
TW(−1, t) = VL + g2 0 < t ≤ T,

W(x, 0) = W (0)(x) .

(4.28)

Now let W = UTW . By premultiplying (4.28) by UT , we obtain
∂W
∂t

+
1
α

Λ
∂W
∂x

= BW + UTA , x ∈ I, t ∈ (0, T ],

D1W(1, t) = VR + g1 0 < t ≤ T,
D2W(−1, t) = VL + g2 0 < t ≤ T,
W(x, 0) = UTW (0)(x) ,

(4.29)

where as before B = UTSU .
Now at the grid points (x, t) ∈ Īh × Q̄τ we let the error between F and W

be e, i.e., e := W − F, and we will estimate the error e. We first consider the
second-order (in time) scheme (4.22). It satisfies

∆te(x, t) +
1
α

Λ−∆xē(x, t) +
1
α

Λ+∇xē(x, t) = Bē + UTA + T∆(x, t) ,

x ∈ Ih, t ∈ Q̄τ ,
D1e(1, t) = g1 , D2e(−1, t) = g2 t ∈ Q̄τ ,
e(x, 0) = 0 ,

(4.30)

where T∆ are the truncation errors induced by finite difference approximations in
(4.22):

T∆(xj , tk) ∼ τ2∂3
tW(xj , t∗k) + α−1hΛ∂2

xW(x∗j , tk),
where t∗k, x

∗
j are some intermediate values.

Lemma 4.2. If the solution of (1.6) satisfies W ∈ C3(0, T ;V 0,0
ω ) ∩ C0(0, T ;V 2,1

ω ),
then for 0 < tk ≤ T

‖T∆(•, tk)‖h ≤ Cτ2 + Ch.(4.31)

Proof. Due to the orthogonality of U , we have

‖∂3
tW(•, t)‖h = ‖∂3

tW(•, t)‖h .
Since the solution of (1.6) satisfies W ∈ C3(0, T ;V 0,0

ω ), we obtain, by observing
that W is a vector of the Hermite expansion coefficients of W , that

‖∂3
tW(•, t)‖h ≤ C max

x∈I
‖∂3
tW (x, •, t)‖0,ω,R .
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By the notations (4.1) and (4.2), we have for any 0 < t ≤ T that

‖∂3
tW(•, t)‖h ≤ C max

x∈I
‖∂3
tW (x, •, t)‖0,ω,R ≤ C‖∂3

tW (•, •, t)‖0,0,ω ≤ C‖W‖3,0,0,ω.
(4.32)

Furthermore, using the facts that W = UTW and UTRU = Λ we have

(Λ∂2
xW)T (Λ∂2

xW) = (∂2
xW)TΛTΛ∂2

xW

= (∂2
xW)TUΛTUTUΛUT∂2

xW = (R∂2
xW)T (R∂2

xW) .(4.33)

Let W(x, t) = [w0, w1, · · · , wN ]T . By the definition of the tri-diagonal matrix R,
we obtain from (4.33) that

h
∑
j

N∑
n=0

λ2
n∂

2
xwn(x∗j , t)

2

= h
∑
j

N∑
n=0

(
αn−1∂

2
xŴn−1(x∗j , t) + αn+1∂

2
xŴn+1(x∗j , t)

)2

≤ Ch
∑
j

N∑
n=0

n∂2
xŴn(x∗j , t)

2

where αn = 0 except αn =
√
n/2 for 0 ≤ n ≤ N . Since W ∈ C0(0, T ;V 2,1

ω ),
we have from the above estimate and the second equation of (2.11) that, for any
t ∈ (0, T ],

h
∑
j

N∑
n=0

λ2
n∂

2
xwn(x∗j , t)

2 ≤ Ch
∑
j

‖∂2
xW (x∗j , •, t)‖21,ω,R ≤ C‖W‖20,2,1,ω.

(4.34)

Combining (4.32) and (4.34) we obtain the desired result.

