
Available online at www.sciencedirect.com
ScienceDirect

J. Differential Equations 262 (2017) 1720–1746

www.elsevier.com/locate/jde

Gradient bounds for a thin film epitaxy equation

Dong Li a, Zhonghua Qiao b,∗, Tao Tang c,d

a Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, V6T 1Z2, 
Canada

b Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
c Department of Mathematics, South University of Science and Technology, Shenzhen, Guangdong 518055, China

d Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong

Received 20 June 2016

Available online 28 October 2016

Abstract

We consider a gradient flow modeling the epitaxial growth of thin films with slope selection. The surface 
height profile satisfies a nonlinear diffusion equation with biharmonic dissipation. We establish optimal 
local and global wellposedness for initial data with critical regularity. To understand the mechanism of slope 
selection and the dependence on the dissipation coefficient, we exhibit several lower and upper bounds for 
the gradient of the solution in physical dimensions d ≤ 3.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Let ν > 0. Consider

∂th = ∇ · ((|∇h|2 − 1)∇h) − ν�2h (1.1)

and the 1D version
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ht = (h3
x − hx)x − νhxxxx. (1.2)

Eq. (1.1) is a nonlinear diffusion equation which models the epitaxial growth of thin films. It is 
posed on the spatial domain � which can either be the whole space Rd , the L-periodic torus 
(L > 0 is a parameter corresponding to the size of the system) Rd/LZd , or a finite domain in 
Rd with suitable boundary conditions. In this work for simplicity we shall be mainly concerned 
with the 2π -periodic case � = Td =Rd/2πZd but our results can be easily generalized to other 
settings. The function h = h(t, x) : R × � → R represents the scaled height of a thin film and 
ν > 0 is positive parameter which is sometimes called the diffusion coefficient. Typically in 
numerical simulations one is interested in the regime where ν is small so that the nonlinear 
effects become dominant. The 1D version (1.2) is connected with the Cahn–Hilliard equation:

∂tu = �(u3 − u) − ν�2u

through the identification u = ∂xh. This connection breaks down for dimension d ≥ 2.
Define the energy

E(h) =
∫
�

(1

4
(|∇h|2 − 1)2 + ν

2
|�h|2

)
dx. (1.3)

The equation (1.1) can be regarded as a gradient flow of the energy functional E(h) in L2(�). In 
fact, it is easy to check that

d

dt
E(h) = −‖∂th‖2

2, (1.4)

i.e. the energy is always decreasing in time as far as smooth solutions are concerned. Alternatively 
one can derive the energy law from (1.1) by multiplying both sides by ∂th and integrating by 
parts. The first term in (1.3) models the Ehrlich–Schowoebel effect [3,12,13]. Formally speaking 
it forces the slope of the thin film |∇h| ≈ 1. For this reason Eq. (1.1) is often called the growth 
equation with slope selection. On the other hand, in the literature there are also models “without 
slope selection”, such as

∂th = −∇ · ( 1

1 + |∇h|2 ∇h
) − ν�2h. (1.5)

Heuristically speaking, if in (1.5) the slope |∇h| is small, then

1

1 + |∇h|2 ≈ 1 − |∇h|2

and one recovers the nonlinearity in (1.1). However this line of argument seems only reasonable 
when |∇h| 	 1 which is a typical transient regime and not so appealing physically. Indeed the 
long time interfacial dynamics governed by (1.1) and (1.5) can be quite different, see for example 
the discussion in [5]. The second term in (1.3) corresponds to the fourth-order diffusion in (1.1). 
It has a stabilizing effect both theoretically and numerically.
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Eq. (1.1) can also be viewed as regularized version of the equation

∂th = ∇ · ((|∇h|2 − 1)∇h). (1.6)

The wellposedness of (1.6) is a rather subtle issue. In light of recent developments [1,2], one 
should expect generic illposedness although the underlying mechanism will be different. How-
ever as it turns out, if there is a smooth solution to (1.6) on some finite time interval, then it must 
admit some form of a maximum principle. We record it here as

Proposition 1.1 (Maximum principle for smooth solutions to (1.6)). Let the dimension d ≥ 1 and 
Td = Rd/2πZd be the usual 2π -periodic torus. Let T > 0 and assume h ∈ C1

t C2
x([0, T ] × Td)

is a classical solution to (1.6). Then

‖∇h(t, ·)‖∞ ≤ max{‖∇h(0, ·)‖∞, 1}, ∀0 ≤ t ≤ T . (1.7)

If the dimension d = 1, then a better bound is available:

‖∂xh(t, ·)‖∞ ≤ max{‖∂xh(0, ·)‖∞,
1√
3
}, ∀0 ≤ t ≤ T . (1.8)

We stress that Proposition 1.1 is a conditional result, namely it assumes the existence of a 
smooth solution. On the other hand the wellposedness of classical solutions to the regularized 
equation (1.1) is much easier to obtain thanks to the fourth order dissipation on the right hand 
side. In the Fourier space, the biharmonic operator −�2 seems to offer much stronger dissipation 
and damping effect than the usual Laplacian operator, as can be seen from studying the linear 
equations

∂th = Ah, A = � or − �2.

Since equation (1.1) can be viewed as a regularized version of (1.6), it is very natural to stipulate 
that solutions to (1.1) should behave much better than those to (1.6) from a general perspec-
tive. From this heuristics, it is very tempting to expect that Proposition 1.1 also holds for (1.1). 
Preliminary numerical experiments seem to support this, thus

Conjecture 1. Let ν > 0. For general smooth initial data h0, the corresponding solution h =
h(t, x) to (1.1) satisfies the bound

‖∇h(t)‖∞ ≤ max{‖∇h0‖∞,1}, ∀ t > 0.

A weaker form of Conjecture 1 is the following:

Conjecture 2. Let ν > 0. For general smooth initial data h0, the corresponding solution h =
h(t, x) to (1.1) satisfies the bound

‖∇h(t)‖∞ ≤ max{‖∇h0‖∞, αd}, ∀ t > 0,

where αd > 0 is a constant depending only on the dimension d .
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Perhaps a better formulation of Conjecture 2 is that ‖∇h(t)‖∞ ≤ F(‖∇h0‖∞, d) for some 
function F independent of (ν, d). The main point in both Conjecture 1 and Conjecture 2 is that 
the constants in the upper bounds of ‖∇h‖∞ are independent of ν. If true these gradient bounds 
can lead to better stability estimates of numerical algorithms (see [15,10,16,14,7–9]).

On the other hand, it is not so difficult to extract a ν-dependent upper bound on ‖∇h‖∞, see 
Corollary 1.2 below.

Perhaps a bit surprisingly, the goal of this paper is to disprove Conjecture 1. Conjecture 2 is 
still open at the time of this writing. However we shall give a lower bound for the constant in 
Conjecture 2. Namely, we shall show that αd ≥ Cd > 1 for some explicit constant Cd depending 
on the dimension d .

To make the paper self-contained, we first establish local and global wellposedness for (1.1). 
For H 2 initial data in dimensions d = 1, 2, 3, a fairly satisfactory wellposedness theory has been 
worked out in [5] using energy estimates and Galerkin approximation. By using the method 
of mild solutions, our Theorem 1.1 below slightly refines this wellposedness result and allows 
initial data to be in the “critical” space H

d
2 which in particular contains H 2 for d ≤ 3. Note that 

although (1.1) is not scale-invariant, in high frequency approximation, one can regard (1.1) as

∂th = ∇ · (|∇h|2∇h) − ν�2h. (1.9)

To invoke scaling analysis, one can consider (1.9) posed on the whole space Rd . If h(t, x) is a 
solution to (1.9), then for any λ > 0,

hλ(t, x) = h(λ4t, λx)

is also a solution. From this one can deduce that the critical space for (1.9) is L∞
x (Rd) or 

Ḣ
d
2

x (Rd). Thus we have

Theorem 1.1 (Improved local wellposedness). Let the dimension d ≥ 1. Consider (1.1) on the 
2π -periodic torus Td with ν > 0. Let sd = d/2. For any initial data h0 ∈ Hsd (Td), there exist 
T0 = T (h0) > 0 and a unique local solution h ∈ C0

t H
sd
x with t

1
4 ∇h ∈ C0

t C0
x , t

1
4 h ∈ C0

t H
sd+1
x . 

