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Abst rac t - -Accura te  and efficient calculations of the flow inside a triangular cavity are presented 
for high Reynolds numbers. The Navier-Stokes equations, expressed in a stream function and vorticity 
formulation, are solved numerically using finite differences on a transformed geometry. Second-order 
numerical boundary conditions are derived and Newton's iteration is employed to solve the nonlinear 
system resulting from the finite difference discretization. Aside from solving the equilateral triangular 
cavity problem, we have also been able to compute numerical solutions for scalene triangular cavity 
problems. Our coarse-mesh results for the equilateral triangular cavity problem are compared with 
finer mesh results in the literature and the agreement is good. 
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Finite difference method. 

1. I N T R O D U C T I O N  

The problem of steady incompressible viscous flow within a driven cavity is of primary importance 

in computational fluid dynamics (see the Introduction in [1,2] and the references therein). The 
development of improved methods for solving the square cavity problem has also been a subject 

of concern to computational physicists for many years. Although there are still some minor 

discrepancies in the results, the square cavity problem has been essentially realized (see, e.g., 

[3-5]). As pointed out in [11, the results for the square cavity may not be applied to other 
important geometries such as a trapezoidal or a triangular cavity. Also, the latter shapes are 

more common in practice (see, e.g., [6-8]). There are also differences between the square cavity 
and the trapezoidal/triangular cavity in the application of the finite difference method. At the 

corners and boundaries of the latter shapes, problems arise if standard algorithms are applied 

directly. Numerical approximations for geometries more complicated than rectangular domains 
have been a subject of study for some time (see, e.g., [9-11]). 

The problem under consideration is the steady motion of an incompressible viscous flow in a 
triangular cavity of arbitrary geometry. The main object of this study is the development of an 
accurate and efficient scheme for solving Navier-Stokes problems in triangular geometries. Recent 

calculations of the steady problem in an equilateral triangular cavity have been given in [1,2] for 
R < 500, where R is the Reynolds number. The fourth-order Navier-Stokes equations in terms of 

stream function were solved numerically using finite differences and a Newton-like iteration on a 
transformed geometry. 
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A second-order finite difference approximation for the fourth-order Navier-Stokes equations 
requires 13-point stencils at the interior points except those nearest the three corners where non- 
symmetric 18-point stencils have to be used. To impose these wide stencils near the boundary, 
fictitious points exterior to the boundaries have to be provided and special treatment on the 
hypotenuse and corner points of the triangle has to be employed. A successful strategy has been 
provided in [1,2] to solve the equilateral triangular cavity problem. In the present work, we 
propose an alternative approach based on the Navier-Stokes equations in terms of the stream 
function and vorticity. A geometric transformation handling triangles of arbitrary shape is also 
presented. One of the difficulties with the strea.m-function-vorticity formulation is that the cor- 
rect boundary conditions for the vorticity are not clear, since both boundary conditions are in 
terms of the stream function. To enforce boundary conditions, we use the so-cailed computa- 
tional boundary method in which the computation region under consideration is one-grid inside 
the physical domain (see, e.g., [12,13]). On the physical boundaries, stream function and its 
derivatives are provided by impermeable and nonslip conditions, but the vorticity values are nei- 
ther taken into account nor required in numerical computations. This is in conformity with the 
arguments that no vorticity should be specified on the no-slip walls either physically or mathe- 
matically when using stream-function-vorticity formulations [14]. Numerical results suggest that 
solving the stream-function-vorticity equations seems more efficient than solving the fourth-order 
stream function equation. By using the former formulation, we are able to obtain accurate results 
for larger values of R with fairly coarse grid sizes. 

The organization of the paper is as follows. In the next section, we transform the Navier-Stokes 
problem in an arbitrary triangle to an equivalent problem posed on a right isosceles triangle. In 
Section 3, we introduce numerical schemes with special attention to computational boundary 
conditions. Numerical results are presented in Section 4 and discussions are presented in the 
final section. 

