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Abstract

Numerical solutions are presented for steady two-dimensional motion within a circular cylinder generated by
fluid injecting radially over one small arc and ejecting radially over another arc. These solutions are based on
a mixed finite-difference pseudospectral method. Previous calculations were able to obtain convergent results
only for a range of Reynolds numbers from Re= 0 to Re= 20. The main object of this study is to extend the
Reynolds number range for reliable solution, particularly with regard to the flow patterns, based on a pseudospectral
approach. 2000 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

There are many differences between the external and the internal problems. For example, no solution
of the external problem exists at zero Reynolds number (Stokes’ paradox), but this is not true of the
interior problem. These internal flows may occur through the rotation of part (or all) of the cylinder wall
(moving-wall problem) or fluid entering and leaving the cylinder normal to the wall (inflow–outflow
problem). These problems are of interest physically as they are representative of two distinct types of
motion which occur frequently in practice (see Mills [10] and the references therein). They were also
investigated theoretically and numerically by several researchers (see, e.g., [1,3,9,11]).

The motion inside a circular geometry is also a good model problem for testing numerical methods.
It involves non-smooth boundary conditions, co-ordinate singularity (pole conditions), and stabilization
for large Reynolds numbers. In spite of several numerical methods and computations for the interior flow
problems, accurate results have been obtained only for small Reynolds number (Re6 25). The problem
under consideration in this work is the inflow–outflow problem. The first attempt at this fluid motion was
made by Rayleigh [11] who considered only slow motion. There have been also several approaches for
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solving the inflow–outflow problem numerically [3,4,10,12], which all employed sequential iterative
procedures. In using the iterative methods, difficulties arise in determining boundary values of the
vorticity. In [3,4,10,12], the boundary vorticity has been determined by applying a constraint condition
derived from some integral representations. Convergent solutions have been obtained for small Reynolds
numbers only. In this work, we will employ Newton’s method rather than iterative methods in solving
the discretized system, which avoids determining boundary values of the vorticity. The direct use of
Newton’s method on two-dimensional numerical approximations have been proved very successful (e.g.,
see [5]).

The main disadvantage in using Newton’s method is that it requires large amount of computing
time and computer memory. This had led many researchers to examine carefully the spectral method
as a useful means for obtaining accurate solutions at a reasonably small number of a grid points.
With spectral methods the relatively coarse grids allow very time- and memory-effective calculations.
Although solutions to the present problems are nonsmooth, our numerical experiments suggest that
spectral convergence in the radial direction can be obtained. Therefore, we will use a finite-difference
approximation in the transverse direction and a pseudospectral method in the radial direction. Using this
approach we are able to obtain accurate numerical solutions for high Reynolds numbers with practical
computing time and computer memory.

2. Mathematical formulation

We shall consider the formulation for the general case of the inflow–outflow problem within the
circular boundary as shown in Fig. 1. Two specific cases are considered numerically, namely the case
of symmetrical flow withα = 0 andε = π/30 and the asymmetrical flow withα = π/8 andε = π/32.
In this problem, the fluid is injected normally into the circle over an arc CD of length 2ε and flows out at
θ = α over the arc AB of the same length as CD. The radiusa of the circle, the velocityU and half the
flow aεU across the arc CD (or AB) are used to make the variables dimensionless.

Fig. 1. Inflow–outflow problem.
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Taking plane polar coordinates(r, θ), the dimensionless radial and transverse velocity components
(vr , vθ ) and scalar vorticityζ are defined by

vr = 1

r

∂ψ

∂θ
, vθ =−∂ψ

∂r
, ζ = 1

r

∂vr

∂θ
− ∂vθ
∂r
− vθ
r
, (1)

whereψ is the streamfunction. From (1) and the Navier–Stokes momentum equations, the governing
equations forψ andζ are well-known to be

1ψ = ζ, 1ζ = Re

r

(
∂ψ

∂θ

∂ζ

∂r
− ∂ψ
∂r

∂ζ

∂θ

)
, (2)

where Re=Uaε/ν is the Reynolds number of the motion,ν is the kinematic viscosity coefficient of the
fluid and1= ∂rr + r−1∂r + r−2∂θθ .