Moreover h(t) ∈ Hm
x for all m ≥ 1, 0 < t < T∗, where 0 < T∗ ≤ ∞ is the maximal lifespan of the 

local solution. In particular h(t) ∈ C∞
x for all 0 < t < T∗. If h0 has mean zero, then h(t) also 

has mean zero for all 0 < t < T∗.

As is well-known, the long time dynamics is dictated by conserved quantities (or conservation 
laws). For (1.1), the energy dissipation law (1.4) gives a priori H 2 control of the solution with 
mean zero. Note that if h has mean zero, then ‖h‖2 is controlled by ‖�h‖2 thanks to the Poincaré 
inequality. Or one can just prove it directly using the Fourier series. The space H 2 is subcritical 
in dimensions d ≤ 3 since the corresponding critical space is H

d
2 . Thus

Corollary 1.1 (Global wellposedness for d ≤ 3). Let the dimension d = 1, 2, 3. Consider (1.1)

on the 2π -periodic torus Td with ν > 0. For any initial data h0 ∈ H
d
2 (Td) with mean zero, the 

corresponding solution h = h(t, x) to (1.1) obtained in Theorem 1.1 exists globally in time.

Remark 1.1. An interesting open problem is to show the global wellposedness of (1.1) in dimen-
sion d = 4. In that case H 2 is the critical space.
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The following corollary gives gradient bounds on h. For simplicity we assume the initial data 
h0 ∈ H 2(Td) so that the energy is well-defined. By using the smoothing effect one can also 
treat the case h0 ∈ H

d
2 (Td) with the help of Theorem 1.1. However the bounds in that case 

have slightly worse dependence on ν (for initial transient time when the smoothing effect takes 
place). We shall not dwell on this subtle issue here and focus instead on the long time bounds. 
In Corollary 1.2 below, we shall only consider the case when the diffusion coefficient ν is not 
so large (the physically relevant case is ν → 0), which we denote by the notation 0 < ν � 1. It 
means 0 < ν ≤ ν0 where ν0 > 0 is some constant of order 1. The numerical value of ν0 is not so 
important. For example one can just take ν0 = 1.

Corollary 1.2 (Gradient bounds for d ≤ 3). Let the dimension d = 1, 2, 3. Consider (1.1) on the 
2π -periodic torus Td with 0 < ν � 1. Assume h0 ∈ H 2(Td) with mean zero. Let h = h(t, x) be 
the corresponding global solution to (1.1). Denote

E0 =
∫
Td

(1

2
ν|�h0|2 + 1

4
(|∇h0|2 − 1)2

)
dx.

Then ∇h admits the following bounds: for some absolute constants C1, C2, C3 > 0,

sup
0≤t<∞

‖∇h(t)‖∞ ≤ C1ν
− 1

6 E
1
6
0 (E

1
6
0 + 1), if d = 1;

sup
1�t<∞

‖∇h(t)‖∞ ≤ C2(
E0

ν
)

1
2 | log(

E0 + 1

ν
)|, if d = 2;

sup
1�t<∞

‖∇h(t)‖∞ ≤ C3ν
− 3

2 (E0 + 1)
3
2 , if d = 3.

Similarly for some absolute constants C′
2 > 0, C′

3 > 0,

sup
0≤t�1

‖∇h(t) − ∇e−νt�2
h0‖∞ ≤ C′

2 · (E0

ν
)

1
2 | log(

E0 + 1

ν
)|, if d = 2;

sup
0≤t�1

‖∇h(t) − ∇e−νt�2
h0‖∞ ≤ C′

3ν
− 3

2 (E0 + 1)
3
2 , if d = 3.

Remark 1.2. The above gradient bound for d = 1 follows trivially from energy law and interpo-
lation inequalities. It does not use the dynamics at all. On the other hand the proof of the bounds 
for d = 2, 3 uses the mild formulation of the equation together with energy law. In terms of the 
dependence on ν the bounds here seem not optimal. See for example Proposition 5.1–5.2 in §5
for more refined results.

To disprove Conjecture 1, we shall use two different methods. The first method (see Theo-
rem 1.2 and Corollary 1.3 below) gives a weak lower bound approximately of the form 1 +O(ν)

(with O(ν) > 0). Even though this already settles Conjecture 1 in the negative, the obtained 
lower bound approaches to 1 as ν tend to zero which is the drawback of the construction. On the 
other hand, the second method (see Theorem 1.3) gives a ν-independent lower bound which also 
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yields a lower bound for the constant αd in Conjecture 2. It is quite possible that these bounds 
can be improved further.

We now introduce the first construction. To elucidate the main idea, we first state the 1D 
version.

Theorem 1.2. Consider (1.2) with ν > 0 and 2π -periodic boundary condition. There exists a 
family A of smooth initial data such that the following holds:

(1) For any h0 ∈ A, we have 
∫
T

h0(x)dx = 0 and ‖∂xh0‖∞ < 1.
(2) For any h0 ∈ A, there exists t0 > 0 (depending on h0) such that the corresponding solution 

to (1.2) satisfies

‖∂xh(t0, ·)‖∞ > 1.

It is relatively straightforward to generalize the construction in Theorem 1.2 to the equation 
(1.1) in all dimensions.

Corollary 1.3. Let the dimension d ≥ 1 and Td be the usual 2π -periodic torus. Consider (1.1)
with ν > 0 and on (t, x) ∈ [0, ∞) × Td . There exists a family A of smooth initial data such that 
the following holds:

(1) For any h0 ∈ A, we have 
∫
Td h0(x)dx = 0 and ‖∂xh0‖∞ < 1.

(2) For any h0 ∈ A, there exists t0 > 0 (depending on h0) such that the corresponding solution 
to (1.1) satisfies

‖∇h(t0, ·)‖∞ > 1.

We now introduce the second construction. The key idea builds on examining the linear evo-
lution e−νt�2

, and treating the nonlinear part as a correction.

Theorem 1.3. Let the dimension d ≥ 1 and Td be the usual 2π -periodic torus. Consider (1.1)
with ν > 0 and on (t, x) ∈ [0, ∞) × Td . There exists a constant Cd > 1 depending only on the 
dimension d , such that for any ε > 0, there exists h0 ∈ C∞(Td) for which the following hold:

(1)
∫
Td h0(x)dx = 0 and ‖∇h0‖∞ < 1.

(2) There exists t0 > 0 such that the corresponding solution to (1.2) satisfies

‖∇h(t0, ·)‖∞ > Cd − ε.

Remark 1.3. Let f (x) = 1

(2π)d

∫
Rd

e−|ξ |4eiξ ·xdξ . The constant Cd in Theorem 1.3 is given by 

Cd = ‖f ‖L1
x(Rd ) > 1.

Remark 1.4. One can also consider the following version of (1.1) with fractional dissipation:

∂th = ∇ · ((|∇h|2 − 1)∇h) − ν|∇|γ h, (1.10)



1726 D. Li et al. / J. Differential Equations 262 (2017) 1720–1746
where γ > 2 controls the “order” of dissipation. For h : Td → R, |∇|γ can be defined on the 
Fourier side as

|̂∇|γ h(k) = |k|γ ĥ(k), k ∈ Zd .