Lemma 4.3. If the solution of (1.6) satisfies W ∈ C0(0, T ;V 0,r0
ω ), where r0 ≥ 2,

then

‖Λ−g1‖ ≤ CN11/12−r0/2, ‖Λ+g2‖ ≤ CN11/12−r0/2 .(4.35)

Proof. We will prove the first inequality in (4.35); the second one can be obtained
in a similar way. Consider |λkσk|, 0 ≤ k ≤ N1 = (N − 1)/2, where σk are defined
by (4.27). By the recurrence formula for Hn(v), we have

λkσk(t) = −ck
2

∞∑
n=N+1

dnŴn(1, t)
(
Hn+1(λk) + 2nHn−1(λk)

)
.

(4.36)

It is known that for large n (see, e.g., Abramowitz and Stegun [1])

Hn(v) ∼ ev2/2 n!
(n2 )!

cos
(√

(2n+ 1)v − 1
2
nπ
)
.(4.37)

Due to the above asymptotic formula and the Stirling formula,

n! ∼
√

2πnnn+ 1
2 e−n,(4.38)
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we obtain

dn|Hn+1(λk)| ≤ Ceλ
2
k/2

(n+ 1)
(n+1

2 )!

√
n!
2n
≤ Ceλ

2
k/2 .(4.39)

Similarly

2ndn|Hn−1(λk)| ≤ Ceλ2
k/2 .(4.40)

Furthermore, by Lemma 2.5 of Lubinsky and Moricz [30], we have, for all N ≥ 1
and |v| ≤

√
2N + 2,

(
N∑
n=0

d2
nH

2
n(v)

)−1

∼
√

2
π(N + 1)

eλ
2
k max

(
(N + 1)−2/3, 1− |v|(2N + 2)−1/2

)−1/2

.

(4.41)

Using the following fact (see Levin and Lubinsky [29])

|λk| ≤
√

2N + 2
(

1−N− 2
3

)
, 0 ≤ k ≤ N ,

we obtain from (4.41) and the definition of ck, (4.10), that

ck ≤ CN−1/12e−λ
2
k/2 .(4.42)

For W ∈ C0(0, T ;V 0,r0
ω ) and a constant 1 < q < r0, we use Cauchy inequality to

obtain

|λkσk(t)| ≤ CN−1/12
∞∑

n=N+1

|Ŵn(1, t)|

≤ CN−1/6
∞∑

n=N+1

n−q +
∞∑

n=N+1

nq|Ŵn(1, t)|2

≤ CN5/6−q + CN q−r0‖W (1, •, t)‖r0,ω,R .(4.43)

Choose q = r0/2 + 5/12. It follows from r0 ≥ 2 that 1 < q < r0. The result (4.43)
implies

|λkσk(t)| ≤ CN5/12−r0/2 .

Therefore, by the definition of g1, namely (4.26), we have∥∥Λ−g1(t)
∥∥ ≤ CN11/12−r0/2 .(4.44)

This completes the proof of Lemma 4.3.

We further observe that if W ∈ C0(0, T ;V 1,r1
ω ), then

∥∥UTA(t)
∥∥
h

= (
√

2α)−1
√
N + 1‖∂xŴN+1(•, t)‖h ≤ CN1/2−r1/2 ,

(4.45)

where in the last step we have used the inequality (4.6).
In order to obtain convergence-rate estimates for numerical scheme (4.22) by

using the energy estimate in Theorem 3.1, we need to verify the assumption (H1).

Lemma 4.4. Let B = UTSU , where U is an orthogonal matrix and S is defined
by (4.14). If µ in (1.6) satisfies 0 < α ≤ µ−1/2, then there exists a constant C1,
such that for any u ∈ RN+1,

(u, Bu)h ≤ C1‖u‖h .
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Proof. Let y = [y0, y1, · · · , yN ]T := Uu. Since B = UTSU and U is orthogonal, it
can be verified that

(u, Bu)h = (Uu, SUu)h = (y, Sy)h

=
∑
x∈Ih

( N∑
n=0

snyn(x)2 +
N∑
n=1

γnyn−1(x)yn(x) +
N∑
n=2

δn−1yn−2yn(x)
)

≤
∑
x∈Ih

N∑
n=0

σny
2
n(x)(4.46)

where, for n ≥ 2,

σn =
1
2

(
− 2βn+ α

√
2n‖F‖∞ + α

√
2n+ 2‖F‖∞

+β|2α2µ− 1|
√

(n− 1)(n− 2) + β|2α2µ− 1|
√
n(n+ 1)

)
.

