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Abstract. In this work, we propose a simple yet effective gradient projection algorithm for
a class of stochastic optimal control problems. We first reduce the optimal control problem to an
optimization problem for a convex functional by means of a projection operator. Then we propose
a convergent iterative scheme for the optimization problem. The key issue in our iterative scheme
is to compute the gradient of the objective functional by solving the adjoint equations that are
given by backward stochastic differential equations (BSDEs). The Euler method is used to solve
the resulting BSDEs. Rigorous convergence analysis is presented, and it is shown that the entire
numerical algorithm admits a first order rate of convergence. Several numerical examples are carried
out to support the theoretical finding.
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1. Introduction. In recent years, stochastic optimal control has been exten-
sively studied and has become an essential tool in various fields, such as financial
mathematics and engineering. There exists a very extensive body of literature in both
theoretical and practical studies of stochastic optimal control problems (SOCPs); see,
e.g., [4, 5, 20, 28, 8, 11, 18, 17] and references therein.

In this work, we are concerned with numerical solutions of SOCPs. Theoretical
investigations for SOCPs can be found in [4, 13, 20, 27, 3, 7, 15, 29, 35, 38]. For
practical applications of SOCPs, one can refer to [7, 26, 29, 38, 40] for engineering
applications, to [24, 25, 32, 42, 45] for applications in option pricing and portfolio
optimization, to [1] for analysis of climate changes, and to [19] for biological and
medical problems, to name a few.

In general, the SOCP does not admit explicitly closed form solutions, and thus
efficient numerical algorithms have been widely studied in recent years. Roughly
speaking, we can characterize numerical algorithms into four categories: (i) transfer-
ring the control problem into finite dimensional stochastic programming (see, e.g.,
[9, 15, 21, 22, 29, 38, 41, 43]); (ii) the dynamic programming principle (DPP) based
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GRADIENT PROJECTION METHODS FOR SOCPS 2983

approach [6, 28], wherein one usually needs to solve the corresponding Hamilton–
Jacobi–Bellman (HJB) equations, and this is one of the most widely used numerical
methods [2, 4, 5, 10, 23]; (iii) martingale based methods [24, 25, 39]; and (iv) stochastic
maximum principle (SMP) based methods (see, e.g., [20] and references therein).

Basically, the SMP procedure is to directly compute the directional derivative for
the objective functional J(·) by introducing an adjoint process. Then by introducing
an optimality condition for the control problem, a variational inequality coupled with
the state and adjoint equations forms an optimality condition system (we call it the
SMP system) that can be used to solve the optimal control problem. While SMP is
a popular tool for theoretical studies of stochastic optimal control (see, e.g., [42, 45]),
it has not been widely used in the numerical setting.

In this work, we propose a simple yet effective gradient projection algorithm for
SOCPs. We first reduce the optimal control problems to an optimization problem for
a convex functional by means of a projection operator. Then we propose a convergent
iterative scheme for the optimization problem. The key idea in our iterative scheme
is to compute the gradient of the objective functional in an efficient way, and this is
done by solving the adjoint equations that are given by backward stochastic differential
equations (BSDEs). Our approach belongs to the SMP based approach category, and
it relies on solving the SMP system in an efficient way. To this end, we propose a
simple yet effective Euler-type method for solving the resulting BSDEs. Furthermore,
we perform a sharp convergence analysis, and we show that our numerical method
admits a first order rate of convergence. Several numerical examples are presented to
support the theoretical finding.

The rest of the paper is organized as follows. In section 2 we set up the SOCP and
provide some assumptions. The gradient projection method is presented in section
3. Section 4 is devoted to convergence analysis of the proposed numerical approach.
Several numerical experiments are presented to show the effectiveness of the proposed
numerical method in section 5. We finally give some conclusions in section 6.

2. Problem setup. For notational simplicity, we shall narrow our discussion
to the one dimensional case; however, the whole framework applies easily to multi-
dimensional cases. Let (Ω,F , {Ft}06t6T ,P) be a complete probability space with
filtration Ft generated by the Brownian motion {Ws}06s6t. Here T is the terminal
time. We denote by U = L2([0, T ]; R) the space of all square integrable functions
x : [0, T ] 7→ R and denote by UF = L2

F ([0, T ]×Ω; R) the space of all adapted stochastic
processes x = xt : [0, T ]× Ω 7→ R that satisfy

E
[ ∫ T

0
(xt)2 dt

]
< +∞.

We let C ⊂ R be a nonempty, convex, and closed subset, and we define the following
control set:

K =
{
u ∈ U

∣∣ u(t) ∈ C a.e.
}
.

Note that we have assumed that the control u is deterministic. We remark that
a deterministic control can still be useful for future planning as discussed, e.g., in
[7, 29] for engineering applications, in [9] for financial applications, and in [38] for an
application in stochastic hybrid systems. Moreover, stochastic control (i.e., u ∈ UF )
can also be included in our approach, and this will be discussed in section 5 via
numerical examples.
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2984 B. GONG, W. LIU, T. TANG, W. ZHAO, AND T. ZHOU

Given u ∈ K, the controlled state process xut is governed by the stochastic differ-
ential equation (SDE)

(1) dxut = b
(
xut , u(t)

)
dt+ σ

(
xut , u(t)

)
dWt, t ∈ (0, T ], x|t=0 = x0 ∈ R.

The considered cost functional is given by

J(u) = E

[∫ T

0

(
h(xut ) + j

(
u(t)

))
dt+ k(xuT )

]
,(2)

where h(·), j(·), k(·) are given functions and xut is the solution of (1). We now state
our SOCP as follows:

Find u∗ ∈ K such that J(u∗) = min
u∈K

J(u).(3)

Throughout the paper, we shall make the following assumption.

Assumption 2.1.
• The functions b = b(x, u) and σ = σ(x, u) are continuously differentiable with

respect to x and u and have bounded derivatives.
• The functions h, j, and k are continuously differentiable, and their derivatives

have at most a linear growth with respect to the underlying variables.

Notice that under Assumption 2.1, the solution xut of (1) and the cost functional
J(u) are all well defined for u ∈ K.

3. The gradient projection method. In this section, we will present details
of our gradient projection method. For the SOCP (1)–(3), it is well known that for
the optimal control u∗ it holds that

(J ′(u∗), v − u∗) > 0 ∀v ∈ K,(4)

where (J ′(u), v) is the variation of J(u) along the direction v; i.e., for v ∈ U such that
u+ v ∈ K, we have

(J ′(u), v) = lim
ρ ↓ 0

J(u+ ρv)− J(u)
ρ

.(5)

The existence of such derivatives has been discussed in [13, 35, 42]. Here we slightly
abuse the notation by referring to J ′(u) as the associated element in U (its respresen-
tation in U by the unique mapping), as U is a Hilbert space.

Next, we propose a gradient projection method for solving the optimality condi-
tion (4). To this end, let ‖ · ‖ be the norm of U . We define the projection operator
PK : ω 7→ PKω as ∥∥PKω − ω∥∥ = min

u∈K
‖u− ω‖.(6)

Notice that the projection problem (6) is equivalent to the inequality

(7) (PKω − ω, v − PKω) > 0 ∀v ∈ K.

For any positive constant ρ, the variational inequality (4) is equivalent to the following
inequality:

(8)
(
u∗ − (u∗ − ρJ ′(u∗)) , v − u∗

)
> 0 ∀v ∈ K.
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By the fact of well-posedness of convex optimizations and by comparing the above
inequality with the inequality (7), we conclude that for the optimal control u∗, it
holds that

(9) u∗ = PK(u∗ − ρJ ′(u∗)).