The L∞-maximum principle holds for the fractional heat propagator e−t |∇|γ for 0 ≤ γ ≤ 2. The 
behavior of e−t |∇|γ for γ < 2 and the heat operator et� can be quite different, see for example 
[6] for a discussion in the (Littlewood–Paley) frequency-localized context. In the wider setting 
one can even consider operators of the form A = |∇|γ / logβ(λ + |∇|) (for 0 ≤ γ ≤ 2, β ≥ 0 and 
λ > 1) and establish a new generalized maximum principle (see [4]) for the drift equation

∂t θ + v · ∇θ = −Aθ,

where v is a given arbitrary external velocity field transporting the scalar quantity θ . On the 
other hand, in the regime γ > 2, the L∞-maximum principle is no longer expected since the cor-
responding fundamental solution may change signs. Based on this, an analogue of Theorem 1.3
is expected to hold for (1.10) when γ > 2. In that case the constant Cd is replaced by

Cd,γ = ‖F−1(e−|ξ |γ )‖L1
x(Rd ) > 1.

2. Notation and preliminaries

In this section we collect some notation and preliminaries used in this paper.
For any x = (x1, · · · , xd) ∈ Rd , we use the Japanese bracket notation 〈x〉 =√

1 + x2
1 + · · · + x2

d .

We denote by Td =Rd/2πZd the 2π -periodic torus.
Let � = Rd or Td , d ≥ 1. For any function f : � → R, we use ‖f ‖Lp = ‖f ‖Lp(�) or 

sometimes ‖f ‖p to denote the usual Lebesgue Lp norm for 1 ≤ p ≤ ∞. If f = f (x, y) :
�1 × �2 → R, we shall denote by ‖f ‖

L
p1
x L

p2
y

to denote the mixed-norm:

‖f ‖
L

p1
x L

p2
y

=
∥∥∥‖f (x, y)‖

L
p2
y (�2)

∥∥∥
L

p1
x (�1)

.

In a similar way one can define other mixed-norms such as ‖f‖C0
t Hm

x
etc.

For any two quantities X and Y , we denote X � Y if X ≤ CY for some constant C > 0. 
Similarly X � Y if X ≥ CY for some C > 0. We denote X ∼ Y if X � Y and Y � X. The 
dependence of the constant C on other parameters or constants are usually clear from the context 
and we will often suppress this dependence. We denote X �Z1,··· ,Zm Y if X ≤ CY where the 
constant C depends on the parameters Z1, · · · , Zm.

We adopt the following convention for Fourier transform pair on Rd :

(Ff )(ξ) = f̂ (ξ) =
∫
d

f (x)e−ix·ξ dx,
R
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f (x) = 1

(2π)d

∫
Rd

f̂ (ξ)eix·ξ dξ.

Sometimes the inverse Fourier transform is denoted as F−1.
Also for f : Td →R, and k ∈ Zd , we denote the Fourier coefficient

f̂ (k) =
∫
Td

f (x)e−ik·xdx.

Of course (under suitable conditions) f can be recovered from the Fourier series:

f (x) = 1

(2π)d

∑
k∈Zd

f̂ (k)eik·x.

Note that if we regard f as a periodic function on Rd , then

(Ff )(ξ) =
∑
k∈Zd

f̂ (k)δ(ξ − k), (2.11)

where δ is the usual Dirac delta distribution on Rd .
For f : Td → R and s ≥ 0, we define the Hs-norm and Ḣ s -norm of f as

‖f ‖Hs =
( ∑

k∈Zd

(1 + |k|2s)|f̂ (k)|2
) 1

2
, ‖f ‖Ḣ s =

( ∑
k∈Zd

|k|2s |f̂ (k)|2
) 1

2
,

provided of course the above sums are finite. If f has mean zero, then f̂ (0) = 0 and in this case

‖f ‖Hs ∼
( ∑

k∈Zd

|k|2s |f̂ (k)|2
) 1

2
.

Occasionally we will need to use the Littlewood–Paley (LP) frequency projection operators. 
To fix the notation, let φ0 ∈ C∞

c (Rd) and satisfy

0 ≤ φ0 ≤ 1, φ0(ξ) = 1 for |ξ | ≤ 1, φ0(ξ) = 0 for |ξ | ≥ 2.

Let φ(ξ) := φ0(ξ) − φ0(2ξ) which is supported in 1/2 ≤ |ξ | ≤ 2. For any f ∈ S ′(Rd), j ∈ Z, 
define

�̂jf (ξ) = φ(2−j ξ)f̂ (ξ),

Ŝj f (ξ) = φ0(2
−j ξ)f̂ (ξ), ξ ∈ Rd .

We recall the Bernstein estimates/inequalities: for 1 ≤ p ≤ q ≤ ∞,

‖|∇|s�jf ‖Lp(Rd ) ∼ 2js‖�jf ‖Lp(Rd ), s ∈ R;
‖Sjf ‖Lq(Rd ) + ‖�jf ‖Lq(Rd ) � 2jd( 1

p
− 1

q
)‖f ‖Lp(Rd ).
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We also need the Bernstein inequalities for periodic functions. Let f : Td → R be a smooth 
function and “lift” f to be a periodic function on Rd . Then in this way f ∈ S ′(Rd) and one can 
define �jf for any j ∈ Z. By expressing �jf in terms of a convolution integral, it is easy to 
check that �jf is also a periodic function on Rd and thus can be identified as a function on Td .
A more “direct” way is just to use (2.11) and recognize �jf as (on the Fourier side) the 
partial sum of δ-distributions in a dyadic block. It is then natural to expect that the follow-
ing “Bernstein”-type inequalities hold (note that the norms are evaluated on Td ): for any 
1 ≤ p ≤ q ≤ ∞,

‖|∇|s�jf ‖Lp(Td ) ∼ 2js‖�jf ‖Lp(Td ), s ∈ R; (2.12)

‖�jf ‖Lq(Td ) � 2jd( 1
p

− 1
q
)‖f ‖Lp(Td ), j ∈ Z; (2.13)

‖Sjf ‖Lq(Td ) � 2jd( 1
p

− 1
q
)‖f ‖Lp(Td ), j ≥ −2. (2.14)

If f has mean zero (so that f̂ (0) = 0), then one does not need the condition j ≥ −2 (since 
Sjf = 0 for j < −2). Although these inequalities are standard, we include the proof here for the 
sake of completeness.

Proof of (2.12)–(2.14). We shall only prove (2.12)–(2.13). The proof of (2.14) is similar 
to (2.13).

First we deal with (2.12). For some Schwartz function ψ (ψ =F−1(|ξ |sφ(ξ))), we have

(|∇|s�jf )(x) = 2js

∫
Rd

2jdψ(2j (x − y))f (y)dy

= 2js
∑
k∈Zd

∫
Td

2jdψ(2j (x − y + 2πk))f (y)dy

= 2js

∫
Td

ψ̃j (x − y)f (y)dy,

where ψ̃j (z) =
∑
k∈Zd

2jdψ(2j (z + 2πk)) is a periodic function on Rd (and thus can be identified 

as a function on Td ). By using Young’s inequality on Td , we get

‖|∇|s�jf ‖Lp(Td ) � 2js‖ψ̃j‖L1(Td )‖f ‖Lp(Td ).

Easy to check that

‖ψ̃j‖L1(Td ) ≤ 2jd‖ψ(2j z)‖L1
z (R

d ) = ‖ψ‖L1(Rd ) � 1.

Therefore

‖|∇|s�jf ‖Lp(Td ) � 2js‖f ‖Lp(Td ).