2. G E O M E T R I C  T R A N S F O R M A T I O N  A N D  

M A T H E M A T I C A L  F O R M U L A T I O N S  

A triangular driven cavity of general shape is given by locating its three vertices at O(A, 0), 
P(0, H), and Q(rA, H), with the upper side moving to the right via a constant velocity U; see 
Figure la. By a simple linear transformation 

~=x-A y A - x  r - 1  
r 7  + r-'H' ~7 --- r---A- + - - ~ Y '  (1) 

it is transformed to a fundamental triangle with vertices O(0, 0), P(0, 1), Q(1, 0); see Figure lb. 
Accordingly 

x = (1 - 77 + ( r -  1)~)A, Y -- ( 7 + ~ ) g .  (2) 

Y(o, n) ~(,-A, n) 'l 

0,]) 

~ Q O , o )  

(a) (b) 
Figure  1. Geomet r ic  t r ans fo rmat ion .  
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The nondimensional Navier-Stokes equations and the continuity equation are reduced by in- 
troducing the stream function ¢ and the vorticity ~ into 

Cx~ + Cyy = - 4 ,  
Cxx + 4yu = R (~#y4~ - ~bx~y) • (3) 

Here the variables are made dimensionless by one-third of the triangle height H/3 and the moving 
lid velocity U. The Reynolds number is defined as R = HU/3u, where u is the kinematic viscosity. 
The velocity components are defined by stream function as 

u = Cy, v = -~b~. 

Under transformation (1), 
become 

(l +-~2 ) ¢~ + 2 ( r - 1 -  -~2 ) ~b~ + ((r-1)2 + -~2 ) ~bnn = -r2H2~, 

the governing equations and velocity components in the ~z}-plane 

( 4 )  

1 
u = ( ¢ 4  - 

The boundary conditions in the xy-plane are 

(5) 

1 
v = ~ (~b~ + (r - 1)¢n). (6) 

~b = 0, on all three sides, (7) 

1, for the top side, 
v). = (8) 

0, for the other two sides, 

(u, v) • n = 0, on all three sides, (9) 

where T is the tangential unit vector pointing in the direction of motion (clockwise) and n is 
the outwards normal unit vector. In the ~/-plane, condition (7) remains the same form while 
(8),(9) need to be converted as follows. On the top side PQ, substituting (6) into (8),(9), with 
w = (1,0), n -- (0, 1) yields 

¢4 = Cn = H, on side PQ. (10) 

On side OP, we have 
( - A ,  H) ( - H ,  - A )  

7 -  n -  
A 42v-4- ' 

Combining this with (6), we convert (8),(9) into 

( A2 + H2) ¢4 + (A2( r - 1) - H 2) ~b n -- 0, r e ,  = O. 

Therefore, 

Similarly, on side QO by using 

we obtain 

¢4 = ~bn = 0, on side OP. (11) 

((1 - r)A,-H) (H, (1 - r)A) 
T =  n =  

X/(1 -- r)2A2 + H 2' x/(1 - r)2A2 + H 2' 

~b¢ = Cv = 0, on side QO. (12) 

Equations (4),(5) and boundary conditions (7),(10)-(12) formulate a boundary value problem on 
the fundamental triangle. 
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3. N U M E R I C A L  M E T H O D S  

The fundamental triangle POQ is covered by a uniform mesh with mesh size h = 1IN in 
both ~ and 77 directions where N is a preassigned positive integer. In the following, we will 
denote the grid point by (i,j) (see Figure 2a), and in case of utilizing a 9-point stencil centered 
at (x,y),  we denote points (x,y), (x + h,.y), (x ,y  + h), (x - h,y), (x ,y  - h), (x + h,y  + h), 
(x - h, y + h), (x - h, y - h), (x + h, y - h) by 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively (see Figure 25). 
As discussed in Section 1, the numerical schemes will be constructed in the computational region 
{(i,J) [ 2 < j < N - 1, 2 < i < N - j  + 1}, as illustrated in Figure 2a, where the interior points 
are marked by a circle and computational boundary points are marked by a solid disc. 