That is, the optimal control u∗ is the fixed point of PK(u− ρJ ′(u)) on K.
We shall approximate the control u∗ numerically by step functions. To this end,

we introduce the following uniform time partition:

(10) 0 = tN0 < tN1 < · · · < tNN = T, tNn+1 − tNn = T/N =: ∆t.

We will denote by INn the intervals [tNn−1, t
N
n ) for 1 6 n 6 N − 1, and by INN the

interval [tNN−1, t
N
N ]. In the context where N is fixed, we shall omit the superscript N

of tNn . We also define the associated space of piecewise constant functions by

UN =

{
u ∈ U | u =

N∑
n=1

αnXIN
n

a.e., αn ∈ R

}
.

Let KN = K ∩UN ; then it is clear that KN is also convex and closed. Now, we define
the approximated problem of (3) by

J(u∗,N ) = min
u∈KN

J(u).

Using similar arguments, one can show that

(11) u∗,N = PKN

(
u∗,N − ρJ ′(u∗,N )

)
.

Based on the above optimality condition, we propose the following fixed-point itera-
tion scheme to get the approximated optimal control:

(12) ui+1,N = PKN

(
ui,N − ρiJ ′N (ui,N )

)
, i = 1, 2, . . . ,

where ρi is a positive constant. Notice that in the above equation we have changed
J ′(·) in (11) to J ′N (·), as one cannot compute J ′(·) exactly in general, and thus it
is obtained by numerical approaches. The iteration procedure in (11) is a projected
gradient iteration method for solving the variation inequality (4).

It is clear that J ′N (·) depends on particular numerical schemes, and we shall
discuss the numerical approximation of J ′N (·) in later sections. We will denote the
error between J ′(·) and J ′N (·) by

(13) εN = sup
i

∥∥J ′(ui,N )− J ′N (ui,N )
∥∥ .

Next, we show in Theorem 3.1 the convergence property of the iteration scheme (12).

Theorem 3.1. Assume that J ′(·) is Lipschitz and uniformly monotone around
u∗ and u∗,N in the sense that there exist positive constants c and C such that

‖J ′(u∗)− J ′(v)‖ 6 C‖u∗ − v‖ ∀v ∈ K,(
J ′(u∗)− J ′(v), u∗ − v

)
> c‖u∗ − v‖2 ∀v ∈ K,

‖J ′(u∗,N )− J ′(v)‖ 6 C‖u∗,N − v‖ ∀v ∈ KN ,(
J ′(u∗,N )− J ′(v), u∗,N − v

)
> c‖u∗,N − v‖2 ∀v ∈ KN .
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2986 B. GONG, W. LIU, T. TANG, W. ZHAO, AND T. ZHOU

Moreover, we assume that

εN = sup
i

∥∥J ′(ui,N )− J ′N (ui,N )
∥∥→ 0, N →∞.

Suppose that ρi is chosen such that 0 < 1− 2cρi + (1 + 2C)ρ2
i 6 δ2 for some constant

0 < δ < 1. Then, the iteration scheme (12) is convergent; more precisely, we have

‖u∗ − ui,N‖ → 0, i, N →∞.

Proof. By (11) and (12), we have∥∥u∗,N − ui+1,N
∥∥2

6
∥∥u∗,N − ui,N − ρi(J ′(u∗,N )− J ′N (ui,N )

)∥∥2

=
∥∥u∗,N − ui,N∥∥2 − 2ρi

(
u∗,N − ui,N , J ′(u∗,N )− J ′N (ui,N )

)
+ ρ2

i

∥∥J ′(u∗,N )− J ′N (ui,N )
∥∥2
.

By the Lipschitz condition and the monotonicity property of J ′(·), we have

− 2ρi
(
u∗,N − ui,N , J ′(u∗,N )− J ′N (ui,N )

)
=− 2ρi

(
u∗,N − ui,N , J ′(u∗,N )− J ′(ui,N ) + J ′(ui,N )− J ′N (ui,N )

)
6− 2cρi

∥∥u∗,N − ui,N∥∥2
+ ρ2

i

∥∥u∗,N − ui,N∥∥2
+ ε2N .

Moreover, we have

ρ2
i

∥∥J ′(u∗,N )− J ′N (ui,N )
∥∥2

= ρ2
i

∥∥J ′(u∗,N )− J ′(ui,N ) + J ′(ui,N )− J ′N (ui,N )
∥∥2

6 2Cρ2
i

∥∥u∗,N − ui,N∥∥2
+ 2ρ2

i ε
2
N .

It is easy to show that for sufficiently small ρi, there is a constant 0 < δ < 1 such
that 0 < 1− 2cρi + (1 + 2C)ρ2

i 6 δ2; then we get∥∥u∗,N − ui+1,N
∥∥2

6 δ2
∥∥u∗,N − ui,N∥∥2

+ (1 + 2ρ2
i )ε

2
N .(14)

Then, there exists a constant C1 that is independent of N and i such that∥∥u∗,N − ui,N∥∥ 6 δi
∥∥u∗,N − u0,N

∥∥+ C1εN .

Under the assumption εN → 0, we get

(15) ‖u∗,N − ui,N‖ → 0 (N, i→∞).

On the other hand, using similar arguments as for deriving (14), we obtain∥∥u∗ − u∗,N∥∥ =
∥∥u∗ − PKN

(u∗ − ρJ ′(u∗)) + PKN

(
u∗ − ρJ ′(u∗))− u∗,N

∥∥
6 ‖u∗ − PKN

(u∗ − ρJ ′(u∗))‖+
√

1− 2cρ+ Cρ2
∥∥u∗ − u∗,N∥∥ .

Let ρ = c/C, C2 =
(
1−

√
1− 2cρ+ Cρ2

)−1; we have∥∥u∗ − u∗,N∥∥ 6 C2 ‖u∗ − PKN
(u∗ − ρJ ′(u∗))‖ .

D
ow

nl
oa

de
d 

11
/2

8/
17

 to
 1

16
.6

.4
9.

97
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GRADIENT PROJECTION METHODS FOR SOCPS 2987

Since C is invariant in time, for v ∈ UN , it holds that PKv ∈ UN . Thus we have
PKv ∈ KN , and then we have PKv = PKN

v. Now, denoting ω := u∗ − ρJ ′(u∗), we
have ∥∥u∗ − u∗,N∥∥ 6 C2 ‖u∗ − PKN

(u∗ − ρJ ′(u∗))‖ = C2 ‖PKω − PKN
ω‖

6 C2 (‖PKω − PKPUN
ω‖+ ‖PKPUN

ω − PKN
ω‖)

= C2 (‖PKω − PKPUN
ω‖+ ‖PKN

PUN
ω − PKN

ω‖)
6 2C2 ‖ω − PUN

ω‖ .

As UN is dense in U , we have ‖ω − PUN
ω‖ → 0, and thus ‖u∗ − u∗,N‖ → 0. Then,

the conclusion follows from this argument and (15).

In Theorem 3.1 we have shown the convergence of ‖u∗,N − ui,N‖ under the as-
sumption εN → 0. Note that this is a reasonable assumption. In fact, under certain
regularity requirements, and by designing suitable numerical approaches for J ′N (·),
one could further expect that εN ∼ O(∆t). In such a case, we could expect a first
order rate of convergence of our iteration scheme (12), as illustrated in the following
corollary.