By using a fattened projection �̃j = ∑2
l=−2 �j−l (and noting that �jf = �̃j�jf ), one can 

then derive (2.12).
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Next we derive (2.13). By Young’s inequality, we have

‖�jf ‖Lq(Td ) � ‖ψ̃j‖Lr(Td )‖f ‖Lp(Td ),

where 1
r

= 1 + 1
q

− 1
p

. By (2.11) and f̂ (0) = 0, easy to check that �jf = 0 if j < −2. Therefore 
we may assume without loss of generality that j ≥ −2. Then by using the fact that ψ is Schwartz, 
we get

‖
∑
k∈Zd

2jdψ(2j (z + 2πk))‖Lr
z(T

d )

�
∑

|k|≤100

2jd‖ψ(2j (z + 2πk))‖Lr
z(T

d ) +
∑

|k|>100

2jd〈2j k〉−100d

� 2jd‖ψ(2j z)‖Lr
z(R

d ) + 1 � 2jd2−j d
r .

Thus (2.13) is proved. �
3. Proof of Proposition 1.1

For 0 ≤ t ≤ T , consider f (t, x) = |∇h(t, x)|2. Note that

∂th = (f − 1)�h + ∇f · ∇h.

Clearly ∂t∇h = (�h)∇f + (f − 1)�∇h +
d∑

j=1

∂j∇h∂jf +
d∑

j=1

∂jh∂j∇f .

Therefore

1

2
∂tf = ∇h · ∂t∇h

= �h(∇h · ∇f ) + (f − 1)(∇h) · (�∇h) +
d∑

j=1

(∇h · ∂j∇h)∂jf

+
d∑

j=1

∂jh(∇h · ∂j∇f )

= �h(∇h · ∇f ) + (f − 1)(∇h) · (�∇h) + 1

2
|∇f |2 +

d∑
j,k=1

∂jh∂kh∂jkf. (3.15)

By definition, it is easy to check that

�f = 2∇�h · ∇h + 2
d∑

k,j=1

(∂k∂jh)2.

Therefore ∇h · �∇h = 1

2
�f −

d∑
(∂k∂jh)2.
k,j=1
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Plugging this expression into (3.15), we then obtain

1

2
∂tf = 1

2
(f − 1)�f − (f − 1)

d∑
k,j=1

(∂k∂jh)2 + �h(∇h · ∇f )

+ 1

2
|∇f |2 +

d∑
k,j=1

∂jh∂kh∂j ∂kf.

Now let ε > 0 be a small parameter which will tend to zero later. Consider the auxiliary 
function

f ε(t, x) = f (t, x) − εt, ∀0 ≤ t ≤ T , x ∈ Td .

Note the equation for f ε reads as

1

2
∂tf

ε = −1

2
ε + 1

2
(f ε + εt − 1)�f ε − (f ε + εt − 1)

d∑
k,j=1

(∂k∂jh)2

+ �h(∇h · ∇f ε) + 1

2
|∇f ε |2 +

d∑
k,j=1

∂jh∂kh∂j ∂kf
ε. (3.16)

Since f ε is a continuous function on the compact domain [0, T ] × Td , it must achieve its 
maximum at some point (t∗, x∗), i.e.

max
0≤t≤T , x∈Td

f ε(t, x) = f ε(t∗, x∗) =: Mε.

We discuss several cases.
Case 1. 0 < t∗ ≤ T and Mε > 1. In this case observe that

∇f ε(t∗, x∗) = 0, �f ε(t∗, x∗) ≤ 0,

d∑
k,j=1

cj ck(∂j ∂kf
ε)(t∗, x∗) ≤ 0, for any (c1, · · · , cd) ∈ Rd .

Therefore by (3.16) and the fact that Mε > 1, we have

1

2
(∂tf

ε)(t, x)

∣∣∣
(t∗,x∗)

≤ −1

2
ε + 1

2
(Mε + εt∗ − 1)(�f ε)(t∗, x∗)

− (Mε + εt − 1)

d∑
k,j=1

(∂k∂jh)2

≤ −1

2
ε < 0.
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This obviously contradicts to the fact that 0 < t∗ ≤ T and (t∗, x∗) is a maximum. Hence Case 1 
is impossible.

Case 2. 0 < t∗ ≤ T and Mε ≤ 1. In this case we obtain the bound

max
0≤t≤T , x∈Td

f (t, x) ≤ εT + 1.

Case 3. t∗ = 0. Clearly then

max
0≤t≤T , x∈Td

f (t, x) ≤ max
x∈Td

f (0, x) + εT .

Concluding from all cases and sending ε to zero, we obtain (1.7).
In the case dimension d = 1, the proof of (1.8) is similar. Set g = hx . Note that

∂tg = (g3 − g)xx = (3g2 − 1)gxx + 6g(gx)
2.

Clearly (3g2 − 1)gxx is elliptic when 3g2 > 1, whence

‖g(t)‖∞ ≤ max{‖g(0)‖∞,
1√
3
}, ∀ t ≥ 0.

4. Proof of Theorem 1.1

Lemma 4.1. Let ν > 0 and L = −ν�2. Then for any integer m ≥ 1 and any t > 0, we have

‖DmetLf ‖L∞
x (Td ) �ν,d,m (1 + t−

m
4 )‖f ‖

H
d/2
x (Td )

; (4.17)

similarly for any integer m ≥ 0 and any t > 0,

‖DmetLf ‖L∞
x (Td ) �ν,d,m t−

m
4 ‖f ‖L∞

x (Td ), (4.18)

‖DmetLf ‖L2
x(Td ) �ν,d,m (1 + t−

m
4 )‖f ‖L2

x(Td ). (4.19)

In the above Dm denotes any differential operator of order m. For example D2 can be any 
one of the operators ∂xixj

, 1 ≤ i, j ≤ d .
If f has mean zero, then (4.17) and (4.19) can be improved as:

‖DmetLf ‖∞ �ν,d,m t−
m
4 ‖f ‖

H
d
2
, ∀m ≥ 1, t > 0, (4.20)

‖DmetLf ‖2 �ν,d,m t−
m
4 ‖f ‖2, ∀m ≥ 0, t > 0. (4.21)

Proof. We first show (4.17). Define 〈∇〉 = √
1 − �. Clearly

DmetLf = DmetL〈∇〉− d
2 〈∇〉 d

2 f = K1 ∗ (〈∇〉 d
2 f )

where ∗ denotes the usual convolution and K1 is the kernel corresponding to DmetL〈∇〉− d
2 . Then
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‖DmetLf ‖L∞
x (Td ) � ‖K1‖L2

x(Td )‖f ‖
H

d
2

x (Td )

.

Now since m ≥ 1,

‖K1‖2
L2

x
�

∑
k∈Zd

e−2νt |k|4 |k|2m · 〈k〉−d � 1 +
∑
k �=0

e−2νt |k|4 |k|2m−d � 1 + t−
m
2 .

Thus (4.17) follows easily.
For (4.18), we can regard f as a periodic function on Rd . Then using the fact that for any 

multi-index α with |α| = m, ‖F−1(ξαe−t |ξ |4)‖L1
x(Rd ) � t− m

4 , we get

‖DmetLf ‖L∞
x (Td ) = ‖DmetLf ‖L∞

x (Rd ) � t−
m
4 ‖f ‖L∞

x (Rd ) � t−
m
4 ‖f ‖L∞

x (Td ).

Similarly one can prove (4.19) by computing everything on the Fourier side.
In the case f has mean zero, we note that f̂ (0) = 0, and (4.20)–(4.21) follows easily. �

Proof of Theorem 1.1. This is more or less a standard application of the theory of mild solu-
tions. Therefore we shall only sketch the details.