N+I[  
N - - - - : '  i - 1  i i+1 

N-1 ~ 6 2 5 

N - 2 -~-~- 3 f ~ - ~ - ~  1 

N-3 : ' - - - - ~  '( 7-.,~ (b)4 -8 

j + l  

J 

j - 1  

1 2 3 4 N - 3 N - 2 N - 1  N N+I 
(a) 

Figure 2. Grid network and 9-point stencil. 

We shall derive the numerical schemes by second-order central difference formulas, namely in 
the 9-point stencil (see Figure 25) 

U~ -- (Ul --U3) _~_O(h 2) u~? -- (~t2 - u 4 )  q-O (h 2) 
2h ' 2h ' 

(Ul + U3 -- 2U0) (U2 + U4 -- 2U0) 

(u~  - u~  + u 7  - u s )  +o(h2) 
u ~  : 4h 2 

(13) 

Special care must be taken on the grid points nearest the hypotenuse of the fundamental triangle 
where point 5 is missing (outside the region of interest), so we need a difference formula for u~, 
in an 8-point stencil. The difference approximation in this kind of unsymmetric stencil has been 
documented in the literature; for example, see [9,10]. Let 

8 

i=O 
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and perform Taylor expansion at point 0 on each te rm in the summation up to O(h4). We then 
equate corresponding coefficients on two sides for all partial  derivatives. This leads to a linear 
system of nine unknowns with nine equations. By choosing c5 = 0, we obtain 

1 1 1 
h2, Cl = c2 = c3 = c4 --- 2h 2 , c5 = c6 = 0, c7 -- cs - 2h 2 , 

(ul + u2 + u3 + u4 - 2Uo - us - us) 
which gives 

+ o (14) 
u ~  : 2h 2 

3.1. F in i te  Differences at Interior Grids 

By using (13), numerical schemes for (4),(5) at interior points are straightforward: 

C1 (¢1 -~ ¢3 - 2¢0) C2 (¢5 -- ¢6 -~- ¢7  -- ¢8 )  63 (¢2 + ¢4 -- 2¢0) = _ r 2 H 2 ~ o ,  (15) 
h2 + 4h  2 -t- h2 

C1 (~1 -}- ~3 - 2~0) 
h 2 

where 

C 1 = 1 + - -  

+ C2 (~5 - ~6 + ~7 - ~s) C3 (~2 + ¢4 - 2¢0) + 
4h 2 4h 2 

r g a  ((¢1 - ¢3)(¢2 - ¢4) - (¢2 - ¢4)(¢1 - ¢3)) 
A 4h 2 ' 

(16) 

A2, C2=2 r -1 - -~ -~  , C3= ( r - 1 ) 2 + ~ - ~  • 

The  exceptions are taking place on the interior points next to the computat ional  boundary  of the 
hypotenuse, i.e., points in the set {( i , j )  I 3 < j < N - 3, i - N - j} ,  where the values of ¢5 are 
not available. In this case, we simply replace the C2 term in (16) by using (14). 

3.2. Nu me r ic a l  B o u n d a r y  Condi t ions  

We shall first specify s t ream function values on the computat ional  boundaries as marked by 
solid discs in Figure 2a. Denote any point in the set {( i , j )  I 3 < j < N - 3 ,  i = 2 or 

3 < i < N - 3, j = 2} and its adjacent points on physical boundary  and in interior domain 
by II, I, and III ,  respectively. Using a Taylor expansion, we have 

h 2 
Cn = ¢I + h¢~ + -~-¢~' + O (h3),  Cm = ¢i + 2h¢~ + 2h22¢~ ' + O (h3).  

