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Abstract In this paper we present and analyze Chebyshev and Legendre pseudo-spectral
methods for the second kind Volterra integral equations with weakly singular kernel
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1 Introduction

Volterra integral equations (VIEs) find application in many disciplines, such as electromag-
netic scattering, demography, viscoelastic materials, insurance mathematics, etc. They have
been subject ofmany theoretical and numerical investigations. Among the numericalmethods
for VIEs, the spectral approximations have been attracting more attention recently. The latest
progress in this direction includes but not exclusive to: the collocation methods for Volterra
integral and related functional equations, see, e.g., [2], the Jacobi spectral-collocationmethod
for VIEs with a weakly singular kernel [6], spectral Petrov–Galerkin methods for the second
kind Volterra type integro-differential equations [20], a spectral Jacobi-collocation approx-
imation for VIEs with Abel type singular kernel [11], a spectral collocation method for
weakly singular VIEs with pantograph delays [22], a spectral method for Volterra functional
integro-differential equations with delays and smooth kernel [18].

In particular, Chen and Tang [6] proposed and analyzed a Jacobi-collocation spectral
method for the second kind VIEs with a weakly singular kernel. Some function transfor-
mations and variable transformations are employed to change the equation into a new VIE
defined on the standard interval [−1, 1], so that the solution of the new equation possesses
better regularity and the orthogonal polynomial theory can be applied accordingly. Li and
Tang [11] considered the special case of VIEs with weakly singular kernel (t − s)−1/2. For
this special case, a variable transformation was applied to get a new VIE with regular kernel.
Zhang et al. [22] investigated the VIEs of second kind with weakly singular kernel and pan-
tograph delays. They also proposed to use function and variable transformations to convert
the equation into VIEs with pantograph delays so that the Jacobi orthogonal polynomials
could be applied.

The work more relevant to the present one is given by Xie et al. in [21] which investigated
a spectral Jacobi–Galerkin approach for second kind VIEs. The Gauss–Legendre quadrature
formula was used to approximate the integral operator. A rigorous error estimate was given
under the assumption that both the kernel function and the source function are smooth. In
[7], the authors investigated a spectral Jacobi-collocation method for VIEs with a kernel of
the form (t − s)−αk(t, s), 0 < α < 1. The error estimate was obtained under the assumption
that the solution is smooth.

In this paper we consider the second kind VIEs with weakly singular kernels, and propose
a spectral method based on Chebyshev and Legendre polynomial approximation. Since the
solutions of the underlying equation are not smooth, it is natural to consider the numerical
method based on a weighted weak formulation and carry out the error analysis in suitable
weighted Sobolev spaces. The present work is an extension of the method proposed in [21]
for regular kernels, but the extension requires much technicality due to the involvement of
the singular factor (t − s)α . In particular, the error analysis in the weighted Sobolev space
uses quite different space and analysis tools. As compared to Chen and Tang [6] and Chen
et al. [7] who considered collocation type spectral methods, the present work is of Galerkin
type, which is set up in a more general framework. More importantly, some useful tools for
Galerkin-type approximations can be employed to derive optimal error estimates. It is also
worthwhile to emphasize that the convergence rates obtained in the last theorem of this paper
are better than those in [7].

The outline of the paper is as follows. In Sect. 2, the spectral and pseudo-spectral
Galerkin approaches are presented for VIEs. Some lemmas useful for the conver-
gence analysis are provided in Sect. 3. The convergence analysis is given in Sect. 4
for spectral and pseudo-spectral Jacobi–Galerkin methods. Numerical experiments are
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carried out in Sect. 5, which are used to validate the theoretical results obtained in
Sect. 4.