We recast (1.1) into the mild form (alternatively one can also construct the mild solution by 
considering L = −ν�2 − � as the linear part and taking etL as the linear propagator):

h(t) = e−tν�2
h0 +

d∑
j=1

t∫
0

∂j e
−(t−s)ν�2

((|∇h|2 − 1)∂jh)(s)ds

=: e−tν�2
h0 + �(h)(t).

Fix h0 ∈ Hd/2(Td). Define h(0) = e−tν�2
h0, and for j ≥ 1,

h(j)(t) = e−tν�2
h0 + �(h(j−1))(t).

For T > 0, introduce the Banach space

XT =
{
h ∈ C0

t H
d
2

x ([0, T ] ×Td) : t
1
4 ∇h ∈ C0

t C0
x , t

1
4 h ∈ C0

t H
d
2 +1

x

}
with the norm

‖h‖XT
= ‖h‖

C0
t H

d
2

x

+ ‖t 1
4 ∇h‖L∞

t,x
+ ‖t 1

4 h‖
C0

t H
d
2 +1

x

.

For convenience denote the seminorm

‖h‖YT
= ‖t 1

4 ∇h‖L∞
t,x

+ ‖t 1
4 h‖

C0
t H

d
2 +1

x

.

We shall show that for sufficiently small T > 0 (depending on the profile of h0), the iterates 
h(j), j ≥ 0 form a Cauchy sequence in the set
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BT = {h ∈ XT : ‖h‖XT
≤ 2‖h0‖

H
d
2 (Td )

, ‖h‖YT
≤ 2ε1‖h0‖

H
d
2 (Td )

},

where ε1 > 0 is a sufficiently small constant depending only on (ν, d) and ‖h0‖
H

d
2

.

We shall only verify that h(j) ∈ BT and omit the contraction argument since it is quite similar.

Consider first j = 0. For h0 ∈ H
d
2 (Td), obviously

‖e−ν�2t h0‖
C0

t H
d
2

x

≤ ‖h0‖
H

d
2
.

By Lemma 4.1 and a density argument, we have for h0 ∈ H
d
2 ,

lim
t→0+‖t 1

4 ∇e−νt�2
h0‖L∞

x
= 0, lim

t→0+‖t 1
4 e−νt�2

h0‖
H

d
2 +1

x

= 0.

Thus for T > 0 sufficiently small,

‖h(0)‖XT
≤ 3

2
‖h0‖

H
d
2
, ‖h(0)‖YT

≤ ε1‖h0‖
H

d
2
,

where ε1 will be taken sufficiently small (depending on (ν, d) and ‖h0‖
H

d
2

) later when we verify 

the estimates for h(j), j ≥ 1.
Now inductively assume h(j−1) ∈ BT . To show h(j) ∈ BT , it suffices for us to check

‖�(h(j−1))‖XT
≤ ε1‖h0‖

H
d
2
.

To simplify notation, in the computation below we shall drop the superscript (j − 1) and write 
�(h(j−1)) simply as �(h). We also write �ν,d simply as �.

Note that without loss of generality we can assume t � 1, so that when applying Lemma 4.1, 
we have 1 + t− m

4 � t− m
4 (i.e. the constant 1 is not needed). Now by Lemma 4.1, we have

‖�(h)(t)‖
H

d
2

x

�
∥∥∥

t∫
0

〈∇〉 d
2 ∇ · e−(t−s)ν�2(|∇h|2 − 1)∇h

)
(s)ds

∥∥∥
2

�
t∫

0

(t − s)−
1
4 ‖〈∇〉 d

2 ∇h(s)‖2ds

+
t∫

0

(t − s)−
1
4 ‖〈∇〉 d

2
(|∇h(s)|2∇h(s)

)‖2ds

�
t∫

0

(t − s)−
1
4 s− 1

4 ds · ‖s 1
4 h(s)‖

C0
s H

d
2 +1

x

+
t∫
(t − s)−

1
4 s− 3

4 ds · ‖s 1
4 h(s)‖

C0
s H

d
2 +1

x

· ‖s 1
4 ∇h(s)‖2

L∞
s L∞

x

0
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� t
1
2 ‖s 1

4 h(s)‖
C0

s H
d
2 +1

x

+ ‖s 1
4 h(s)‖

C0
s H

d
2 +1

x

· ‖s 1
4 ∇h(s)‖2

L∞
s L∞

x

� t
1
2 ‖h0‖

H
d
2

+ ‖h‖3
Yt

.

Thus for T > 0 sufficiently small and ε1 sufficiently small,

‖�(h)‖
C0

t H
d
2

x ([0,T ]×Td )

≤ ε1

10
‖h0‖

H
d
2
.

Similarly easy to check that

‖t 1
4 �(h)(t)‖

C0
t H

d
2 +1

x ([0,T ]×Td )

+ ‖t 1
4 ∇�(h)(t)‖L∞

t,x ([0,T ]×Td ) ≤ ε1

5
‖h0‖

H
d
2
.

Thus

‖�(h)‖XT
≤ ε1‖h0‖

H
d
2
.

We have finished the proof of existence and uniqueness of a solution in the Banach space XT . �
The smoothing estimate of h(t) for t > 0 is utterly standard. For example if we know h ∈

L∞
t Hm

x ([t0, t1] ×Td) on some time interval [t0, t1], then for t ∈ (t0, t1],

∥∥∥Dm+1

t∫
t0

∇ · e−(t−s)ν�2
((|∇h|2 − 1)∇h)(s)ds

∥∥∥
2

�
t∫

t0

(t − s)−
3
4 ‖(|∇h(s)|2 − 1)∇h(s)‖Hm−1ds

�
t1∫

t0

(t − s)−
3
4 ds · ‖h‖L∞

s Hm
x

+
t1∫

t0

(t − s)−
3
4 s− 1

2 ds · ‖h‖L∞
s Hm

x
· ‖s 1

4 ∇h‖2
L∞

s L∞
x

.

This shows that h has higher regularity Hm+1
x on (t0, t1] (the linear part

e−(t−t0)ν�2
h(t0) ∈ Hm+1

x

only for t ∈ (t0, t1]). We omit further details.
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5. Proof of Corollary 1.1 and Corollary 1.2

Proof of Corollary 1.1. Let the dimension d ≤ 3.
We first assume that the initial data h0 ∈ H 4(Td) with mean zero. Denote the corresponding 

solution obtained by Theorem 1.1 as h. To bound ‖∂th‖2, we need to control ‖∂2h · ∂h · ∂h‖2 �
‖∂2h‖2‖∂h‖2∞ � ‖h‖2

H 4 . The H 4 regularity is used to control ‖∇h‖∞. It is then easy to check 
that h ∈ C0

t H 4
x ∩ C1

t L2
x and

d

dt
E = −‖∂th‖2

2, (5.22)

where

E(t) = 1

2
ν‖�h(t)‖2

2 + 1

4

∫
Td

(|∇h(t)|2 − 1)2dx.

Alternatively to avoid the issue of differentiability, one can interpret (5.22) as the integral formu-

lation: E(t2) = E(t1) −
t2∫

t1

‖∂th‖2
2dt for any 0 ≤ t1 < t2.

From energy conservation we get ‖h(t)‖H 2 � ‖h0‖H 2 for any t > 0. Now for H 2 initial 
data (recall the critical space in Theorem 1.1 is Hd/2 and d/2 < 2 for d ≤ 3), the lifespan of 
the local solution depends on the H 2-norm of the initial data. Thanks to this fact and the esti-
mate ‖h(t)‖H 2 � ‖h0‖H 2 , the corresponding local solution can be continued for all time by a 
standard argument. This concludes the proof of global wellposedness under the assumption that 
h0 ∈ H 4. �

Now let h0 ∈ H
d
2 (Td) with mean zero. By Theorem 1.1, there exists a local solution h on 

[0, T0] for some T0 > 0 depending on h0. Let h1 = h(T0/2). By Theorem 1.1, h1 ∈ Hm for 
all m ≥ 1. In particular h1 ∈ H 4. Now with h1 as initial data, the corresponding solution can 
be denoted as h̃(t) = h(t + T0/2). One can then repeat the argument described in the previous 
paragraph to obtain global wellposedness.