For large n,

σn ∼ nβ
(
− 1 + |2α2µ− 1|

)
.

Therefore, if 0 < α ≤ µ−1/2, then σn ≤ 0 provided that n is sufficiently large. This
proves that σn ≤ C for all n ≥ 0. This result, together with (4.46), yields

(u, Bu)h ≤ C‖y‖2h = C‖u‖2h .

This completes the proof of Lemma 4.4.

We are now ready to state and prove the convergence result for the numerical
scheme (4.22).

Theorem 4.1. Let W be the solution of (1.6) and W∆ be the numerical approxi-
mation given by (4.25) with f being computed by scheme (4.22). If 0 < α ≤ µ−1/2

and W ∈ C3(0, T ;V 0,0
ω ) ∩ C0(0, T ;V 0,r0

ω ∩ V 1,r1
ω ∩ V 2,1

ω ), then, for all t ∈ Qτ ,∥∥∥W (•, •, t)−W∆(•, •, t)
∥∥∥
h,0,ω

≤ C
(
τ2 + h+N11/12−r0/2 +N1/2−r1/2

)
.

Proof. It follows from (4.5) that

‖W (•, •, t)−W∆(•, •, t)‖h,0,ω ≤ CN−r0‖W (•, •, t)‖h,0,ω.(4.47)

By (4.25), noting F∆ = U f ,F = UW and U is orthogonal we have

‖WN (•, •, t)−W∆(•, •, t)‖h,0,ω = C‖F∆(•, t)−F(•, t)‖h
= C‖f −W‖h = C‖e(•, t)‖h

where e satisfies (4.30). It follows from Theorem (3.1), Lemmas 4.2–4.4 and (4.45)
that

‖e(•, t)‖h ≤ C
(
τ2 + h+N11/12−r0/2 + N1/2−r1/2

)
.(4.48)

Using the triangular inequality for (4.47) and (4.48) we obtain the desired result.

Similarly, we can prove the following result for the backward Euler method (4.23).
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Theorem 4.2. Let W be the solution of (1.6) and W∆ be the numerical approxi-
mation given by (4.25) with f being computed by scheme (4.23). If 0 < α ≤ µ−1/2

and W ∈ C2(0, T ;V 0,0
ω ) ∩ C0(0, T ;V 0,r0

ω ∩ V 1,r1
ω ∩ V 2,1

ω ), then, for all t ∈ Qτ ,∥∥∥W (•, •, t)−W∆(•, •, t)
∥∥∥
h,0,ω

≤ C
(
τ + h+N11/12−r0/2 +N1/2−r1/2

)
.

Finally, we will bound the errors introduced by the spectral-difference approxi-
mation (4.24). In order to apply the energy estimate in Theorem 3.3, we need to
verify that the matrix B = UTSU , where S is given by (4.14), satisfies (H2).

Lemma 4.5. Let B = UTSU , where U is an orthogonal matrix and S is defined
by (4.14). If µ in (1.6) satisfies 0 < α ≤ µ−1/2, then there exist a constant C2

(independent of N) and a constant dN = βN (β is given in (1.6)), such that for
any vectors u,v ∈ R(N+1)

(u, (dNI +B)v)h ≤
dN
2

(
‖u‖2h + ‖v‖2h

)
+ C2

(
‖u‖2h + ‖v‖2h

)
.

Proof. Let y = [y0, y1, · · · , yN ]T := Uu and z = [z0, z1, · · · , zN ]T := Uu. Since
B = UTSU and U is orthogonal, it can be verified that

(u, (dNI +B)v)h = (y, (dN I + S)z)h .