Corollary 3.2. We suppose that the conditions in Theorem 3.1 hold, and fur-
thermore, we assume that u∗ and J ′(u∗) are both Lipschitz continuous functions in
U . Then under the condition εN ∼ O(∆t) we have∥∥u∗ − ui,N∥∥ ∼ O(∆t), i→∞.

The iteration scheme (12) is the starting point of our numerical approach for
SOCPs. In the following sections, we shall show how to get the numerical approxi-
mation J ′N (u) of J ′(u) in each iteration.

3.1. The representation of J ′(u). Note that the iteration scheme (12) in-
volves the computation of J ′(u). In this section, we will derive a new formula of
J ′(u) for fixed u ∈ K by introducing a pair of adjoint processes. Again, in all of our
arguments, J ′(u) is referred to as its representation in U .

By the definition (5), we have

(J ′(u), v) = lim
ρ ↓ 0

J(u+ ρv)− J(u)
ρ

= E
[ ∫ T

0
h′(xut )Dxut (v) dt+

∫ T

0
j′
(
u(t)

)
v(t) dt+ k′(xuT )DxuT (v)

]
,(16)

where xut is the solution of the SDE (1), and

Dxut (v) := lim
ρ ↓ 0

xu+ρv
t − xut

ρ
.

Under Assumption 2.1, the process Dxut (v) satisfies the SDE

dDxut (v) =
(
b′x
(
xut , u(t)

)
Dxut (v) + b′u

(
xut , u(t)

)
v(t)

)
dt

+
(
σ′x
(
xut , u(t)

)
Dxut (v) + σ′u

(
xut , u(t)

)
v(t)

)
dWt, Dxu0 (v) = 0.(17)

Notice that one can resort to the above equation to get J ′(u); however, this would in-
volve very complicated numerical schemes for solving (17) (see, e.g., [7]). To overcome
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this, we shall introduce a pair of adjoint processes (pu, qu) that solves the following
BSDE:

(18) − dput = f
(
xut , p

u
t , q

u
t , u(t)

)
dt− qut dWt, puT = g(xuT ) = k′(xuT ),

where f is defined as

f(x, p, q, u) = h′(x) + p b′x(x, u) + q σ′x(x, u).

Notice that by the standard BSDE theory, under Assumption 2.1, the BSDE (18)
admits an unique solution (put , q

u
t ) for u ∈ K. We remark that theoretical study of

BSDEs has been a hot topic recently. In particular, the well-posedness of our adjoint
equation, i.e., the BSDE (18), has been well discussed under mild assumptions. One
can refer to [34, 37] and [30] for more details on BSDE theory.

We shall show in the following that by introducing the solution pair (put , q
u
t ) of

the BSDE (18), the involvement of terms Dxut (v) in (16) will be canceled. By (17),
(18), and Itô’s formula, we deduce

d
(
put Dx

u
t (v)

)
=dput Dx

u
t (v) + put dDx

u
t (v)

+ qut

(
σ′x
(
xut , u(t)

)
Dxut (v) + σ′u

(
xut , u(t)

)
v(t)

)
dt

= (−(h′(xut ) + put b
′
x(xut , u(t)) + qut σ

′
x(xut , u(t)))dt+ qut dWt)Dxut (v)

+ put

((
b′x
(
xut , u(t)

)
Dxut (v) + b′u

(
xut , u(t)

)
v(t)

)
dt

+
(
σ′x
(
xut , u(t)

)
Dxut (v) + σ′u

(
xut , u(t)

)
v(t)

)
dWt

)
+ qut

(
σ′x
(
xut , u(t)

)
Dxut (v) + σ′u

(
xut , u(t)

)
v(t)

)
dt

=− h′(xut )Dxut (v)dt

+
(
put b
′
u

(
xut , u(t)

)
v(t) + qut σ

′
u

(
xut , u(t)

)
v(t)

)
dt

+
(
put σ

′
x

(
xut , u(t)

)
Dxut (v) + put σ

′
u

(
xut , u(t)

)
v(t) + qut Dx

u
t (v)

)
dWt.

Then, we have

(19)

∫ T

0
h′(xut )Dxut (v)dt =− puT DxuT (v) + pu0 Dx

u
0 (v)

+
∫ T

0

(
put b

′
u

(
xut , u(t)

)
+ qut σ

′
u

(
xut , u(t)

))
v(t)dt

+
∫ T

0

(
put σ

′
x

(
xut , u(t)

)
Dxut (v) + put σ

′
u

(
xut , u(t)

)
v(t)

+ qut Dx
u
t (v)

)
dWt.

Then, by inserting (19) into (16) and using the initial condition Dxut (v) = 0 and the
terminal condition puT = k′(xuT ), we obtain

(J ′(u), v) =
∫ T

0

(
E
[
put b

′
u

(
xut , u(t)

)
+ qut σ

′
u

(
xut , u(t)

)]
+ j′

(
u(t)

))
v(t)dt.

Then, we can redefine J ′(u) by

J ′(u)|t = E
[
put b

′
u

(
xut , u(t)

)
+ qut σ

′
u

(
xut , u(t)

)]
+ j′

(
u(t)

)
.(20)
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Here J ′(u)|t represents J ′(u), as an element of U , valued at t.
To simplify the expression of J ′(u), we have introduced a pair of adjoint processes

(pu, qu) that satisfies the BSDE (18), to get rid of the term Dxut (·). Then, by solving
the BSDE (18), we can get the solution pair (pu, qu) numerically, and then further get
an approximated J ′N (u) of J ′(u) by using (20). In the next section, we shall propose
an Euler-type method for solving the adjoint BSDE (18).

Remark 3.3. We remark that the authors in [12] also introduced an adjoint equa-
tion to cancel the term Dxut (·). The adjoint equation therein is an anticipating in-
tegrand SDE, where the solution is required to be backward-adapted instead of the
classic forward-adapted. However, such a requirement is not true in general. In
other words, the well-posedness of the adjoint equation in [12] is unclear for general
situations.

3.2. Numerical approximations for adjoint equations. By (18), we notice
that the solution pair (put , q

u
t ) depends on the forward process xut . Hence, we need to

solve (for t ∈ [0, T ]) the following forward-backward stochastic differential equations
(FBSDEs):

(21)

{
dxut = b

(
xut , u(t)

)
dt+ σ

(
xut , u(t)

)
dWt, xt=0 = x0,

−dput = f
(
xut , p

u
t , q

u
t , u(t)

)
dt− qut dWt, puT = g(xuT ).

Next, we shall discuss how to solve the above FBSDEs numerically with a given
u ∈ K. For notational simplicity, we shall omit the superscript u in this section, such
as xt = xut , pt = put , qt = qut .

Under mild assumptions, it is well known that the above backward equation is
well-posed [36]. Moreover, the solutions pt and qt have the representations

(22) pt = η(t, xt), qt = σ
(
xt, u(t)

)
∂xη(t, xt),

where η(t, x) : [0, T ]× R→ R is the solution of the following parabolic PDE:

(23) L0η(t, x) = −f
(
x, η(t, x), σ

(
x, u(t)

)
∂xη(t, x), u(t)

)
, η(T, x) = g(x),

with

L0η(t, x) = ∂tη(t, x) + b
(
x, u(t)

)
∂xη(t, x) +

1
2
σ
(
x, u(t)

)2
∂xxη(t, x).

The representation in (22) is the so-called nonlinear Feynman–Kac formula [36].
We remark that numerical methods for FBSDEs have been a hot topic recently,

and one can refer to [16, 33, 44, 47, 48, 49] and references therein for variable numerical
approaches. In the present paper, we shall introduce a simple scheme, namely the
Euler scheme, for solving the FBSDEs (21).