2 Chebyshev/Legendre Spectral Galerkin Methods

Given the source function g(x), we consider the following Volterra equation:

u(x) + Su(x) = g(x), x ∈ � := (−1, 1). (2.1)

In (2.1), the integral operator S is defined by

Su(x) =
∫ x

−1
(x − s)−μK (x, s)u(s)ds, 0 < μ < 1, (2.2)

where the function K (x, s) is assumed to be smooth.
Now we describe the numerical method for solving (2.1). We first define PN as the poly-

nomial spaces of degree less than or equal to N . We denote by Jα,β
N (x) the Jacobi polynomial

of degree N with respect to the weight functionωα,β(x) = (1−x)α(1+x)β,−1 < α, β < 1.
Let xα,β

i be the points of the Gauss–Jacobi (GJ) quadrature formula, defined by

Jα,β
N+1

(
xα,β
i

)
= 0, i = 0, . . . , N ,

arranged by increasing order: xα,β
0 < xα,β

1 < · · · < xα,β
N . The associated weights of the GJ

quadrature formula are denoted by ω
α,β
i , 0 ≤ i ≤ N . Particularly, we use ω(x) to denote the

Chebyshev or Legendre weight function and use ωi to denote the associated weights of the
Gauss quadrature formula. It is well known that the numerical quadrature

∫ 1

−1
u(x)(1 − x)α(1 + x)βdx �

N∑
i=0

u
(
xα,β
i

)
ω

α,β
i (2.3)

is exact for all functions u ∈ P2N+1(�).
We recall that the Lebesgue space L2

ωα,β (�) is defined as

L2
ωα,β (�) =

{
u measurable over � and

∫
�

u2(x)ωα,β(x)dx < ∞
}

,

which is equipped with the scalar product

∀φ,ψ ∈ L2
ωα,β (�), (φ,ψ)ωα,β =

∫
�

ωα,β(x)φ(x)ψ(x)dx .

The associated norm is defined by ‖φ‖0,ωα,β := (φ, φ)
1/2
ωα,β . If ωα,β ≡ 1, the symbol ωα,β

will be omitted from the subscript.
TheChebyshev (resp. Legendre) spectral Galerkinmethod for (2.1) is to find uN ∈ PN (�)

such that
(uN , vN )ω + (SuN , vN )ω = (g, vN )ω , ∀vN ∈ PN (�), (2.4)

where ω(x) = ω− 1
2 ,− 1

2 (x) (resp. ω ≡ 1).
In order to obtain high order accurate numerical solution of the problem (2.4), the integral

term in (2.4) has to be evaluated with high accuracy. Next we propose a numerical quadrature
to efficiently compute the term involving the integral operator S. First we notice
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SuN (x) =
∫ x

−1
(x − s)−μ K (x, s) uN (s)ds

=
(
1 + x

2

)1−μ ∫ 1

−1
(1 − θ)−μK (x, sx (θ)) uN (sx (θ)) dθ

= (1 + x)1−μ

∫ 1

−1
(1 − θ)−μ K̄ (x, θ)uN (sx (θ)) dθ, (2.5)

where

sx (θ) = 1 + x

2
θ + x − 1

2
, θ ∈ �, K̄ (x, θ) = 1

21−μ
K (x, sx (θ)) . (2.6)

Thus

(SuN , vN )ω =
∫ 1

−1

(
1 − x2

)α
(1 + x)1−μ vN (x)

∫ 1

−1
(1 − θ)−μ K̄ (x, θ) uN (sx (θ)) dθdx

= (S̃uN , vN )ρ,

where α = − 1
2 in the case ω(x) = ω− 1

2 ,− 1
2 (x), and α = 0 if ω ≡ 1,

S̃uN = SuN

(1 + x)1−μ
, ρ(x) = wα,α+1−μ(x), K̄ (x, θ) = 1

21−μ
K (x, sx (θ)) . (2.7)

Now we approximate the integral terms by using the Gauss quadrature related to different
Jacobi weights, i.e.,

(uN , vN )ω ≈ (uN , vN )N ,ω :=
N∑
i=0

uN (xi )vN (xi )ωi ,

S̃uN ≈ S̃N uN :=
N∑

k=0

K̄ (x, θk)uN (sx (θk))
k,

(S̃uN , vN )ρ ≈ (S̃N uN , vN )2N ,ρ :=
2N∑
i=0

S̃N uN (yi )vN (yi )ρi ,

where

θk = x−μ,0
k , 
k = ω

−μ,0
k , yi = xα,α+1−μ

i , ρi = ω
α,α+1−μ
i ,

k = 0, 1, . . . , N ; i = 0, 1, . . . , 2N .
(2.8)