Proof of Corollary 1.2. The 1D case. Note that by energy law we have E(t) ≤ E0. Thus

‖∂xxh(t)‖2 �
1√
ν

√
E0, ‖∂xh(t)‖4 � E

1
4
0 + 1.

By using the Gagliardo–Nirenberg interpolation inequality, we have

‖∂xh‖∞ � ‖∂xh‖
2
3
4 ‖∂xxh‖

1
3
2 .

Therefore

‖∂xh(t)‖∞ � ν− 1
6 E

1
6
0 (E

1
6
0 + 1).

The 2D case. We first perform a short time estimate. Let 0 < ε < 1 which will be taken suffi-
ciently small. Consider
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h(t) = e−νt�2
h0 +

t∫
0

∇ · e−ν(t−s)�2
(|∇h|2 − 1)∇h(s)ds.

Easy to check that in 2D, ‖|∇|1+ ε
100 h‖∞ � ‖|∇|2+2εh‖2−ε (recall h has mean zero). Then

‖|∇|2+2εh(t)‖2−ε � ‖|∇|2εe−νt�2 |∇|2h0‖2−ε

+
t∫

0

‖|∇|2+2ε∇ · e−ν(t−s)�2
((|∇h|2 − 1)∇h)(s)ds‖2−εds

� (νt)−2ε‖h0‖H 2 +
t∫

0

(ν(t − s))−
3+2ε

4 (‖h(s)‖3
H 2 + ‖h(s)‖H 2)ds

� (νt)−2ε(
E0

ν
)

1
2 + ν− 3+2ε

4 t
1−2ε

4 ((
E0

ν
)

1
2 + (

E0

ν
)

3
2 ).

In the above when bounding the nonlinearity, we used the estimate

‖|∇h|2∇h‖2−ε � ‖∇h‖2‖∇h‖2
2−ε
ε

� ‖h‖3
H 2 .

Thus for t ∼ 1 and 0 < ν � 1, we get

‖|∇|1+ ε
100 h(t)‖∞ � (

E0 + 1

ν
)10.

By repeating the same analysis with t � 1 and h0 replaced by h(t − 1) (note that only ‖h‖H 2

enters the analysis), we get for all t � 1

‖|∇|1+ ε
100 h(t)‖∞ � (

E0 + 1

ν
)10.

Now note that ‖h(t)‖H 2 � (
E0
ν

)
1
2 . Using Littlewood–Paley decomposition (note that S−2∇h = 0), 

we get

‖∇h(t)‖L∞(T2) �
∑

−2≤j≤j0

‖�j∇h‖L∞(T2) +
∑
j>j0

‖�j∇h‖L∞(T2)

� (j0 + 3)‖h‖H 2 + 2−j0
ε

100 ‖|∇|1+ ε
100 h‖∞

� (j0 + 3)(
E0

ν
)

1
2 + 2−j0

ε
100 (

E0 + 1

ν
)10.

Optimizing in j0, we get

sup
1�t<∞

‖∇h(t)‖∞ � (
E0

ν
)

1
2 | log(

E0 + 1

ν
)|.
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Now to obtain the estimate for t � 1, we simply note that for t � 1, by repeating the analysis 
before,

‖|∇|1+ ε
100 (h(t) − e−νt�2

h0)‖∞ �
(

E0 + 1

ν

)10

.

On the other hand,

‖h(t) − e−νt�2
h0‖H 2 � ‖h‖H 2 + ‖h0‖H 2 � (

E0

ν
)

1
2 .

Thus we obtain the same bound for h(t) − e−νt�2
h0.

This finishes the estimate for the 2D case.
The 3D case. We shall again perform a short time estimate. Write

∇h(t) = e−νt�2∇h0 +
t∫

0

∇∇ · e−ν(t−s)�2
((|∇h|2 − 1)∇h)(s)ds.

It is easy to check that

‖e−ν�2t∇h0‖L∞
x (T3) � (νt)−

1
8 ‖h0‖H 2

x (T3).

We then get for t � 1,

‖∇h(t)‖∞ � (νt)−
1
8 ‖h0‖H 2 +

t∫
0

(ν(t − s))−
7
8 (‖∇h(s)‖3

6 + ‖∇h(s)‖2)ds

� t−
1
8 ν− 5

8 E
1
2
0 + ν− 7

8 t
1
8 (ν− 3

2 E
3
2
0 + 1).

Choosing t ∼ ν7 then yields ‖∇h(t)‖∞ � ν− 3
2 (E

3
2
0 + 1). For general t � ν7, we can replace h0

by h(t − ν7) and repeat the above analysis. This ends the estimate for the 3D case. �
The following proposition shows that in 1D, there exists initial data such that the correspond-

ing solution obeys uniform in time gradient bounds which are independent of ν.

Proposition 5.1. Let the dimension d = 1. Consider (1.2) on the 2π -periodic torus T with 0 <
ν � 1. Assume h0 ∈ H 2(T) with mean zero and let h = h(t, x) be the corresponding global 
solution to (1.2). Denote

E0 =
∫
Td

(1

2
ν|∂xxh0|2 + 1

4
(|∂xh0|2 − 1)2

)
dx.

Then for all t > 0 and some absolute constant C1 > 0,

‖∂xh(t)‖∞ ≤ C1 max{1, ν− 1
6 E

1
3
0 }. (5.23)
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For each 0 < ν � 1, there exists a family Aν of initial data, such that if h0 ∈ Aν , then 
E0 �

√
ν, and the corresponding solution satisfies

‖∂xh(t)‖∞ ≤ B1, ∀ t ≥ 0,

where B1 > 0 is an absolute constant. (In particular, it is independent of ν.)

Proof of Proposition 5.1. We first show (5.23). Denote ‖hx‖∞ = A and g = h2
x − 1. If A ≤ 2

we are done. Now assume A > 2, then obviously A2 � ‖g‖∞. Now by Gagliardo–Nirenberg 
interpolation, we get

A2 � ‖g‖∞ � ‖g‖
1
2
2 ‖∂xg‖

1
2
2 � ‖g‖

1
2
2 ‖∂xxh‖

1
2
2 ‖∂xh‖

1
2∞ � ‖g‖

1
2
2 ‖∂xxh‖

1
2
2 A

1
2 .

Thus

A� ‖g‖
1
3
2 ‖∂xxh‖

1
3
2 � E

1
6
0 (

E0

ν
)

1
6 � ν− 1

6 E
1
3
0 .

We now show that there exists initial data h0 such that E0 �
√

ν. The idea is to mollify the 
“sawtooth”-type profile and add a δ-cap (δ ≈ √

ν) around each tips of the sawtooth. To this end, 
let L0 ≥ 3 be an integer and define

g0(x) =
x∫

0

sgn(sin(L0τ))dτ, x ∈ [−π,π],

where sgn is the usual sign function:

sgn(z) =

⎧⎪⎨
⎪⎩

1, z > 0,

0, z = 0,

−1, z < 0.

The value of L0 is not important as long as it is independent of ν.
Now around each local maxima or minima of g0, easy to check that g′

0 change its sign from 
−1 to 1, or 1 to −1. At the maxima (minima), g′

0 is undefined. One can then mollify g0 therein 
within a δ-neighborhood. Denote the mollified function as gδ. Then

E(gδ) =
∫
T

(1

2
ν|∂xxgδ|2 + 1

4
(|∂xgδ|2 − 1)2

)
dx �L0 ν · 1

δ2
· δ + δ.