3.3. The Euler scheme for FBSDEs. We now closely follow the works [47]
and [48] to introduce the Euler method for solving the FBSDEs (21). The time
partition was defined in (10). By integrating both sides of the backward equation on
[tn, tn+1] we obtain

(24) ptn = ptn+1 +
∫ tn+1

tn

f(xt, pt, qt, u(t)) dt−
∫ tn+1

tn

qt dWt.
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Then, by taking conditional expectation Extn [·] = E[·| Ftn , xtn = x] on both sides of
(24) and applying the left-point rectangular rule, we have

(25) pxtn = Extn
[
ptn+1

]
+ ∆t f

(
x, pxtn , q

x
tn , u(tn)

)
+ R̄xp,n,

where

R̄xp,n =
∫ tn+1

tn

Extn
[
f
(
xt, pt, qt, u(t)

)]
dt−∆t f

(
x, pxtn , q

x
tn , u(tn)

)
is the truncation error due to the left-point rectangular rule. Equation (25) is our
semidiscrete equation for solving p.

Next, we aim to derive another discrete equation for solving q. To this end,
by multiplying (24) by ∆Wn+1 := Wtn+1 −Wtn and taking conditional expectation
Extn [·] on both sides of the derived equation and then again applying the left-point
rectangular rule, we obtain

(26) qxtn =
1

∆t

(
Extn
[
ptn+1∆Wn+1

]
+ R̄xq,n

)
,

where

R̄xq,n =
∫ tn+1

tn

Extn
[
f
(
xt, pt, qt, u(t)

)
∆Wn+1

]
dt−

∫ tn+1

tn

Extn [qt] dt+ ∆t qxtn

is again the corresponding truncation error.
By removing the error terms R̄xp,n and R̄xq,n in (25) and (26), we get the following

semidiscretization scheme for the BSDE in (21): impose the initial value of pxN = g(x)
on x ∈ R, and then for n = N−1, . . . , 1, 0, compute pxn = pn(x) and qxn = qn(x) with
x ∈ R in a backward way by

pxn = Extn
[
pn+1

]
+ ∆t f

(
x, pxn, q

x
n, u(tn)

)
,(27)

qxn =
1

∆t
Extn
[
pn+1∆Wn+1

]
.(28)

Notice that in the above semidiscretization schemes (27) and (28), solving pxn and qxn
for each x ∈ R may involve the knowledge of pn+1 on the whole space region R. To
apply this scheme in practice, the spacial discretization of R and the approximations
of the conditional expectation Extn [·] are required.

To do this, we introduce a uniform partition Rh of the R as

Rh =
{
xk
∣∣ k = 0,±1,±2, . . .

}
, with ∆x = xk+1 − xk.

We shall denote Ik =: [xk, xk+1]. Notice that the above partition involves infinite
grid points; however, this is unnecessary in practical applications, as we are always
interested in the final information (t = 0) in a finite interval. This means that we
can consider a finite partition with |k| ≤ P , with P being a positive integer (which
can be very large and problem dependent). In what follows, we shall consider a finite
partition with the parameter P. We remark that choosing a reasonable P is not a
trivial task, and we refer the reader to [48] for further discussion.

On the partition Rh, we introduce a continuous piecewise linear function space
Vh, the element of which v ∈ Vh can be represented as follows:

v(x) =
∑
|k|≤P

vk(xk)φk(x), with φk(x) =


x−xk−1
xk−xk−1

, x ∈ Ik−1,
xk+1−x
xk+1−xk

, x ∈ Ik,
0 otherwise.
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For a continuous function f(x), we now introduce the associated interpolation oper-
ator Ih by

Ihf(x) =
∑
|k|≤P

f(xk)φk(x);

i.e., a function in Vh is determined by its values at the grid points in Rh.

3.3.1. The approximation of conditional expectations. We now discuss
the approximation of conditional expectations. Let x̃tn,xtn+1

be the Euler approximation
of the state xtn,xtn+1

, namely,

(29)
x̃tn,xtn+1

= x+ b
(
x, u(tn)

)
∆t+ σ

(
x, u(tn)

)
∆Wn+1

= x+ b
(
x, u(tn)

)
∆t+ σ

(
x, u(tn)

)√
∆t ζ,

where ζ ∼ N (0, 1) is a normal random variable.
We choose p̃tn,xtn+1

= ptn+1(x̃tn,xtn+1
) = η(tn+1, x̃

tn,x
tn+1

) to approximate ptn,xtn+1
, where

η(t, x) is the solution of problem (22). As a result, p̃tn,xk
tn+1

is a function of x̃tn,xk
tn+1

and thus a function of the increment ∆Wn+1. Therefore, the conditional expectation
Extn [p̃tn+1 ] (as well as Extn [p̃tn+1∆Wn+1]) can be written into an integral on R with
the Gaussian probability density function ρ(ξ) = 1√

2π
e−ξ

2/2. Hence we propose the
Gauss–Hermite quadrature rule to approximate these conditional expectations. The
L-point Gauss–Hermite quadrature rule for a function f writes as

(30) E[f(ζ)] =
∫

R
f(ξ)ρ(ξ)dξ ≈

L∑
`=1

f(ξ`)ω`,

where {ξ`} and {ω`} are the Gaussian–Hermite quadrature points and the associated
weights, respectively.

Consider, for example, the approximation of the conditional expectation Extn [p̃tn+1 ];
we have

(31)

Extn [p̃tn+1 ] = E[ptn+1(x̃tn,xtn+1
)]

= E
[
ptn+1

(
x+ b

(
x, u(tn)

)
∆t+ σ

(
x, u(tn)

)√
∆t ζ

)]
≈

L∑
`=1

ptn+1

(
x+ b

(
x, u(tn)

)
∆t+ σ

(
x, u(tn)

)√
∆t ξ`

)
ω`.

We shall denote by Ẽxtn [ptn+1 ] the approximation of Extn [p̃tn+1 ]; more precisely,

(32) Ẽxtn [ptn+1 ] =
L∑
`=1

ptn+1

(
x+ b

(
x, u(tn)

)
∆t+ σ

(
x, u(tn)

)√
∆t ξ`

)
ω`.

Similarly, we denote by Ẽxtn [ptn+1∆Wn+1] the approximation of Extn [p̃tn+1∆Wn+1]:
(33)

Ẽxtn [ptn+1∆Wn+1] =
L∑
`=1

ptn+1

(
x+ b

(
x, u(tn)

)
∆t+ σ

(
x, u(tn)

)√
∆t ξ`

)√
∆t ξ` ω`.

In the quadrature rule (32), we notice that x̂ = x+ b(x, u(tn))∆t+ σ(x, u(tn))
√

∆t ξ`
may not be on the partition Rh. Therefore, we shall resort to the linear interpolation
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Ih to get the desired information. To this end, we define

(34) Êxtn [ptn+1 ] =
L∑
`=1

Ihptn+1

(
x+ b

(
x, u(tn)

)
∆t+ σ

(
x, u(tn)

)√
∆t ξ`

)
ω`.

Similarly, we define Êxtn [ptn+1∆Wn+1] as

(35)
Êxtn [ptn+1∆Wn+1] =

L∑
`=1

Ihptn+1

(
x+ b

(
x, u(tn)

)
∆t

+ σ
(
x, u(tn)

)√
∆t ξ`

)√
∆t ξ` ω`.