The above approximations lead to the following pseudo-spectral method: find ūN ∈
PN (�) such that

(ūN , vN )N ,ω + (S̃N ūN , vN )2N ,ρ = (g, vN )ω, ∀vN ∈ PN (�), (2.9)

or, equivalently,

N∑
i=0

ūN (xi )vN (xi )ωi +
2N∑
i=0

N∑
k=0

K̄ (yi , θk)ūN
(
syi (θk)

)
ρkvN (yi )ρi

= (g, vN )ω, ∀vN ∈ PN (�). (2.10)

The remaining sections are mainly devoted to carrying out error analysis for both discrete
problems (2.4) and (2.9) under the assumption that the exact solution is smooth enough.
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Remark 2.1 The smoothness assumption on the exact solution used in the analysis makes
sense for the following reasons: 1) if the known terms take some special forms, such as
functions havingweakly singularity at the end points, then the corresponding solutions would
be sufficiently smooth; 2)more importantly, the convergence analysis carried out in this paper
is extendable to some cases where the solution has weak singularity. It has been well known
[2] that if g ∈ Cm(�̄) and K ∈ Cm(�̄ × �̄) with K (s, s) 
= 0 in �̄ = [−1, 1], then the
solution of (2.1) can be expressed as

u(x) =
∑

( j,k)∈G
γ j,k (1 + x) j+k(1−μ) + ur (x), x ∈ �, (2.11)

where G := {( j, k) : j, k are non-negative integers such that j + k(1 − μ) < m}, γ j,k are
constants, and ur (·) ∈ Cm(�̄). This means the solution for smooth known data is the sum
of a smooth function and a singular part of known form. Now we consider the case μ is a
rational number, i.e., μ = q

p , q < p, q, p ∈ Z+, then the Eq. (2.1) can be transformed into
the following equation:

ū(x) = p
∫ (

−1
x − s)−μ

⎛
⎝

p−1∑
i=0

(x + 1)p−1−i (s + 1)i

⎞
⎠
−μ

K
(
(x + 1)p − 1, (s + 1)p − 1

)

×(s + 1)p−1ū(s)ds + ḡ(x) (2.12)

by the variable change

x → (x + 1)p − 1, s → (s + 1)p − 1, (2.13)

where ū(x) = u((x + 1)p − 1), ḡ(x) = g((x + 1)p − 1). Applying the linear transformation
sx (θ) = 1+x

2 θ + x−1
2 , it is seen that the new integral operator, denoted by S̄ū, in the right

hand side of (2.12) reads:

S̄ū(x)

:= p
∫ x

−1
(x − s)−μ

⎛
⎝

p−1∑
i=0

(x + 1)p−1−i (s + 1)i

⎞
⎠
−μ

K
(
(x + 1)p − 1, (s + 1)p − 1

)
(s + 1)p−1ū(s)ds

= p
∫ 1

−1
(1 − θ)−μ

(
x + 1

2

)p−μp
⎛
⎝

p−1∑
i=0

2p−1−i (1 + θ)i

⎞
⎠
−μ

·K (
(x + 1)p − 1, (sx (θ) + 1)p − 1

)
(1 + θ)p−1ū(sx (θ))dθ

=
∫ 1

−1
(1 − θ)−μ K̄ (x, θ)ū (sx (θ)) dθ,

where

K̄ (x, θ)=:p
(
x + 1

2

)p−μp
⎛
⎝

p−1∑
i=0

2p−1−i (1 + θ)i

⎞
⎠
−μ

K
(
(x + 1)p − 1, (sx (θ) + 1)p − 1

)
(1 + θ)p−1.