Since the diagonal elements of the matrix dNI + S are positive, we can use the
definition of S to obtain

(y, (dN I + S)z)h =
∑
x∈Ih

( N∑
n=0

(dN + sn)ynzn +
N∑
n=1

γnyn−1zn +
N∑
n=2

δn−1yn−2zn

)

≤
∑
x∈Ih

N∑
n=0

(dN
2

(y2
n + z2

n) + pny
2
n + qnz

2
n

)
where for n ≥ 2

pn =
1
2

(
− βn+ α

√
2n+ 2‖F‖∞ + β|2α2µ− 1|

√
n(n+ 1)

)
,

qn =
1
2

(
− βn+ α

√
2n‖F‖∞ + β|2α2µ− 1|

√
(n− 1)(n− 2)

)
.

Similar to the proof for Lemma 4.4, we have pn ≤ C and qn ≤ C for all n ≥ 0,
provided that 0 < α ≤ µ−1/2. These results, together with ‖y‖h = ‖u‖h and
‖z‖h = ‖u‖h, yield the desired inequality.

The error estimate below follows from Theorem 3.3 and the above lemma.

Theorem 4.3. Let W be the solution of (1.6) and W∆ be the numerical approxima-
tion given by (4.25) with f being computed by scheme (4.24). If W ∈ C2(0, T ;V 0,0

ω )∩
C0(0, T ;V 0,r0

ω ∩ V 1,r1
ω ∩ V 2,1

ω ) and if the generalized CFL condition
τ

αh
max

0≤j≤N
|λj |+ βNτ ≤ 1(4.49)

is satisfied, then, for all t ∈ Qτ ,∥∥∥W (•, •, t)−W∆(•, •, t)
∥∥∥
h,0,ω

≤ C
(
τ + h+N11/12−r0/2 +N1/2−r1/2

)
.

Remark 4.1. Since max |λj | ∼
√

2N , Theorem 4.3 implies that the time step used
in the explicit scheme (4.24) is of the order τ ∼ αh/(

√
2N + αβNh) .
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5. Numerical results

In this section, we will consider some issues for the numerical implementation
of the numerical methods considered in this work. First, we will discuss the use of
the scaling factor, α, which is important in applying the Hermite spectral methods
(see, e.g., [5, 39]). Secondly, we will test our Hermite expansion methods for a
simplified Fokker-Planck equations where the distribution function W depends on
v only. Finally, we will use the combined spectral-difference schemes to solve a test
problem, in order to verify our convergence theory. Particular attention has been
paid to the implementation of the Hermite spectral methods.

5.1. Scaling factor. Although the Hermite methods presented above enjoy a the-
oretical spectral convergence rate, the actual error decays considerably slower than
the Chebyshev or Legendre method for similar problems in finite intervals. The
poor resolution property of Hermite functions, which was pointed out by Gottlieb
and Orszag in [19], is one of the main reasons why Hermite functions are rarely
used in practice. However, the resolution of Hermite functions can be greatly im-
proved by using a proper scaling factor [39]. We will extend the theory developed
in [39] to deal with the spectral approximations for the Fokker-Planck equation (see
subection 5.3). In this subsection, we will discuss how to choose the scaling factor
for a given Gaussian type function. If the initial condition for the Fokker-Planck
equation is of Gaussian type, then its solution can be bounded by a Gaussian type
function and its stationary solution is of the form of Gaussian type also. It is there-
fore a basic requirement that the expansion methods should approximate function
exp(−sv2) accurately and efficiently for any given (positive) values of s. To analyze
the effectiveness of the Hermite expansion, we expand

exp
(
−sv2

)
=
∞∑
n=0

bnH̃n(v),(5.1)

where
H̃n(v) =

1√
2nn!

Hn(αv)e−α
2v2

.

It is seen that the basis functions H̃n(v) involve a parameter α which should be
chosen with some caution. We can re-write (5.1) into the following form:

exp
(
−s1v

2
)

=
∞∑
n=0

bn
1√

2nn!
Hn(v)e−v

2
, s1 :=

s

α2
.(5.2)

A direct calculation gives that b2k+1 ≡ 0 and

b2k =
1√

22k(2k)!s1

(
1− s1

s1

)k (2k)!
k!