By (7) and (11), ¢I = ¢~ = 0, we obtain 

1 = + o (h3) .  (17) 

The rest of the boundary  points (nearest to the moving side) will be linked with two adjacent 
points along the direction normal to the hypotenuse, one on physical boundary  and another  in 
interior. Let (x,y) be a point in the set {(i,j) [3 <j  < g - 2 ,  i + j  = N + I } .  By (7) and (10), 
we have 

Using Taylor expansion at (x + h/2, y + h/2) gives 

¢ ( x , y ) = 0 -  (H+H)+ 5 + ¢ x + ~ , y +  + O ( h 3 ) ,  

¢ ( x - h , y - h ) = O -  ( g + g ) + ~  - -  ~-~+~-~ ¢ x + ~ , y +  + O ( h 3 ) .  
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Eliminating h 2 terms yields 

¢ 0 = 5 ¢ 7 -  hH+O(h3), (18) 

where we have again used the same notation as in Figure 2b. Obviously, (18) is directly applicable 
to the points in set {( i , j )  t 3 _< j < N - 2, i + j = N + 1}. For corner points (2, 2), (2, N - 2), 
(2, N - 1), ( N -  1, 2), and (N - 2, 2), there are two ways to specify stream function value; i.e., the 
points can be linked to two different sides by the above techniques. We define stream function as 
the arithmetic average of the two specifications which can be regarded as a least-square fitting. 

Specifying vorticity values on the computational boundary is relatively simple. For the points 
in set {( i , j )  I 2 < i < N - 2 ,  j = 2 or 3 ___ j < N - 2 ,  i = 2}, equation (15) is used to 
determine vorticity as each 9-point stencil is right within the physical domain. For points in set 
{( i , j )  ] 2 < j < N - 1, i + j  = N + 1} vorticity values are determined by (15) except that  the 
approximation for ¢¢v in the 6'2 term is replaced by (14). 

3 . 3 .  N e w t o n ' s  I t e r a t i o n  P r o c e s s  

The finite difference discretization described in the previous sections will result in a system of 
nonlinear equations of (N - 1) x (N - 2) unknowns and same number of equations. A standard 
Newton's iteration process (see, e.g., [15]) is employed to solve the nonlinear system. The lexi- 
cographic ordering of the grid points is used so that  the linearized Jacobian is a banded matrix 
which enables us to take advantage of the direct solvers for banded structure. It is also worth 
noting that  the condition number of the Jacobian matrix depends on the formulation of the 
Navier-Stokes equations as well as the numerical schemes. An efficient Newton-like method for 
solving the square driven cavity using the fourth-order stream function Navier-Stokes equations 
is described by Schreiber and Keller [5]. It is found in [1,2] that  a relatively straightforward 
generalization of the technique of Schreiber and Keller for the triangle problem resulted in linear 
systems which are so ill-conditioned that  accurate numerical solutions are virtually impossible. 
In contrast, the present approach is shown to be very robust for a wide range of Reynolds num- 
bers. Presumably this is due to the use of lower-order Navier-Stokes equations which makes the 
Jacobian matrix more well conditioned. In all our calculations, the Gaussian elimination process 
for linearized system runs smoothly and the quadratic convergence of Newton's iteration is well 
demonstrated, as only three to four Gaussian eliminations are required to reduce the r.m.s, error 
of the residuals to 10 -5 . 

4 .  N U M E R I C A L  R E S U L T S  

In this section, we present flow patterns and characteristic parameters for a triangular cavity 
with different shape and Reynolds numbers. The usual Reynolds-number-continuation is used to 
develop steady solutions for higher R, with the increment AR = 50 for R < 500 and AR = 100 
for R > 500. At the very beginning (R = 1), the initial values of stream function and vorticity 
are set to 0; afterwards for each iteration step, the initial guess is set to be the steady solution 
for the previous Reynolds number. Numerical tests for a variety of triangular geometries have 
been investigated, with R up to 1500 for equilateral cavity and 800 for scalene cavity, but for 
brevity, we shall only give here the detailed description for the equilateral cavity and one case 
of scalene cavity. It should be pointed out that  the Reynolds number is based on H/3, which is 
consistent with the definition in [1,2] in the case of the equilateral cavity. In this case, if a side 
of the triangular cavity is used as the length scale, the actual R would be 2x/'3 -fold, so R -- 1500 
is equivalent to a conventional Reynolds number of 5196. 