The boundary conditions for the present problem (see Fig. 1) are that, atr = 1,

ψ = f (θ)=


(θ − α)/ε, for α− ε 6 θ 6 α+ ε,
1, for α+ ε 6 θ 6 π − ε,
(π − θ)/ε, for π − ε 6 θ 6 π + ε,
−1, for π + ε 6 θ 6 2π + α − ε,

(3)

∂ψ

∂r
= 0 for 06 θ 6 2π. (4)

The governing equations (2) are singular atr = 0. Some special treatment at this point is required for
finite difference or pseudospectral approximations. It can be shown that spectral accuracy is obtained if
the (standard) pseudospectral method is applied to such coordinate-singular problems with suitable pole
conditions (e.g., see [2,6]). It is assumed that atr = 0 the stream function and vorticity are smooth and
unique (single valued). This, together with the Navier–Stokes equations (2) and Taylor expansion, yield:

∂2ψ

∂θ2
(0, θ)= 0,

2π∫
0

∂ψ

∂r

(
0, θ̃

)
dθ̃ = 0,

∂2ζ

∂θ2
(0, θ)= 0,

2π∫
0

∂ζ

∂r

(
0, θ̃

)
dθ̃ = 0.

They are used as numerical boundary conditions atr = 0. Forα = 0 these conditions can be significantly
simplified for the case of symmetrical flow due to the symmetry. In this case, we have

ψ(0, θ)= 0 and ζ(0, θ)= 0 for 06 θ 6 2π. (5)

3. Numerical methods

We use central finite differences in theθ -direction and a pseudospectral (Legendre collocation) method
in ther-direction. Letρi , 06 i 6Nr be a set of Legendre–Gauss–Lobatto points on[−1,1], whereNr is
a positive integer. We define transformed collocation points in ther-direction asri = (1+ ρi)/2. In the
θ -direction grid points are defined asθj = jhθ , hθ = 2π/Nθ , 06 j 6Nθ . Denote the approximations of
ψ(ri, θj ) andζ(ri, θj ) by ψi,j andζi,j , respectively, and define

ψj(r)=
Nr∑
i=0

ψi,jLi(r), ζj (r)=
Nr∑
i=0

ζi,jLi(r), 06 j 6Nθ, (6)
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whereLi(r) are the Lagrange basis functions associated with{rk}Nrk=0. Then discretizing the governing
equations (2) by using central differences in theθ -direction and the pseudospectral method in the
r-direction at the interior grid points gives: atr = ri ,(

d2

dr2
+ 1

r

d

dr

)
ψj(r)+ ψj+1(r)− 2ψj(r)+ψj−1(r)

r2h2
θ

= ζj (r), (7)(
d2

dr2
+ 1

r

d

dr

)
ζj (r)+ ζj+1(r)− 2ζj (r)+ ζj−1(r)

r2h2
θ

= Re

r

[
ψj+1(r)−ψj−1(r)

2hθ

dζj
dr
(r)− dψj

dr
(r)
ζj+1(r)− ζj−1(r)

2hθ

]
, (8)

for 16 i 6Nr − 1, 06 j 6Nθ − 1.
For high Reynolds numbers it is often required for numerical schemes to have some type of upwind

features in order to stabilize the computation. Here we employ an upwind treatment for the pseudospectral
approximation in ther-direction. This technique has been used successfully by Huang and Sloan [7] for
solving a class of singular perturbation problems.

Define the approximation of the velocity componentvr as(vr)i,j = (ψj+1(ri)− ψj−1(ri))/2rihθ and
let

ζ̂j (r)=
Nr−1∑
i=0

ζi,j L̂i(r), ζ̌j (r)=
Nr∑
i=1

ζi,j Ľi(r), 06 j 6Nθ, (9)

whereL̂i(r) are the Lagrange basis functions associated with{rk}Nr−1
k=0 , Ľi(r) are associated with{rk}Nrk=1.

Then replace the term(dζj/dr)(ri ) on the right-hand side of Eq. (8) by

dζj
dr
(ri)⇒


dζ̂j
dr
(ri), if (vr)i,j > 0,

dζ̌j
dr
(ri), if (vr)i,j < 0.

(10)

This treatment has been used in all calculations presented in this paper and it is found that this technique
stabilizes the computation. It is especially useful for the case of asymmetrical flow with high Reynolds
numbers.

The system consisting of (7), (8) and related boundary conditions is nonlinear and is solved by
Newton’s method with continuation in Re.

4. Numerical results

We shall investigate two typical cases of the inflow–outflow problem as described in Fig. 1, the
symmetrical flow with(α, ε)= (0, π/30) and the asymmetrical case with(α, ε)= (π/8, π/32). We first
consider the symmetrical flow problem which has been investigated numerically in [3,4,12].

To examine the accuracy of the numerical method described in the previous section and its capability
of handling the coordinate singularity atr = 0, numerical experiments have been carried out for the flow
with Re= 0 where the analytical expression of the solution is available [10]. First we fixNθ and consider
the accuracy of the method for a couple of values ofNr . A relatively largeNθ (Nθ = 140) is chosen so
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Fig. 2. Streamlines for the symmetrical flow with (a) Re= 100, (b) Re= 200, (c) Re= 400, (d) Re= 600,
(e) Re= 800 and (f) Re= 1000.