,(5.3)

for k ≥ 0. An application of the Sterling’s formula yields

b2k ∼
1

(πks2
1)1/4

(
1− s1

s1

)k
, k � 1.(5.4)

The above equation indicates that the Hermite expansion cannot produce any rea-
sonable approximations in the case s1 < 0.5. Further, since φ2k(v) = O(k−1/4) the
2k-th term of (5.1) is of order O(k−1/2) in the case s1 = 0.5. This implies that
spectral accuracy cannot be observed in the case s1 = 0.5.
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Table 1. Maximum error obtained by using the Hermite expan-
sion (5.1) with α = 1 for f(v) = exp(−sv2).

N s = 0.4 s = 0.5 s = 0.6 s = 1.5
10 1.7D+0 1.7D–1 1.6D–2 3.7D–4
20 9.4D+0 1.2D–1 1.5D–3 1.1D–6
30 5.9D+1 1.0D–1 1.7D–4 3.9D–9
40 3.9D+2 8.8D–2 1.9D–5 1.4D–11

The above analysis suggests that for a Gaussion function exp(−sv2), the scaling
factor α in the basis function H̃n(v) must satisfy α <

√
2s. To give a quantitative

understanding of this statement, we approximate the Gaussian distribution func-
tion f(v) = exp(−sv2) using the Hermite expansion (5.1) without a scaling
factor, i.e., α = 1. We present in Table 1 the maximum errors, defined by
maxv∈[−3,3] |f(v) − fN (v)|. We choose s = 0.4, 0.5, 0.6 and 1.5 in the numerical
experiments, and the numerical results in Table 1 suggest that the truncated series
is divergent when α = 0.4. In the case α = 0.5 spectral accuracy cannot be ob-
served. These observations support our earlier analysis that α must be less than√

2s.

5.2. Application to a simplified Fokker-Planck equation. One of the sim-
plest FP equations is of the form (1.2). In 1-D, it is given by

∂W

∂t
= γ

∂(vW )
∂v

+ γβ
∂2W

∂v2
,(5.5)

where W (v, t) is the distributive function, v ∈ (−∞,∞) is the particle velocity,
γ−1 the particle relaxation time and

√
β the thermal velocity. By solving (5.5),

together with the initial distribution W (v, 0), one may obtain the distributive func-
tion W (v, t) for all later times.

Let the exact solution W of (5.5) be approximated by

WN (v, t) =
N∑
n=0

an(t)H̃n(v),(5.6)

where again we set the scaling factor α in H̃n(v) as 1. We want to show that with the
constant scaling factor some Gaussian type solutions cannot be well approximated.
Using the Hermite expansion methods we obtain from (5.5) and (5.6) that

da0(t)
dt

= 0,(5.7)

dan(t)
dt

= (2β − 1)γ
√

(n− 1)nan−2(t)− nγan(t),(5.8)

for n = 1, · · · , N , with an(t) ≡ 0 whenever n < 0 or n > N .
To see the performance of the Hermite spectral methods with velocity scaling,

we consider the following test problem.

Example 5.1. Consider (5.5) with γ = 0.01 (which corresponds to a relaxation
time of 100), β = 0.5 and the following initial condition:

W (v, 0) = (1 + sin(πv)) exp
(
−sv2

)
,(5.9)
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Figure 1. Numerical solution at different time levels for Example
5.1 with initial function (5.11).
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where s is a positive constant. The stationary solution of (5.5) and (5.9) is

W (v, t) ∼
√

1
s

exp
(
−v2

)
, t� 0.(5.10)

As in the last subsection, we test the above problem by using s = 0.4, 0.5, 0.6
and 1.5. It is observed that for s > 0.5 very accurate numerical approximations are
obtained by using about 20 expansion terms (i.e., N = 20). However, for s = 0.4
convergent results cannot be obtained before the solution reaches the stationary
sate. Figure 1 shows the numerical results with various values of N for

W (v, 0) = (1 + sin(πv)) exp
(
−0.4v2

)
.(5.11)

Since the initial data has the power constant s = 0.4, it is expected from the
experience of the last subsection that the Hermite expansion with the scaling factor
α = 1 will not be convergent, at least for small values of the time t. However, it
is seen that the stationary solution (5.10) has the power constant s = 1, and as
a result it is expected that when t becomes large the Hermite spectral methods
with scaling factor α = 1 will lead to accurate approximations. These theoretical
predictions are well verified in the plots of Figure 1.