The new kernel function K̄ (x, θ) now plays the same role as the one in (2.5), and it can be
directly verified that the two main conditions for the convergence analysis are satisfied. First,
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all three terms max−1≤θ≤1

∥∥K̄ (·, θ)
∥∥
Hm;N

ρ
, max−1≤x≤1

∥∥K̄ (x, ·)∥∥Hm;N



and K ∗ appearing in Theorem
4.4 are bounded. Second, it deduces from (2.11) that the solution ū(x) to the new Eq. (2.12)
is smooth enough. Therefore the above spectral method and convergence analysis presented
in the next sections is directly applicable to the transformed Eq. (2.12). The numerical tests
given in the last section confirm this point.

In fact, the smoothing strategy has been used by a number of authors for different types
of equations. To mention a few most relevant among many, Monegato and Scuderi [14]
considered classical Fredholm integral equations of the second kind, and proposed a nonlinear
transformation to absorb the singularities of the solution. Baratella and Orsi [1] considered
the linearVIEs of the second kind and used a smoothing change of variable so that the solution
of the transformed equation is smooth, then solved the resulting equation by standard product
integration methods. Chen and Tang [5] proposed a preliminary smoothing transformation
to remove a single term singularity like (1 + x)μ+m−1. Kolk and Pedas [9] used suitable
smoothing techniques to treat the diagonal and endpoint singularity. It is alsoworth tomention
the work by Sidi [19] and Elliott and Prossdorf [8], which used trigonometric and rational
transformations for numerical integrations. The smoothing strategy is specially efficient in
the case when μ is a rational q

p , q < p, q, p ∈ Z+. One should also be aware from (2.13)
that the larger is the transformation exponent p, the sharper is the transformed solution near
the left end point. Thus this smoothing is usually used for moderate p.

3 Some Preliminary Results

In this section, we will give some useful lemmas which play a significant role in the conver-
gence analysis later. Let C stand for a generic positive constant independent of any functions
and of any discretization parameters. We use the expression A � B to mean that A ≤ CB,
and use the expression A � B to mean that A � B � A.

First, we define the projection operator�ω
N as follows: for all u ∈ L2

ω(�),�ω
Nu ∈ PN (�)

is given by

(�ω
Nu, vN )ω = (u, vN )ω, ∀vN ∈ PN (�).

Then let Iα,β
N denotes the interpolation operator based on N+1 degree JacobiGauss orGauss–

Radau points associated to the weight function ωα,β(x), i.e., ∀u ∈ C(�), Iα,β
N u ∈ PN (�)

such that

(Iα,β
N u)(xα,β

i ) = u(xα,β
i ), i = 0, 1, . . . , N . (3.1)

Define the space

Wm,p
ωα,β (�) = {

v : Dkv ∈ L p
ωα,β (�), 0 ≤ k ≤ m, 1 ≤ p ≤ +∞}

,

equipped with the norm

‖v‖Wm,p

ωα,β
=

( m∑
k=0

∥∥Dkv
∥∥p
L p

ωα,β

)1/p

,

where Dk = dk

dxk
.
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Let Hm
ωα,β (�) = Wm,2

ωα,β (�). In bounding approximation errors of the projection and inter-
polation operators, it may be more convenient to use the seminorms as follows:

|v|Hm;N
ωα,β (�)

=
( m∑

k=min(m,N+1)

∥∥|Dkv|∥∥2L2
ωα,β (�)

) 1
2

.

Moreover, we will need to recall some more Sobolev spaces: for real s ≥ 0, let

Hs(R) =
{
v(t)|v ∈ L2(R); (1 + |ω|2) s

2F(v)(ω) ∈ L2(R)
}

,

and the norm:

‖v‖s,R =
∥∥∥(1 + |ω|2) s

2F(v)(ω)

∥∥∥
0,R

,

where F(v) denotes the Fourier transform of v. For bounded domain �, we define space:

Hs(�) = {
v ∈ L2(�)| ∃ ṽ ∈ Hs(R) such that ṽ|� = v

}
,

endowed with the norm:

‖v‖s,� = inf
ṽ∈Hs (R),ṽ|�=v

‖ṽ‖s,R.