4 . 1 .  E q u i l a t e r a l  T r i a n g u l a r  C a v i t y  

Consider the same geometry as in [1,2] with A = x/3, r -- 2, H -- 3. This gives an equilateral 
cavity with length of each side 2v/3. Using mesh sizes = 1/50, 1/60, 1/70, and 1/80, we obtain 
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numer ica l  resu l t s  for a Reyno lds  number  up  to  1000. De ta i l ed  cha rac te r i s t i c  p a r a m e t e r s  are  given 

in Tables  1 and  2. I t  can be  seen from Table  1 t h a t  our  resul ts  are  in good  ag reemen t  wi th  those  

o b t a i n e d  by  M c Q u a i n  e t  al .  [1]. Also the  compar i son  be tween  the  coarse  and  fine mesh resul t s  

show the  re l i ab i l i ty  of  using a coarse  grid.  Table  2 shows t h a t  as R is g rea te r  t h a n  1000, t he  

loca t ion  of the  center  of t he  p r i m a r y  e d d y  seems to be i ndependen t  of the  Reyno lds  number .  T h e  

s t r eaml ines  and  vor t i c i ty  d i s t r ibu t ions  for different  Reyno lds  number s  are  shown in F igures  3 

and  4. I t  is observed  t h a t  the  in ter ior  of the  p r i m a r y  e d d y  has a lmos t  cons t an t  vo r t i c i t y  for 

r e a sonab ly  large R. 

Table 1. Properties of the center of the primary eddy, located at (xc, Yc) with stream 
function value ¢c and vorticity ~c. 

R Source ¢c {c x c  Yc 

Present (h = 1/50) 0.235 1 . 3 6 8  1.767 2.460 

Present (h --- 1/80) 0.234 1 . 3 9 9  1 . 7 3 2  2.475 

McQuain et  al. (h = 1/200) 0.233 1 . 3 6 3  1 . 7 4 9  2.460 

50 

Present (h --- 1/50) 0.240 1 . 5 2 7  2.113 2.460 

Present (h -- 1/80) 0.235 1 . 4 3 8  2.100 2.438 

McQuain et al. (h = 1/200) 0.237 1 . 4 6 4  2.078 2.445 

100 

Present (h ---- 1/50) 0.253 1 . 3 4 9  2.044 2.340 

Present (h ---- 1/80) 0.244 1 . 2 6 4  2.100 2.363 

McQuain et al. (h -- 1/200) 0.247 1 . 3 7 3  2 . 0 6 1  2.355 

200 

Present (h = 1/50) 0.269 1 . 2 1 2  1 . 9 4 0  2.280 

Present (h --- 1/80) 0.262 1 . 1 5 6  1 . 9 0 5  2.250 

McQuain et al. (h  = 1/200) 0.260 1 . 2 7 2  1.940 2.280 

350 

Present (h = 1/50) 0.277 1 . 1 2 4  1 . 9 0 5  2.220 

Present (h = 1/80) 0.274 1 . 1 5 3  1 . 8 8 4  2.213 

McQuain et al. (h  = 1/200) 0.268 1 . 2 3 2  1 . 9 0 5  2.265 

500 

Present (h -- 1/50) 0.279 1 . 0 6 6  1 . 8 7 1  2.160 

Present (h -- 1/80) 0.278 1 . 1 2 4  1 . 8 4 0  2.213 

McQuain et al. (h -- 1/200) 0.269 1 . 2 5 0  1 . 9 0 5  2.265 

Table 2. The feature of the vortex eddies in the equilateral triangular cavity at high 
Reynolds numbers. The results were obtained using h = 1/80. 