5.3. Application of the Hermite spectral-finite difference methods. In this
section, we consider a numerical example by using the combined spectral-difference
schemes (4.22)–(4.24). We would verify the Theorem 4.1–4.3; i.e., the numeri-
cal schemes are of spectral accuracy in v-direction, first order in x-direction and
first/second order in t-direction. To this end, we consider the following test prob-
lem.

Example 5.2. Consider the Fokker-Planck equation

∂w

∂t
= −v ∂w

∂x
+
∂(vw)
∂v

+
∂2w

∂v2
, |x| ≤ 1, |v| <∞,(5.12)

with the initial and boundary conditions (for x = −1, v ≥ 0 and x = 1, v ≤ 0) such
that the exact solution is

w(x, v, t) =
1
2

[
1 + cos

(π
2

(x− (1− e−t)v)
)
q(t)

]
exp

(
−v2/2

)
,

(5.13)

where

q(t) = exp
[
−π

2

4

(
t+ 2e−t − 1

2
e−2t − 3

2

)]
.
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The main reason for choosing the above test example is that its analytic solution
can be found which enables us to test the accuracy of the numerical schemes. In the
following numerical calculations, the length of the x-interval is chosen to be 0.4 and
the scaling factor α (see (2.9)) is chosen as 1/

√
2. The effects of using other values

of the scaling factor α will be also investigated (see Figure 5). Although the results
reported below are obtained by using the numerical scheme (4.22), similar results
supporting Theorems 4.2 and 4.3 have been also computed. Due to the limitation
of the space, we will not include them here.

Convergence rate for the spectral approximation. In Figure 2, we plot the l2-
errors for the mixed finite-difference-spectral method (4.22), with parameters N =
9, h = τ = 0.001. The step sizes in both x and t directions are chosen to be very
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Figure 3. The pointwise error for Example 5.2 at t = 5.
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small so that we can verify the exponential rate of convergence for the spectral
approximations in the v direction. Indeed it is observed in Figure 2 that spec-
tral convergence is achieved. For t ≥ 12, the l2-error remains the order of about
O(10−14), which is about the machine accuracy in double precision. It is seen
from the exact solution of this problem that the asymptotic solution for large t is
1
2 exp(−v2/2), i.e., a pure Gaussian type function. As a result the spectral approach
in v direction will give very accurate approximation for large time solution as seen
in Figure 1. Pointwise error at t = 5 is plotted in Figure 3. As expected, the largest
errors occur at the zero axis for v (see also the similar observation in [40]).

Convergence rates for the finite-difference approximation. Our theoretical
predictions in last section indicate that there will have only first-order spatial
and temporal accuracy for the schemes (4.22)–(4.24), except for (4.22) for which
O(h+τ2) can be achieved. This result is well understood in finite-difference theory,
so we just simply plot the l2-errors as a function of N with h = 0.01, 0.02 and 0.04
in Figure 4. A first-order convergence rate in x-direction is observed, which is in

3 4 5 6 7 8 9 10 11
10

5

10
4

10
3

10
2

10
1

N

E
rr

or
 in

 L
2 n

or
m

For dt=0.001 and T=1

dx=0.001
dx=0.002
dx=0.004

3 4 5 6 7 8 9 10 11
10

7

10
6

10
5

10
4

N

E
rr

or
 in

 L
2 n

or
m

For dt=0.001 and T=5

dx=0.001
dx=0.002
dx=0.004

Figure 4. The l2-error as a function of N with different values of
h. The top picture is for t = 1 and the bottom one is for t = 5.
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agreement with the theoretical predications. Similarly, a second-order convergence
rate in time, i.e., O(τ2), have been also observed in our numerical computations.