Let Hs
0 (�) be the closure of C∞

0 (�) with respect to norm ‖ · ‖s,�. As in [12], for s > 0, we
define the seminorm:

|v|lHs
(�) := ‖−1D

s
xv‖L2(�),

where left Riemann–Liouville fractional derivative −1Ds
x is defined by:

−1D
s
xv(x) = 1

(1 − s)

d

dx

∫ x

−1

v(s)ds

(x − s)s
, ∀x ∈ �, (3.2)

equipped with the norm:

‖v‖lHs
(�) :=

(
‖v‖2L2(�)

+ |v|2l Hs (�)

)1/2
.

Let l Hs
0 (�) be the closure of C∞

0 (�) with respect to norm ‖ · ‖l Hs (�).

Property 3.1 (see [15]) (Fourier transform) For all real s, v ∈ C∞
0 (R), let F denote the

Fourier transform operator, then

F(−∞Ds
xv(x)) = (iω)sF(v)(ω),

F(x D
s+∞v(x)) = (−iω)sF(v)(ω).

Lemma 3.1 [12] For s > 0, s 
= n − 1/2 with n being an integer, the spaces lHs
0 (�) and

Hs
0 (�) are equal and their seminorms and norms are all equivalent to each other.

Lemma 3.2 [3] Given v ∈ Hs
ωα,β (�), s ≥ 0.

(i) If α, β > −1, then

‖v − �
α,β
N v‖0,ωα,β � N−s‖v‖Hs

ωα,β (�), 0 ≤ s < 1, (3.3)

‖v − �
α,β
N v‖0,ωα,β � N−s‖v‖Hs;N

ωα,β (�)
, s ∈ Z

+, (3.4)

‖v − Iα,β
N v‖0,ωα,β � N−s |v|Hs;N

ωα,β (�)
, s ∈ Z

+. (3.5)
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(ii) If α = β = 0, then

‖v − �
α,β
N v‖∞ � N

3
4−s |v|Hs;N (�), s ∈ Z

+, (3.6)

‖v − Iα,β
N v‖∞ � N

3
4−s |v|Hs;N (�), s ∈ Z

+. (3.7)

(iii) If ωα,β is the Chebyshev weight, i.e., α = β = − 1
2 , then

‖v − �
α,β
N v‖∞ � N

3
4−s |v|Hs;N

ωα,β (�)
, s ∈ Z

+, (3.8)

‖v − Iα,β
N v‖∞ � N

1
2−s |v|Hs;N

ωα,β (�)
, s ∈ Z

+. (3.9)

Lemma 3.3 [3] Let ω be the Chebyshev weight, and u ∈ Wm,p
ω (�) for some m ≥ 0 and

1 ≤ p ≤ ∞. Then for all N ≥ 0,

‖u − �ω
Nu‖

W 0,p
ω (�)

� σN ,pN
−m‖u‖Wm,p

ω (�),

where

σN ,p =
{
logN p = 1,∞,

1 otherwise.

Lemma 3.4 [13]Let {Fj (x)}Nj=0 be the N-thLagrange interpolationpolynomials associated
with the N + 1 Gauss points of the Jacobi polynomials. Then

∥∥∥∥|Iα,β
N

∥∥∥∥|∞ := max
x∈�

N∑
j=0

∥∥Fj (x)
∥∥ =

{
O (log N ) , −1 < α, β ≤ − 1

2 ,

O
(
N γ+ 1

2

)
, γ = max(α, β), otherwise.

(3.10)

From now on, for r ≥ 0 and κ ∈ [0, 1], Cr,κ (�̄) will denote the space of functions whose
r -th derivatives are Hölder continuous with exponent κ , endowed with the usual norm:

||v||r,κ = max
0≤k≤r

max
x∈�̄

|∂kx v(x)| + max
0≤k≤r

sup
x, y∈�̄

x 
= y

∣∣∂kx v(x) − ∂kx v(y)
∣∣

|x − y|κ .

When κ = 0, Cr,0(�̄) denotes the space of functions with r continuous derivatives on �̄,
which is also commonly denoted by Cr (�̄), endowed with the norm || · ||r .