R 

600 

800 

i000 

1200 

1400 

1500 

Primary vortex Bottom vortex Upper corner vortex 

~b, ~, location ,p, ~, location ¢, ¢, location 

0.280, 1.110, (1.862, 2.175) -0.0115, -0.5672, (1.559, 0.975) -0.0002, -0.1451, (0.390, 2.475) 

0.280, 1.077, (1.819, 2.175) -0.0121, -0.5507, (1.581, 0.938) -0.0013, -0.4403, (0.433, 2.550) 

0.279, 1.048, (1.840, 2.138) -0.0125, -0.6779, (1.537, 0.938) -0.0024, -0.5608, (0.455, 2.588) 

0.278, 1.024, (1.840, 2.138) -0.0126, -0.6507, (1.559, 0.900) -0.0033, -0.5081, (0.455, 2.588) 

0.277, 1.003, (1.840, 2.138) -0.0125, -0.7209, (1.537, 0.863) -0.0041, -0.6412, (0.433, 2.625) 

0.277, 0.998 (1.840, 2.138) -0.0125, -0.7275 (1.537, 0.863) -0.0045, -0.6393 (0.433, 2.625) 

Acco rd ing  to  t he  m e a n  square  law, the  theore t i ca l  value of  vo r t i c i ty  a t  the  p r i m a r y  vo r t ex  

cen te r  is 1.054 for equ i la te ra l  cav i ty  wi th  length  of  side 2v/3. Th is  in ter ior  cons t an t  vo r t i c i t y  

p r ed i c t i on  is given by  Ba tche lor  [16]. Our  numer ica l  resul ts  suggest  t h a t  the  s t r e a m  func t ion  

value  a t  t he  center  of the  p r i m a r y  eddy,  Co, converges to  a cons tan t ,  and  i ts  vo r t i c i ty  ~c is qui te  
close to  1.054 as R > 500. 
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Re=200 

x 

Re=500 

i 

Re=50 

x 

Re=200 

Re=500 

V 

Figure 3. Streamlines and vorticity distributions for an equilateral tr iangular cavity 
at low-to-medium Reynolds numbers. 

4.2. S c a l e n e  T r i a n g u l a r  C a v i t y  

Owing to the unsymmetric  geometry, flow motion in scalene triangular cavity is very difficult to 
simulate. I t  was conjectured in [1,2] that  it might be unavoidably ill conditioned. However, this 
type of motion may exist in practice despite being unstable. Its numerical investigation remains 
a challenge. In this section, we present a set of results for the so-called right-oriented tr iangular 
cavity by taking A = 3v/-3/2, r = 4/3, H = 3. By using mesh size h = 1/50, we could carry 
out the calculations for Reynolds numbers as high as 1000, but graphically only the results for 
R < 800 are meaningful since oscillation appears  in streamlines when R exceeds 800. Numerical 
results with finer meshes 1/70 and 1/80 are also obtained. It  is found that  the streamlines and 
vorticity contours with h -- 1/70 are graphically indistinguishable from those obtained by using 
h = 1/80. In Figure 5, we plot the streamlines and vorticity contours for R -- 100, 500, 800 with 
a finer mesh h -- 1/80. The feature of the vortex eddies are given in Table 3. Again it is seen 
tha t  as R becomes large, the location of the center of the pr imary eddy and its s t ream function 
value seem to have converged. 
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X X 

Re=1200 Re=-1200 

Re=1500 Re=1500 

Figure 4. Streamlines and vorticity distributions for an equilateral triangular cavity 
at high Reynolds numbers. 

Table 3. The feature of the vortex eddies in a right-oriented triangular cavity. The 
results were obtained using h ---- 1/80. 