Notice that the approximated expectation Êxtn [·] is a function of x. In the partition
space Rh, we denote Êtn [·] := Êxtn

tn [·]. In addition, for functions f ∈ Vh, we have

Êxtn [f(x̃tn,xtn+1
)] = Ẽxtn [f(x̃tn,xtn+1

)],

Êxtn [f(x̃tn,xtn+1
)∆Wn+1] = Ẽxtn [f(x̃tn,xtn+1

)∆Wn+1].

Based on the above observations, we finally get the following approximations Êxtn [ptn+1 ]
and Êxtn [ptn+1∆Wn+1] of Extn [ptn+1 ] and Extn [ptn+1∆Wn+1]:

(36)
Extn [ptn+1 ] = Êxtn [ptn+1 ] + R̂xp,n,

Extn [ptn+1∆Wn+1] = Êxtn [ptn+1∆Wn+1] + R̂xq,n,

where R̂kp,n and R̂kq,n are the truncation errors,

(37)
R̂xp,n = R̃xp,n +RxE,p,n +RxIh,p,n

,

R̂xq,n = R̃xq,n +RxE,q,n +RxIh,q,n
,

with

R̃xp,n = Extn [ptn+1 ]− Extn [p̃tn+1 ], R̃xq,n = Extn [ptn+1∆Wn+1]− Extn [p̃tn+1∆Wn+1],

RxE,p,n = Extn [p̃tn+1 ]− Ẽxtn [ptn+1 ], RxE,q,n = Extn [p̃tn+1∆Wn+1]− Ẽxtn [ptn+1∆Wn+1],

RxIh,p,n
= Ẽxtn [ptn+1 ]− Êxtn [ptn+1 ], RxIh,q,n

= Ẽxtn [ptn+1∆Wn+1]− Êxtn [ptn+1∆Wn+1].

3.3.2. The fully discrete scheme. By the semidiscrete equations (25) and (26)
and the approximations of the conditional expectations in (34), we get the following
two equations:

pxtn = Êxtn
[
ptn+1

]
+ ∆t f

(
x, pxtn , q

x
tn , u(tn)

)
+Rxp,n, pxtN = g(x),(38)

qxtn =
1

∆t

(
Êxtn
[
ptn+1∆Wn+1

]
+Rxq,n

)
,(39)

where Rxp,n and Rxq,n are the total truncation errors defined by

(40) Rxp,n = R̄xp,n + R̂xp,n, Rxq,n = R̄xq,n + R̂xq,n,

with R̄xp,n and R̄xq,n defined as in (25) and (26), and R̂xp,n and R̂xq,n defined as in (37).
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Based on the two fully discrete equations (38) and (39), we propose a fully dis-
crete numerical scheme for solving the FBSDEs (21) as follows: Given the terminal
condition pN =

∑
|k|≤P g(xk)φk(·) ∈ Vh, for n = N − 1, . . . , 1, 0, and each xk ∈ Rh,

solve pn=
∑
k p

k
nφk ∈ Vh and qn=

∑
k q

k
nφk ∈ Vh by

pkn = Êxk
tn

[
pn+1

]
+ ∆t f

(
xk, p

k
n, q

k
n, u(tn)

)
,(41)

qkn =
1

∆t
Êxk
tn

[
pn+1∆Wn+1

]
.(42)

3.4. Summary of the numerical approach. We now summarize the entire
algorithm of our gradient projection method. In the fixed-point iteration (12), we
have introduced J ′N (·) as the approximation of J ′(·). As the relation between J ′(·)
and the adjoint processes (p, q) has been revealed in (20), it is natural to define the
approximation J ′N (·) by replacing p, q, and E[·] in (20) with the associated numerical
approximations. More precisely, we define

(43) J ′N (u)|tn = Ê
[
pnb
′
u

(
·, u(tn)

)
+ qnσ

′
u

(
·, u(tn)

)]
+ j′

(
u(tn)

)
,

where Ê[·] is defined by

(44) Ê[φt0 ] = φt0 , Ê[φtn ] = Êx0
t0 [Êt1 [· · · Êtn−1 [φtn ]]], n > 1.

To make sure that J ′N (·) ∈ UN , we define

(45) J ′N (u)|t =
N−1∑
n=0

J ′N (u)|tn XIN
n

(t).

Then, the gradient projection method is summarized in Algorithm 1.

Algorithm 1 Gradient projection method
Set the initial guess of the control u0 ∈ UN and the error tolerance ε0;
1. Set the terminal condition: pkN = g(xk), xk ∈ Rh;
2. For n = N − 1, . . . , 1, 0, solve (pn, qn) by (41)–(42);
3. Compute J ′N (u)|tn by (43);
4. Update u by (12);
Repeat the above steps until the error ‖ui+1,N − ui,N‖ reaches the tolerance ε0.

To be more clear, we state the procedure for updating u by (12) as follows: Given
{u0,N (tn)}Nn=1, for i = 0, 1, . . . ,

1. solve the forward SDE (1) with u(t) =
∑N
n=1 u

i+1,N (tn)XIN
n

(t),
2. solve pn and qn by (41) and (42),
3. calculate J ′u|tn by (43),
4. update u by (12). To be specific, given ui,N as the control in the ith iteration,

we update the control u = ui+1,N by

ui+1,N =
N∑
n=1

ui+1,N (tn)XIN
n
,

where the coefficients ui+1,N (tn) are computed by the projection

ui+1,N (tn) = PC
(
ui,N (tn)− ρiJ ′N (ui,N )|tn

)
.
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We remark that the exact projection PC is used in this paper (as for problems with
regular domains, this projection can be obtained exactly). The effect of the ap-
proximation error of PC (when the projection cannot be computed exactly) will be
investigated in our future work.

4. Error estimates. In this section, we shall perform a rigorous error analysis
for our gradient projection method. As concluded in Corollary 3.2, the first order rate
of convergence relies on the estimate εN = O(∆t). By observing the definition of (20)
and (43), we see that the error εN contains two parts: the numerical error of (pkn, q

k
n)

and the approximation error of Ê[·]. In the following sections, we shall estimate the
two parts one by one.

4.1. Preliminary results of the discrete operator Ê[·]. In this subsection,
we first show some basic properties of the approximated conditional expectations
Êxk
tn [·] and Ê[·] which are defined in (34) and (44), respectively.

Notice that the weights of the quadrature rule {ω`} are all positive, and it holds
that ∑

`

ω` = 1.

Moreover, the L-point Gauss–Hermite quadrature rule is exact for polynomials with
degree less than or equal to 2L − 1. We now state some basic properties of Êxk

tn [·] in
the following proposition.

Proposition 4.1. Given variables φtn+1 = φ̄(tn+1, xtn+1), for L > 2, we have
the following:

• Ê[Êtn [φtn+1 ]] = Ê[φtn+1 ].
• If, for any x, it holds that φxtn+1

> 0, then we have Êxk
tn [φtn+1 ] > 0, Ê[φtn+1 ] >

0.
• (Êxk

tn [φtn+1 ])2 6 Êxk
tn [(φtn+1)2], (Ê[φtn ])2 6 Ê[(φtn)2], (Êxk

tn [φtn+1∆Wtn+1 ])2 6

(Êxk
tn [(φtn+1)2]− (Êxk

tn [φtn+1 ])2)∆t.

The points of the above proposition are all well known and easy to prove. It is
also known that under Assumption 2.1, for m > 1 it holds that

E[|xt|m] 6 C(|x0|m + 1).

In the following, we shall provide a similar result for the approximated expectation
Ê[·]. Notice that in what follows, C shall stand for a constant that is independent of
∆t, ∆x, n, and k, while its value may vary from place to place.