Variation with the scaling factor. Finally, we investigate the role of the scaling
factor α for the test problem Example 5.2. In Figure 5, we plot the l2-errors
obtained by the scheme (4.22), with the use of the parameters N = 7, h = 0.005
and τ = 0.001. Using the discussions in subsection 5.2, together with the exact
solution (5.13), we can conclude that the optimal choice of α is 1/

√
2 ≈ 0.7071 for

Example 5.2. Indeed this predication is verified by our computational results given
in Figure 5.

In practice, the scaling factors may not be a constant with respect to time
and therefore some adaptive computation for the scaling factor should be used
during the time integration to enhance spectral accuracy. We will not give further
discussion on this issue due to the limitation of space, but just point out a recent
paper of Schumer and Holloway [36] where a variable scaling factor for the Hermite
basis was constructed for solving the nonlinear Vlasov-Poisson equations. The
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principal ideas in [36] are also useful for Hermite spectral approximations to the
Fokker-Planck equations. Scaling factors are also used in a recent work of Shen [37]
for the Laguerre spectral approximations, which also greatly enhance the resolution
capacities of the Laguerre functions.
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[41] R. Téman, Analysis Numérique, Presses Universitaires de France, Paris, 1970.
[42] V. Thomée, Difference methods for two-dimensional mixed problems for hyperbolic first

order systems, Arch. Rat. Mech. Anal., 8 (1961), 68-88. MR 23:B2591
[43] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon Press,

Oxford, 1963. MR 33:465
[44] K. Voigtlaender and H. Risen, Eigenvalues of the Fokker-Planck and BGK operators for

a double-well potential, Chem. Phys. Lett., 105 (1984), 506-510.
[45] K. Voigtlaender and H. Risen, Solutions of the Fokker-Planker equation for a double-well

potential in terms of matrix continued fractions, J. Stat. Phys., 40 (1985), 397-429.
[46] J. A. C. Weideman, The eigenvalues of Hermite and rational spectral differentiation matrices,

Numer. Math., 61 (1992), 409-431. MR 92k:65071

Department of Mathematics, The Hong Kong Baptist University, Kowloon Tong,

Hong Kong

E-mail address: cmfok@math.hkbu.edu.hk

Department of Mathematics, Shanghai Normal University, Shanghai 200234, P. R.

China

E-mail address: byguo@guomai.sh.cn

Department of Mathematics, The Hong Kong Baptist University, Kowloon Tong,

Hong Kong.

E-mail address: ttang@math.hkbu.edu.hk

http://www.ams.org/mathscinet-getitem?mr=96k:82071
http://www.ams.org/mathscinet-getitem?mr=2:140d
http://www.ams.org/mathscinet-getitem?mr=94f:42030
http://www.ams.org/mathscinet-getitem?mr=88b:65135
http://www.ams.org/mathscinet-getitem?mr=90f:65228
http://www.ams.org/mathscinet-getitem?mr=91j:82044
http://www.ams.org/mathscinet-getitem?mr=90a:82002
http://www.ams.org/mathscinet-getitem?mr=2001g:65165
http://www.ams.org/mathscinet-getitem?mr=21:5029
http://www.ams.org/mathscinet-getitem?mr=93m:65026
http://www.ams.org/mathscinet-getitem?mr=23:B2591
http://www.ams.org/mathscinet-getitem?mr=33:465
http://www.ams.org/mathscinet-getitem?mr=92k:65071

	1. Introduction
	2. Some results on Hermite approximation
	3. Some results on discrete hyperbolic systems
	3.1. Implicit scheme I
	3.2. Implicit scheme II
	3.3. Explicit scheme

	4. The Hermite spectral-finite difference schemes
	4.1. Hermite spectral expansion
	4.2. Combined spectral-difference schemes
	4.3. Error analysis

	5. Numerical results
	5.1. Scaling factor
	5.2. Application to a simplified Fokker-Planck equation
	5.3. Application of the Hermite spectral-finite difference methods

	References