1 0.230, 

50 0.243, 

100 0.256, 

200 0.270, 

350 0.279, 

500 0.277, 
600 0.273, 

700 0.272, 
800 0.270, 

Primary vortex Bottom vortex Upper corner vortex 

1.400(2.014, 2.475) 

1.401 (2.338, 2.400) --0.0002, --0.0215 (2.479, 0.638) 

1.197 (2.306, 2.288) --0.0015, -0.0880 (2.447, 0.825) 

1.132 (2.200, 2.213) -0.0053, --0.2521 (2.382, 0.900) 

(2.187, 2.175) --0.0086, --0.3852 (2.338, 0.900) I. 143 

1.093 (2.187, 2.175) -0.0102, -0.5158 (2.295, 0.900) -0.0014, -0.3475 (0.736, 2.400) 
1.058 (2.187, 2.175) --0.0108, --0.6384 (2.252, 0.900) -0.0026, --0.4145 (0.750, 2.438) 
1.040 (2.176, 2.138) --0.0111, --0.6377 (2.241, 0.863) --0.0036, --0.4853 (0.758, 2.475) 

1.023 (2.176, 2.138) --0.0114, --0.6914 (2.241, 0.863) -0.0044, --0.4417 (0.758, 2.475) 
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Re=100 Re=100 

Re=500 Re=500 

Re=800 Re=800 

Figure 5. Streamlines and vorticity distributions for a right-oriented triangular cavity 
at different Reynolds numbers. 

5. D I S C U S S I O N S  A N D  C O N C L U S I O N S  

We proposed a new approach to investigate the steady fluid flow in a triangular driven cavity. 
The advantage of our method is its improved efficiency due to the employment  of the second- 
order Navier-Stokes equations. Our numerical scheme has been proved robust for a wide range 
of Reynolds numbers and applicable to triangular cavities with arbi t rary shape. Reasonably 
accurate results can be obtained for Reynolds numbers up to 1000 by using only 50 mesh points 
in each direction. The coarse-mesh results compare reasonably well with the previous published 
results obtained by using 200 x 200 grids. I t  has been found that  flow motion in an equilateral 
cavity is highly stable as in the case of a square cavity. Though our calculations stop at R = 1500, 
the solution procedure can be carried out for higher R without difficulty. 

For t ime-independent Navier-Stokes equations, it has been found tha t  Newton's  iteration with 
a direct Jacobian matr ix  solver is very powerful for solving nonlinear systems resulting from 
the finite difference discretizations, especially when R is large. The use of Newton's  process is 
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advantageous over the usual SOR-like iterations in at least two aspects. I t  converges for a wide 
range of Reynolds numbers while SOR-like methods may often fail to converge at high R, and its 
quadratic convergence behavior prevents any possible temporal- type instabilities from developing 

in the artificial t ime of the SOR-like process for the steady problem [15]. The main disadvantage 
in using Newton's  method is the high cost of CPU time and storage. However, this can be 
compensated by the fact that  fairly nice results can be obtained by a relatively small number of 
grids, as demonstrated in this study. 

Prior to the works of McQuain et al. and Ribbens et al., it was believed that  the condition 
number  was not a serious problem in solving the linearized Jacobian system. In [1,2], it is found 

tha t  a straightforward generalization of the technique of Schreiber and Keller [5] does not work for 
a tr iangular or a trapezoidal cavity problem. For moderate  fine grids, the systems are numerically 
singular, with condition numbers in excess of 1013 . The ill-conditioning behavior is likely due 
to the use of the fourth-order Navier-Stokes equations. The present approach using a coupled 
system of two second-order equations proved quite successful and yielded accurate solutions for 
high Reynolds numbers. For most of our calculations, the systems are well conditioned with 
condition numbers in the order of 10 6. In all cases, at most four Newton iterations are required 
to reduce the r.m.s, error of the residuals to 10 -5. 
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