Proposition 4.2. Under Assumption 2.1, for m > 2, L > 2, and ∆x = O(
√

∆t),
it holds that

Ê[|xtn |m] 6 C(|x0|m + 1).

Proof. We denote by Ih|x|m the linear interpolation of the function | · |m at x.
By the interpolation theory, there exists θ ∈ [x−, x+] (where x− < x+ are two grid

D
ow

nl
oa

de
d 

11
/2

8/
17

 to
 1

16
.6

.4
9.

97
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GRADIENT PROJECTION METHODS FOR SOCPS 2995

points around x) such that for ∆x sufficiently small, it holds that

Ih|x|m 6 |x|m +
1
8
m(m− 1)|θ|m−2(∆x)2

6 |x|m +
1
8
m(m− 1)

(
(|x|+ ∆x)m + 1

)
(∆x)2

6 |x|m + C
(
|x|m + C∆x(|x|m + 1) + 1

)
(∆x)2

6
(
1 + C(∆x)2)|x|m + C(∆x)2.(46)

For fixed k and `, let a1 = xk + b(xk, u(tn))∆t and a2 = σ(xk, u(tn))
√

∆t ξ`; then
there exists θ ∈ [a1, a1 + a2] such that

|xk,`|m = |a1 + a2|m = |a1|m +m|a1|m−1sgn(a1)a2 +m(m− 1)|θ|m−2(a2)2

6 |a1|m +m|a1|m−1sgn(a1)a2 +m(m− 1)(|a1|+ |a2|)m−2(a2)2.(47)

By the assumptions on b and σ, for sufficiently small ∆t we have

|a1|m 6
(
(1 + C∆t)|xk|+ C∆t

)m
6 (1 + C∆t)m|xk|m + C∆t(|xk|m + 1)
6 (1 + C∆t)|xk|m + C∆t,

|a1|+ |a2| 6 C(|xk|+ 1).

Using (46)–(47) and the definition

xk,` = xk + b(xk, u(tn))∆t+ σ(xk, u(tn))
√

∆t ξ`,

we have

Êxk
tn [|xtn+1 |m] =

L∑
`=1

Ih|xk,`|mω`

6
(
1 + C(∆x)2) L∑

`=1

|xk,`|mω` + C(∆x)2

6
(
1 + C(∆x)2)((1 + C∆t)|xk|m + C∆t+ C(|xk|m + 1)∆t

)
+ C(∆x)2

6
(
1 + C(∆x)2)((1 + C∆t)|xk|m + C∆t

)
+ C(∆x)2.

Consequently, by the definition (44) and the assumption ∆x = O(
√

∆t ), we have

Ê
[
|xtn+1 |m

]
= Ê

[
Êtn [|xtn+1 |m]

]
6
(
1 + C(∆x)2) ((1 + C∆t)Ê[|xtn |m] + C∆t

)
+ C(∆x)2

6
(
1 + C(∆x)2)n+1(1 + C∆t)n+1

(
|x0|m + (n+ 1)C∆t+ (n+ 1)C(∆x)2

)
6 C(|x0|m + 1).

This completes the proof.

Next, by the variational arguments, we can easily present an approximation prop-
erty for the expectation Ê[·].
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Lemma 4.3. Assume that b, σ ∈ C0,4
b . For φt = φ̄(t, xt) with φ̄ ∈ C0,4

b , we define
Φti(x) = Exti [φtn ]; then it holds that Φti ∈ C

0,4
b , and furthermore we have

E[φtn ] = Ê[φtn ] +
n−1∑
i=0

Ê[R̂Φ,i],

with R̂Φ,i = Exti
ti [Φti+1 ]− Êxti

ti [Φti+1 ], 1 6 i 6 n.

4.2. The error estimates of (pk
n, qk

n). We let

µn = ptn − pn, νn = qtn − qn,

where (pt, qt) and (pn, qn) are the exact solutions of the FBSDEs (21) and numerical
solutions of the scheme (41)–(42), respectively. Notice that

pn(x) =
∞∑

k=−∞

pknφk(x), qn(x) =
∞∑

k=−∞

qknφk(x),

where (pkn, q
k
n) are numerical solutions by scheme (41)–(42), and for xk ∈ Rh we have

(pkn, q
k
n) = (pn(xk), qn(xk)). We now define

µkn = pxk
tn − p

k
n, νkn = qxk

tn − q
k
n.

Then, by subtracting (41) from (38), and (42) from (39), respectively, we deduce that

µkn = Êxk
tn [µn+1] + ∆t δfkn +Rkp,n, µkN = pxk

tN − p
k
N ,(48)

νkn =
1

∆t

(
Êxk
tn [µn+1∆Wn+1] +Rkq,n

)
,(49)

where

δfkn = f(xk, pxk
tn , q

xk
tn , u(tn))− f(xk, pkn, q

k
n, u(tn)), Rkp,n = Rxk

p,n, Rkq,n = Rxk
q,n.

Now, we are ready to give the estimates of µkn and νkn in the following lemma.
The estimates also imply the stability of the scheme (41)–(42) and will be used in our
final error estimates.

Lemma 4.4. Under Proposition 4.1, namely, assume that f(x, p, q, u) is Lipschitz
continuous with respect to p and q, uniformly in x and u; then there holds

Ê[(µn)2] + ∆t
N−1∑
n=0

Ê[(νn)2] 6 C Ê[(µN )2] +
C

∆t

N−1∑
n=0

Ê
[
(Rp,n)2 + (Rq,n)2] .

Proof. By taking square of (48)–(49) and using Proposition 4.1 and the inequality
(a+ b)2 6 (1 + ε)a2 + (1 + 1/ε)b2, we get

(µkn)2 6 (1 + γ∆t)
(
Êxk
tn [µn+1]

)2
+ C

(
1 +

1
γ∆t

)(
∆t2

(
(µkn)2 + (νkn)2)+ (Rkp,n)2

)
,

(νkn)2 6
C

∆t

(
Êxk
tn [(µn+1)2]−

(
Êxk
tn [µn+1]

)2)+
C

(∆t)2

(
Rkq,n

)2
.
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Let ∆t 6 1/γ, γ = 4C2, and add up the above inequalities to get

(µkn)2 +
∆t
2C

(νkn)2 6 (1 + γ∆t)Êxk
tn [(µn+1)2] +

∆t
2C

(µkn)2

+
1

2∆t

(
(Rkp,n)2 + (Rkq,n)2

)
,

which yields

(µkn)2 + C∆t(νkn)2 6 (1 + C∆t)Êxk
tn [(µn+1)2] +

1
∆t

(
(Rkp,n)2 + (Rkq,n)2

)
.

By taking discrete expectation on the above inequality, we have

(50) Ê[(µn)2] + C∆t Ê[(νn)2] 6 (1 + C∆t)Ê[(µn+1)2] +
1

∆t
Ê
[
(Rp,n)2 + (Rq,n)2].

Then, we get

(51) Ê[(µn)2] 6 C Ê[(µN )2] +
C

∆t

N−1∑
n=0

Ê
[
(Rp,n)2 + (Rq,n)2].

Taking the summation of (50) from n = 0 to N − 1, we get

C∆t
N−1∑
n=0

Ê[(νn)2] 6
N−1∑
n=0

(
C∆t Ê[(µn+1)2] +

1
∆t

Ê
[
(Rp,n)2 + (Rq,n)2])

6 C Ê[(µN )2] +
C

∆t

N−1∑
n=0

Ê
[
(Rp,n)2 + (Rq,n)2].(52)

Then, the proof is complete.