Choosing δ ∼ √
ν then yields E(gδ) �L0

√
ν. �

Proposition 5.2. Let the dimension d = 1. Consider (1.2) on the 2π -periodic torus T with 0 <
ν � 1. Assume h0 ∈ H

1
2 (T) with mean zero and let h = h(t, x) be the corresponding global 

solution to (1.2). Then

lim sup
t→∞

‖∂xh(t)‖∞ ≤ K0, (5.24)
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where K0 is a constant depending only on the initial data h0. If in additional h0 is even in x, 
then (5.24) can be improved to

lim sup
t→∞

‖∂xh(t)‖∞ ≤ 1. (5.25)

Remark 5.1. Recall that in the 1D case, the equation (1.2) can be transformed into the usual 
Cahn–Hilliard equation via the change of variable u = ∂xh. The convergence to steady states 
(and consequently gradient bounds) can be obtained using the Łojasiewicz–Simon inequality 
(cf. [11]). Our proof below however does not appeal to this theory and gives an alternative ap-
proach.

Proof of Proposition 5.2. First observe that by using Theorem 1.1 and a shift in time we may 
assume h0 ∈ H 10(T). By using the Duhamel formula

h(t) = e−νt∂4
x h0 +

t∫
0

e−ν(t−s)∂4
x ∂x((h

2
x − 1)hx)(s)ds,

the energy law, and the exponential (in time) decay of the propagator e−ν(t−s)∂4
x (acting on mean-

zero functions), it is not difficult to derive that

sup
t≥0

‖h(t)‖H 10(T) �ν,E0 1. (5.26)

This estimate will be used below.
Step 1: we show that limt→∞ ‖∂th‖∞ = 0. Denote g = ∂th, then g satisfies the equation 

∂tg = ∂x((3h2
x − 1)gx) − ν∂4

xg. Consider t > t0, where t0 will be picked later. We have

g(t) = e−ν(t−t0)∂
4
x g(t0) +

t∫
t0

∂xe
−ν(t−s)∂4

x ((3h2
x − 1)gx)(s)ds

= e−ν(t−t0)∂
4
x g(t0) +

t∫
t0

∂xxe
−ν(t−s)∂4

x ((3h2
x − 1)g)(s)ds

−
t∫

t0

∂xe
−ν(t−s)∂4

x (6hxxhxg)(s)ds. (5.27)

Now note that for any function g̃ : T → R (not necessarily having mean zero), one has for 
m ≥ 1,

‖∂m
x e−νt∂4

x g̃‖2 �m,ν e−νt/100t−
m
4 ‖g̃‖2.

Here the point is that since m ≥ 1, g̃ can be replaced by g̃ − ¯̃g ( ¯̃g denotes the mean of g̃) and 
| ¯̃g| � ‖g̃‖2.
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Now continuing from (5.27), we get (by using (5.26))

‖g(t)‖2 �ν,E0 ‖g(t0)‖2 +
t∫

t0

(t − s)−
1
2 e−ν(t−s)/100‖g(s)‖2ds

+
t∫

t0

(t − s)−
1
4 e−ν(t−s)/100‖g(s)‖2ds. (5.28)

By using the energy law, we have 
∫ ∞

0 ‖g(s)‖2
2ds < ∞. Thus one can find t0 sufficiently large 

such that ‖g(t0)‖2 	 1 and also 
∫ ∞
t0

‖g(s)‖2
2ds 	 1. By (5.26), we also have sups≥0 ‖g(s)‖2 � 1. 

These estimates with (5.28) and an ε-δ argument (One needs to split the time interval in (5.28). 
For s close to t , we use the smallness of the time interval and the estimate ‖g(s)‖2 � 1. For s
away from t , use 

∫ ∞
t0

‖g(s)‖2
2ds 	 1.) then easily yield

lim
t→∞‖g(t)‖2 = 0.

Interpolating the above estimate with (5.26) (recall g(t) = ∂th = (h3
x − hx)x − ν∂4

xh), we get

lim
t→∞‖∂th‖∞ = 0. (5.29)

Step 2: we show (5.25). Easy to check that the even symmetry is propagated in time. Denote 
f = ∂xh. Then

∂x

(
f 3 − f − νfxx

)
= ∂th.

In view of the even symmetry of h, we have f (t, x = 0) ≡ 0, ∂xxf (t, x = 0) ≡ 0. Thus

(f 2 − 1)f − ν∂xxf =
x∫

0

(∂th)(t, y)dy.

A simple maximum principle argument together with (5.29) then yield (5.25).
Finally the proof of (5.24) is similar. In the general case, observe that (since f = ∂xh)

1

2π

∫
T

(f 3 − f − νfxx(t, x))dx = 1

2π

∫
T

f 3(t, x)dx

︸ ︷︷ ︸
:=m(t)

.

By the Mean Value Theorem, there exists x0 ∈ [−π, π] such that

f 3(t, x0) − f (t, x0) − νfxx(t, x0) = m(t).

We then have
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f 3 − f − νfxx =
x∫

x0

(∂th)(t, y)dy + m(t).

Now observe that

|m(t)| � ‖∂xh(t)‖3
3 � 1 +

∫
T

(h2
x − 1)2dx � 1 + E0,

where E0 is the initial energy. The bound (5.24) then again follows from a maximum principle 
argument using this estimate. �
6. Proof of Theorem 1.2 and Corollary 1.3

The following perturbation lemma is more or less standard. It follows from the local theory 
and we omit the proof.

Proposition 6.1 (Finite time stability of solutions). Let ν > 0 in (1.1). Let u0 ∈ Hk , k > d/2
and u be the corresponding solution. Let T > 0 be given and assume u has lifespan bigger than 
[0, T ]. Then for any ε > 0, there exists δ > 0 such that the following holds:

For any v0 ∈ Hk , k > d/2 with ‖v0 −u0‖Hk < δ, there exists a solution v to (1.1) correspond-
ing to the initial data v0 and has lifespan containing [0, T ]. Furthermore we have

max
0≤t≤T

‖v(t) − u(t)‖Hk < ε.

In particular by shrinking δ further if necessary, we have

max
0≤t≤T

‖∇v(t) − ∇u(t)‖∞ < ε.

We now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Step 1. We first show that there exists a smooth solution w to (1.2) with 
initial data w0 such that ‖w′

0‖∞ = 1 and for some t∗ > 0, C1 > 1

‖∂xw(t∗)‖∞ > C1 > 1. (6.30)

Let η > 0 be sufficiently small and w0 be a smooth 2π -periodic function with mean zero 
(Here one can choose w0 such that it is odd in x when regarded as a function on R. This in turn 
easily implies that w0 has mean zero on [−π, π].) such that

w0(x) = x − ηx5, |x| < η,

|w′
0(x)| < 1, η ≤ |ξ | ≤ π. (6.31)

Denote by w = w(t, x) the corresponding solution to (1.2). Observe that

w′
0(x) = 1 − 5ηx4, for |x| < η.
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Obviously it follows that |w′
0(x)| ≤ 1 with equality holding only at x = 0 (and its 2π -periodic 

images). By a direct calculation, we have for |x| < η,

(∂xw0)
3 − ∂xw0 = (1 − 5ηx4)3 − (1 − 5ηx4) = O(x4).

Clearly it holds that

∂xx

(
(∂xw0)

3 − ∂xw0

)∣∣∣
x=0

= 0.

Now since

∂t (wx) = (w3
x − wx)xx − ν∂5

xw,

we have

(∂t ∂xw)(0,0) = ((∂xw0)
3 − ∂xw0)xx

∣∣∣
x=0

− ν∂5
xw0

∣∣∣
x=0

= 120νη > 0.