Table 1
Values forψ,ζ and coordinates at the centers of the primary vortex (with subscript 1)
and secondary vortex (with subscript 2)

Re ψ1 ζ1 x1 y1 ψ2 ζ2 x2 y2

100 1.554 −12.306 0.337 0.461 0.993 1.401 −0.479 0.653

200 1.449 −10.739 0.384 0.452 0.971 2.074 −0.440 0.537

400 1.324 −8.824 0.441 0.438 0.965 1.731 −0.429 0.522

800 1.214 −6.467 0.477 0.431 0.972 1.153 −0.408 0.529

1000 1.186 −5.682 0.481 0.432 0.975 0.984 −0.402 0.530

that the discretization error in theθ -direction is sufficiently small. It is observed that spectral accuracy is
indeed achieved and the numerical results with a few collocation points are fairly accurate. Next we fix
Nr = 24 and varyNθ . As expected the convergence order of the central difference scheme is about 1.8
which less than two due to the nonsmoothness of the boundary conditions atr = 1. Numerical results
also suggest that the grid sizes in theθ -direction should be chosen such that no grid points coincide with
the sharp edges. When the sharp edges are grid points the numerical errors become larger.

The streamlines for the cases of 2.56 Re6 20 obtained withNr = 24, Nθ = 140 are in excellent
agreement with the published results. The streamlines obtained with gridNr = 40 andNθ = 160
for higher Reynolds numbers 1006 Re6 1000 are shown in Fig. 2. It is observed that a secondary
vortex appears around Re= 100. The secondary vortex becomes stronger until about Re= 400 and is
subsequently getting weaker asR increases. This can also be seen from Table 1 where the values of the
stream function, vorticity and coordinates at the primary and secondary vortex centers are listed. Table 1
also suggests that positions of the vortex centers tend to be independent of Re as the Reynolds number
increases.
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Fig. 3. Streamlines for the asymmetrical flow with (a) Re= 100, (b) Re= 200, (c) Re= 400, (d) Re= 600,
(e) Re= 800 and (f) Re= 1000.

In order to ensure thatNθ = 160 is larger enough for higher Reynolds numbers, results for Re= 200
and 600 with different values ofNθ are computed. It is noticed that the changes fromNθ = 160 to 200
are very small.

Finally, we consider asymmetrical flow withα = π/8 and ε = π/32. This problem has been
investigated by Mills [10] and Dennis et al. [4] for Re6 20. Again, our results for Re6 20 are in good
agreement with those given in [4]. They are also comparable with those presented by Mills [10] except
for the case of Re= 2.5. In this case, our result consolidates the observation of Dennis et al. who found
two regions of separation rather than one as shown by Mills.

The streamlines obtained with(Nr,Nθ) = (40,160) for 1006 Re6 1000 are shown in Fig. 3. The
values of the stream function, vorticity and coordinates at the vortex centers are listed in Table 2. It is
observed that the flow patterns for large values of Re are almost independent of the Reynolds numbers.

The full spectral methods in bothr and θ directions, based on spectral element techniques, can be
found in [8].
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Table 2
Values forψ,ζ and coordinates at the centers of the primary vortices (the upper one with
subscript 11 and the lower with 12) and secondary vortices (the upper one with subscript 21
and the lower with 22) for the asymmetrical flow

Re ψ11 ζ11 x11 y11 ψ12 ζ12 x12 y12

100 1.501 −14.509 0.222 0.583 −1.647 11.111 0.400 −0.318

200 1.364 −12.288 0.265 0.586 −1.532 9.763 0.446 −0.299

400 1.279 −9.398 0.297 0.590 −1.394 8.345 0.507 −0.264

800 1.182 −6.370 0.304 0.596 −1.266 6.710 0.564 −0.226

1000 1.157 −5.513 0.305 0.600 −1.231 6.198 0.580 −0.215

Re ψ21 ζ21 x21 y21 ψ22 ζ22 x22 y22

100 0.993 1.609 −0.520 0.646 −0.991 −1.399 −0.473 −0.624

200 0.976 2.229 −0.471 0.549 −0.966 −2.047 −0.441 −0.506

400 0.974 1.765 −0.475 0.524 −0.957 −1.697 −0.406 −0.502

800 0.981 1.173 −0.494 0.514 −0.961 −1.135 −0.331 −0.518

1000 0.984 0.996 −0.496 0.514 −0.964 −0.979 −0.307 −0.521
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