We now provide the following lemma for estimating the truncation errors, and
the proof is somewhat standard using the arguments of approximation theory.

Lemma 4.5. Suppose that Assumption 2.1 holds, and, moreover, we assume that
b(·, w), σ(·, w) ∈ C4

b and f(·, ·, ·, w) ∈ C2,2,2
b hold uniformly in w ∈ C, η ∈ C1,4

b . Then,
we have

1
∆t

N−1∑
n=0

Ê
[
(Rp,n)2 + (Rq,n)2] = O

(
(∆t)2)+O

(
(∆x)4/(∆t)2).

Proof. As shown in (37), (38), and (39), Rkp,n and Rkq,n consist of the following
parts of errors:

(53)
Rkp,n = R̄kp,n + R̃kp,n +RkE,p,n +RkIh,p,n

,

Rkq,n = R̄kq,n + R̃kq,n +RkE,q,n +RkIh,q,n
.

By the interpolation theory, we have the following estimate:

RkIh,p,n
= O

(
(∆x)2), RkIh,q,n

= O
(
(∆x)2).

Also, by the error estimate of the Gauss quadrature rule [31], for f ∈ Cr and 0 < ε < 1
we have∣∣∣∣∣ 1√

2π

∫
R
f(ξ)e−ξ

2/2dξ −
L∑
`=1

f(ξ`)ω`

∣∣∣∣∣ 6 CL−r/2√
2π

∫
R
|f (r)(ξ)e−(1−ε)ξ2/2|dξ,
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where the constant C is dependent on r while it is independent of L and f. Therefore,
we have that ∣∣RkE,p,n∣∣ 6 Cσ

(
xk, u(tn)

)4(∆t)2,∣∣RkE,q,n∣∣ 6 Cσ
(
xk, u(tn)

)4(∆t)5/2 + Cσ
(
xk, u(tn)

)3(∆t)2.

Then, by Proposition 4.2, we have

Ê[(RE,p,n)2] = O
(
(∆t)4), Ê[(RE,q,n)2] = O

(
(∆t)4).

For R̃kp,n and R̃kq,n, a rough estimation follows by the Taylor expansion:

Exk
tn [ptn+1 ] = pxk

tn+1
+ ∆tL η(tn+1, xk) +

∫ tn+1

tn

∫ s

tn

Exk
tn [LL η(tn+1, xr)]drds,(54)

Exk
tn [p̃tn+1 ] = pxk

tn+1
+ ∆t L̃ η(tn+1, xk) +

∫ tn+1

tn

∫ s

tn

Exk
tn [L̃L̃ η(tn+1, x̃r)]drds;(55)

then we can deduce that R̃kp,n = O
(
(∆t)2

)
, where

Lφ(xr) = b
(
xr, u(r)

)
φ′(xr) +

1
2
σ
(
xr, u(r)

)2
φ′′(xr),

L̃φ(x̃r) = b
(
xtn , u(tn)

)
φ′(x̃r) +

1
2
σ
(
xtn , u(tn)

)2
φ′′(x̃r).

Similarly, for R̃kq,n we can derive that R̃kq,n = O
(
(∆t)2

)
. Finally, for the semi-

discretization error, we have

R̄xk
p,n =

∫ tn+1

tn

∫ t

tn

Exk
tn [L0f̄(s, xs)]dsdt,

R̄xk
q,n =

∫ tn+1

tn

∫ t

tn

Exk
tn [L0f̄(s, xs)∆Wn+1 + L1f̄(s, xs)− L0ζ(s, xs)]dsdt,

where f̄(t, x) = f
(
x, η(t, x), ζ(t, x), u(t)

)
. Thus, by recalling that u ∈ UN , we have

R̄xk
p,n = O

(
(∆t)2), R̄xk

q,n = O
(
(∆t)2).

Then, the desired result follows by combining all the estimates above.

By the above arguments (Lemmas 4.3–4.5), we can finally get the following error
estimates for our numerical schemes.

Theorem 4.6. Under Assumption 2.1 and the conditions in Lemmas 4.3–4.5, it
holds that

Ê[(µn)2] + ∆t
N−1∑
n=0

Ê
[
(νn)2] = O

(
(∆t)2)+O

(
(∆x)4/(∆t)2),

sup
i
‖J ′(uN,i)− J ′N (uN,i)‖ = O(∆t) +O

(
(∆x)2/∆t

)
.

In particular, if we have ∆x = ∆t, and we suppose that the assumptions in Theorem
3.1 and Corollary 3.2 hold, then it holds that

sup
i
‖J ′(uN,i)− J ′N (uN,i)‖ = O(∆t), ‖u∗ − uN,i‖ = O(∆t), i→∞.
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Proof. Given u ∈ UN , we define

φt = pt b
′
u

(
xt, u(t)

)
+ qt σ

′
u

(
xt, u(t)

)
+ j′

(
u(t)

)
,

φkn = pknb
′
u

(
xk, u(tn)

)
+ qknσ

′
u

(
xk, u(tn)

)
+ j′

(
u(tn)

)
.

Then by the assumptions, we have φ̄ ∈ C1,4
b in [tn, tn+1) × R, where φ̄ is such that

φt = φ̄(t, xt). Moreover, J ′(u)|t = E[φt], J ′N (u)|tn = Ê[φn]. Then, we have

‖J ′(u)− J ′N (u)‖2

6 C

N−1∑
n=0

∫ tn+1

tn

(
J ′(u)|t − J ′(u)|tn

)2 +
(
J ′(u)|tn − J ′N (u)|tn

)2
dt

= C

N−1∑
n=0

∫ tn+1

tn

(∫ t

tn

d

dr
E[φr]

∣∣∣
r=s

ds
)2
dt + C∆t

N−1∑
n=0

(
E[φtn ]− Ê[φn]

)2
6 C∆t

N−1∑
n=0

∫ tn+1

tn

∫ t

tn

(
E[L0φ̄(s, xs)]

)2
ds dt

+ C∆t
N−1∑
n=0

((
E[φtn ]− Ê[φtn ]

)2 +
(
Ê[φtn ]− Ê[φn]

)2)
6 C(∆t)2 + C(∆x)4/(∆t)2 + C∆t

N−1∑
n=0

Ê
[
(µn)2 + (νn)2]

= O
(
(∆t)2)+O

(
(∆x)4/(∆t)2).

Notice that the above estimations are valid since under Assumption 2.1 each estimate
hold true uniformly in u. We complete the proof.

5. Numerical experiments. In this section, we present several numerical ex-
amples to verify the efficiency of our numerical approach. In all our computations,
we need to choose a reasonable parameter ρ. Motivated by the error estimates in
the last section, we notice that the scheme admits a good convergence property with
sufficiently small ρ. However, extremely small ρ would decrease the convergence rate
of the iteration. In our examples, we shall simply choose ρi = 1/

√
i. And in what

follows, we shall denote by “CR” the convergence rate.
Example 1. Our first example has been used in [12]. The optimal control problem

is stated as

J(u∗) = min
u∈K

J(u),

with the cost functional

J(u) =
1
2

∫ T

0
E
[(
xt − x∗(t)

)2]
dt+

1
2

∫ T

0
u2(t)dt, K = U,

and the controlled state equation

dxt = u(t)xt dt+ σxt dWt.
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Here σ is a constant. The deterministic function x∗ and the corresponding exact
solution u∗ are given by

(56) u∗(t) =
T − t

1
x0
− Tt+

t2

2

, x∗(t) =
eσ

2t − (T − t)2

1
x0
− Tt+

t2

2

+ 1.