Since A(t) = (∂xw)(t, 0) is a continuously differentiable function of t with A(0) = 1, 
A′(0) > 0, obviously (6.30) holds.

Step 2. The perturbation argument.
Let φ ∈ C∞

c ({x : |x| < η}) be a fixed smooth cut-off function with φ(x) = 1 for |x| < η
2 . Let 

φ be even in x and let

vδ
0(x) = w0(x) − δxφ(x).

Note that vδ
0 is odd in x and still has mean zero.

Clearly

‖vδ
0 − w0‖H 2 ≤ δ‖xφ(x)‖H 2 ≤ const ·δ (6.32)

and can be made arbitrarily small.
On the other hand for |x| < η/2,

∂xv
δ
0(x) = ∂xw0(x) − δ = 1 − 5ηx4 − δ ≤ 1 − δ.

For η/2 ≤ |x| ≤ π , since by construction we have

|∂xw0(x)| ≤ 1 − β,

for some constant β > 0. Obviously by choosing δ > 0 sufficiently small we can have

|∂xv
δ
0(x)| ≤ 1 − β

2
, ∀ η/2 ≤ |x| ≤ π.

Therefore we have shown

‖∂xv
δ
0‖∞ < 1.
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Now let vδ be the solution to (1.2) corresponding to initial data vδ
0. By (6.32), (6.30) and 

Proposition 6.1, for δ > 0 sufficiently small, we have

‖∂xv
δ(t∗)‖∞ > C′

1 > 1,

where C′
1 is another constant.

Define A = {vδ
0 : δ is sufficiently small}. This concludes our construction. �

Proof of Corollary 1.3. The essential ideas are already in the proof of Theorem 1.2. Therefore 
we only sketch the necessary notational modifications.

Take η > 0 sufficiently small and a = 1√
d
(1, · · · , 1)T (here d is the dimension). Note that by 

definition |a| = 1. We define a smooth function w0 ∈ C∞(Td) such that

w0(x) = a · x − η

d∑
j=1

x5
j , for |x| < η.

Let D = [−π, π]d be the fundamental domain of the torus Td . For |x| ≥ η, x ∈ D, we simply 
require

|∇w0(x)| < 1.

Take a radial φ ∈ C∞
c ({x ∈ Rd : |x| < η}) such that φ(x) ≡ 1 for |x| ≤ η/2.

For δ > 0 sufficiently small, define

vδ
0x = w0(x) − δ · (a · x) · φ(x)

and

A= {vδ
0 : δ > 0 is sufficiently small}.

The set A is the desired family of initial data. �
7. Proof of Theorem 1.3

In this section we give the proof of Theorem 1.3.

Proof of Theorem 1.3. Without loss of generality we assume the dimension d = 1. The case 
d ≥ 2 can be proved with suitable modifications.

Fix ε > 0. Let

f (x) = 1

2π

∫
R

e−ξ4
eiξ ·xdξ.

Define

C1 = ‖f ‖L1
x(R), A1 = ‖f ′′‖L1

x(R).
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Define t1 > 0 such that

2C3
1 · A1 · ν− 1

2 · 2t
1
2

1 = ε

3
. (7.33)

Step 1: We show that there exist t2 > 0 with t2 ≤ t1 and h0 ∈ C∞(T) with mean zero such 
that ‖∂xh0‖∞ < 1 and

‖e−νt2∂xxxx ∂xh0‖∞ > C1 − ε

3
. (7.34)

To show this, we first choose F̃ (t, x) to be an odd function of x which is 2π -periodic, and 
such that

F̃ (t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ x

0 sgn(f (s/(νt)
1
4 ))ds, 0 ≤ x ≤ t

1
5 ;

0, t
1
5 + | ∫ t

1
5

0 sgn(f (s/(νt)
1
4 ))ds| ≤ x ≤ π;

linear interpolation, t
1
5 ≤ x ≤ t

1
5 + | ∫ t

1
5

0 sgn(f (s/(νt)
1
4 ))ds|.

Easy to check that for t ≤ 1/2 the function F̃ (t, x) is well-defined. Furthermore

∂xF̃ (t, x) = sgn(f (x/(νt)
1
4 )), a.e. |x| ≤ t

1
5 ;

and ‖∂xF̃‖∞ ≤ 1. Define

G̃(t, x) =
(
e−νt∂xxxx (∂xF̃ (t, ·))

)
(t, x).

Then clearly if t is sufficiently small, then

|G̃(t,0)| ≥
∫

|x|≤t
1
5

|f (
x

(νt)
1
4

)|(νt)−
1
4 dx −

∫
|x|>t

1
5

|f (
x

(νt)
1
4

)|(νt)−
1
4 dx

= ‖f ‖L1
x(R) − 2

∫
|x|>t

1
5

|f (
x

(νt)
1
4

)|(νt)−
1
4 dx

= C1 − 2
∫

|x|>ν
− 1

4 t
− 1

20

|f (x)|dx

> C1 − ε

4
.

In the last inequality above, we used the fact that f is a Schwartz function and the tail contribution 
to the integral can be made arbitrarily small (by taking t small).

Now take an even function ψ ∈ C∞
c (R) such that 0 ≤ ψ ≤ 1, ψ(x) = 1 for |x| ≤ 1 and ∫

ψ = 1. Define ψδ(x) = δ−1ψ(x/δ) and
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F̃δ(t, x) = (1 − δ) ·
(
ψδ ∗ F̃ (t, ·)

)
(t, x),

where ∗ is the usual convolution on R. Easy to check that ‖∂xF̃δ‖∞ < 1, F̃δ is 2π -periodic, odd 
in x and has mean zero.

Define

G̃δ(t, x) =
(
e−νt∂xxxx (∂xF̃δ(t, ·))

)
(t, x).

Obviously for δ sufficiently small, we have

|G̃δ(t,0)| > C1 − ε

3
.

Thus (7.34) is achieved with h0(x) = F̃δ(t, x).
Step 2: Control of the nonlinear solution. We shall fix t2 and h0 from Step 1. With h0 as 

initial data, let h be the corresponding solution to (1.2). We argue by contradiction and assume 
that

sup
0≤t≤t2

‖∂xh(t, ·)‖∞ ≤ C1 − ε. (7.35)

Then

‖h3
x − hx‖∞ ≤ 2C3

1 , ∀0 < t ≤ t2.

Now since

∂xh(t) = e−νt∂xxxx ∂xh0 +
t∫

0

∂xxe
−νs∂xxxx

(
(h3

x − hx)(t − s)
)
ds,

we get

‖∂xh(t) − e−νt∂xxxx ∂xh0‖∞ ≤
t∫

0

‖∂xxe
−νs∂xxxx ((h3

x − hx)(t − s))‖∞ds.

Regard (h3
x − hx) as a 2π -periodic function on R. Recall that f ′′(x) = F−1(−ξ2e−ξ4

). Then

‖∂xxe
−νs∂xxxx ((h3

x − hx))‖L∞
x (T)

=‖∂xxe
−νs∂xxxx ((h3

x − hx))‖L∞
x (R)

≤‖F−1(−|ξ |2e−νs|ξ |4)‖L1
x(R)‖h3

x − hx‖L∞
x (R)

≤‖f ′′‖L1
x(R) · (νs)−

1
2 · 2C3

1

=A1 · (νs)−
1
2 · 2C3

1 .
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Thus we obtain for 0 < t ≤ t2,

‖∂xh(t) − e−νt∂xxxx ∂xh0‖∞ ≤ A1 · 2ν− 1
2 t

1
2

2 · 2C3
1 .

Since t2 ≤ t1, by (7.33) and Step 1, we get

‖∂xh(t2)‖∞ > C1 − ε

3
− ε

3
= C1 − 2ε

3

which is an obvious contradiction to (7.35). �
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