We set x0 = 1, T = 1, and σ = 0.1, and the number of samples for approximating the
expectation is chosen as M = 105, and we set the tolerance as ε0 = 10−5. Numerical
results by our gradient projection method are presented in Figure 1.

t
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n
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-2.5
convergence rate

error
1st order rate

Fig. 1. Numerical results for Example 1 with solution (56).

The left plot shows that the numerical solution matches the exact solution very
well when N = 100. In the right plot, we have tested the error decays with N =
40, 50, . . . , 100, and it is clearly shown that the method admits a first order rate of
convergence.

Next, we test a different pair (x∗, u∗) which is given by

(57) u∗(t) =
e−T − e−t

1
x0

+ 1− e−t − te−T
, x∗(t) =

eσ
2t − (e−T − e−t)2

1
x0

+ 1− e−t − te−T
− e−t.

We set σ = 0.1, M = 105, ε0 = 10−5, and N = 40, 50, . . . , 100. The numerical results
are given in Figure 2. Again, the numerical solution matches the exact solution very
well, and a first order convergence rate is observed.

Example 2. Our second example is also from [12]. More precisely, we consider

J(u∗) = min
u∈K

J(u),

with

J(u) =
1
2

∫ T

0
E
[(
xt − x∗(t)

)2]
dt+

1
2

∫ T

0
u2(t)dt, K = U,

dxt =
(
u(t)− r(t)

)
dt+ σu(t)dWt.
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Fig. 2. Numerical results for Example 1 with solution (57).

Here we set r(t) = u∗(t)/2, x0 = 0, and T = 1, and σ is a constant. The deterministic
function x∗ and the corresponding exact solution u∗ are chosen as

u∗(t) =
T − t

σ2(T − t) + 1
, x∗(t) =

t

2σ2 −
1

2σ4 ln
σ2T + 1

σ2(T − t) + 1
+ 1.

In our computations, we choose σ = 0.1, M = 105, ε0 = 10−5, andN = 40, 50, . . . , 100.
The numerical results are shown in Figure 3. Similar conclusions can be made as for
Example 1. The method converges with the first order accuracy.
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Fig. 3. Numerical results for Example 2.

Example 3. The previous discussions have focused on the deterministic control,
that is, u ∈ U . In this example, we will show that our method can also be used to
solve SOCPs with feedback control.

This example is set to be the same as in (1)–(2), except that the control constraint
set is now a set of stochastic controls:

(58) KF = {u ∈ UF
∣∣ut(ω) ∈ C a.e. a.s.}.
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It follows from stochastic optimal control theory that the optimal control is actually
a feedback control; more precisely, there exists a function ū∗ such that u∗t = ū∗(t, xt)
(see, e.g., [46, 14]). Given a feedback control u with ut = ū(t, xt), by introducing the
adjoint processes (p, q) in the same way as in the deterministic case, and by applying
the Itô formula, we can show that

(59) J ′(u)t = ptb
′
u(xt, ut) + qtσ

′
u(xt, ut) + j′(ut).

Notice that ut is a function of t and xt; then by (59) we know that J ′(u)t is also a
function of t and xt. Therefore, due to the feedback property of the control, we can
write J ′(u) pointwisely in time-space grids, namely,

(60) J ′(u)xtn = pxtnb
′
u

(
x, ū(tn, x)

)
+ qxtnσ

′
u

(
x, ū(tn, x)

)
+ j′

(
ū(tn, x)

)
,

where x ∈ Dh and J ′(u)xt denotes J ′(u)t valued at xt = x. In the above equation,
by introducing our numerical solutions pn and qn, we get the approximated J ′N (·) of
J ′(·):
(61) J ′N (u)kn = pknb

′
u

(
xk, ū(tn, xk)

)
+ qknσ

′
u

(
xk, ū(tn, xk)

)
+ j′

(
ū(tn, xk)

)
.

Since the constraint K (58) is also pointwise in time and space, the projection problem
at the grid point (tn, x), x ∈ Dh, can be written as

ū∗(tn, x) = PC
(
ū∗(tn, x)− ρJ ′(u∗)xtn

)
.

Here we shall not compute the feedback law explicitly; however, we do compute the
values of the control at the grid point. Then u∗ is updated in the following way:

(62) ūi+1(tn, xk) = PC
(
ūi(tn, xk)− ρiJ ′N (ui)kn

)
.

Notice that due to the change of the space of control, we get rid of the expectation
in the computation of J ′(u), meaning that we no longer need the history informa-
tion before time t to compute J ′(u)t, but only the information at time instance t.
Consequently, if a proper space partition {xk}k is obtained, and the constraint K is
pointwise in time, then we can run the algorithm in a backward manner as described
in Algorithm 2. Compared to Algorithm 1, we notice that under the same spatial
partition, Algorithm 2 can save a lot of restoration.

Algorithm 2 Gradient projection method
Set the initial guess of the control {ū(tn, xk)}n,k and the error tolerance ε0;
1. Set the terminal condition: pkN = g(xk), xk ∈ Rh;
2. For n = N − 1, . . . , 1, 0, do

a. solve (pn, qn) by (41)–(42);
b. compute J ′N (u)kn by (61);
c. update u by (62);

Repeat a–c until supk |ūi+1(tn, xk)− ūi(tn, xk)| ≤ ε0.

We now test Algorithm 2 for Example 3 with K defined in (58), and compare
the results using feedback control with the results obtained by using the deterministic
control. For the feedback control, we shall use the rectangular rule and the Monte
Carlo method to compute the integral and the expectation of the objective functional,
respectively. The numerical results are listed in Table 1. It is shown that the use of
feedback control can indeed improve the results (it produces a smaller value of objec-
tive functional), and this is reasonable as we are minimizing the objective functional
within a larger control set.
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Table 1
Numerical results for Example 3.

N J(u) with Algorithm 1 J(u) with Algorithm 2
100 0.84833 0.62535
200 0.84797 0.64507
400 0.84777 0.65509
800 0.84770 0.66013

Example 4. Our last example is a portfolio problem. We consider the following
example, which was used in [9]:

J(u∗) = min
u∈K

J(u),

with

J(u) =
1
2

E
[
(xT − κ)2] , K =

{
u ∈ UF ; −1 6 ut 6 1, a.e. a.s.

}
,

dxt = (ζσut + r)xt dt+ σutxt dWt.

The parameters are chosen as

T = 50, κ = 1000, x0 = 300, r = 0.02, σ = 0.1, ζ = 0.05.

We set ε0 = 10−4, L = 4, and ρi = 0.01/i, and the space region is given by [−100, 900].
The optimal value of J(u) given in [9] is 15023. To show the convergence rate, we
perform experiments with N = 1000, 2000, 4000, 8000, and we choose M = N2/10.
The corresponding numerical solutions for J(u) are listed in Table 2. It is clear
that the method admits a first order rate of convergence. This example shows that
Algorithm 2 is capable of solving some optimal control problems involving feedback
control.

Table 2
Numerical results for Example 4.

N 1000 2000 4000 8000 Optimal
J(u) 15196 15107 15069 15045 15023
CR - 1.0423 0.8688 1.0641

6. Conclusion. In this work, we propose a gradient projection method for solv-
ing stochastic optimal control problems. The scheme contains a fixed-point iteration
of the control and an Euler scheme for solving the adjoint equation that is given by
BSDEs. The Euler method is used to solve the adjoint BSDEs. We rigorously prove
that our numerical method admits a first order rate of convergence. Several numerical
tests are presented to support our theoretical finding.
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