We shall make use of a result of Ragozin [16,17], which states that, for non-negative
integers r and κ ∈ (0, 1), there exists a constant Cr,κ > 0 such that for any function
v ∈ Cr,κ (�̄), there exists a polynomial TNv ∈ PN (�) such that

||v − TNv||∞ ≤ Cr,κN
−(r+κ)||v||r,κ . (3.11)

Actually, as stated in [16,17], TN is a linear operator from Cr,κ (�̄) into PN (�).
Let κ ∈ (0, 1) and S be defined in (2.2). It follows from [6] that, for any function v ∈ C(�̄),

and 0 < κ < 1 − μ,

|Sv(x ′) − Sv(x ′′)|
|x ′ − x ′′|κ � max

x∈�̄
|v(x)|, ∀x ′, x ′′ ∈ �̄, x ′ 
= x ′′. (3.12)

This implies that

||Sv||0,κ � ||v||∞, 0 < κ < 1 − μ, (3.13)
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where || · ||∞ is the standard norm in C(�̄). That is, S is compact as an operator from C(�̄)

to C0,κ (�̄).
For any function u(x) on �̄, we define the function

ũ(θ) = u(cos θ), θ ∈ [−π, 0]. (3.14)

Then
∫ 1

−1
u2(x)ω− 1

2 ,− 1
2 (x)dx =

∫ 0

−π

ũ2(θ)dθ.

Lemma 3.5 For any σ ≥ 0, let ω be the Chebyshev weight. Then
∥∥u − �ω

Nu
∥∥
0,ω � N−σ |ũ|Hσ [−π,0], ∀ũ ∈ Hσ (−π, 0),

where ũ = u(cos θ), θ ∈ [−π, 0].

Proof The proof is similar to the one of Theorem 1.1 in [4]. ��

The following lemma plays a key role in the error analysis.

Lemma 3.6 For any 0 < μ < 1, if 0 < σ < min{ 12 , 1 − μ}, then
‖Su − �ω

N Su‖0,ω � N−σ ‖u‖0,ω. (3.15)

Proof 1) We first prove the result for the Chebyshev case: ω(x) = (
1 − x2

)−1/2
. From

Lemma 3.5, we have

‖Su − �ω
N Su‖0,ω � N−σ |S̃u|Hσ [−π,0]. (3.16)

Thus it remains to prove

|S̃u|Hσ [−π,0] � ‖u‖0,ω, 0 < σ < min
{1
2
, 1 − μ

}
. (3.17)

In fact, from the definitions (3.14) and (2.2), we have

S̃u(ζ ) = Su(cos ζ )

=
∫ cos ζ

−1
(cos ζ − s)−μK (cos ζ, s)u(s)ds

s=cos η= −
∫ ζ

−π

kμ(ζ, η)ũ(η) sin ηdη,

where kμ(ζ, η) = (cos ζ−cos η)−μK (cos ζ, cos η). Combining the above resultwithLemma
3.1 yields,

|S̃u|2Hσ [−π,0] =
∥∥∥∥ d

dθ

∫ θ

−π

(θ − ζ )−σ

∫ ζ

−π

kμ(ζ, η)ũ(η) sin ηdηdζ

∥∥∥∥
2

L2[−π,0]
. (3.18)

The right hand side term in (3.18) can be reformulated by changing the order of integration,
and making linear transformation ζ = ζ(ξ) = θ−η

2 ξ + θ+η
2 :
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d

dθ

∫ θ

−π

(θ − ζ )−σ

∫ ζ

−π

kμ(ζ, η)ũ(η) sin ηdηdζ

= d

dθ

∫ θ

−π

∫ θ

η

(θ − ζ )−σ kμ(ζ, η)dζ ũ(η) sin ηdη

= d

dθ

∫ θ

−π

∫ 1

−1
(1 − ξ)−σ kμ(ζ(ξ), η)dξ

(
θ − η

2

)1−σ

ũ(η) sin ηdη

= A1 + A2 + A3 + A4, (3.19)

where

A1 =
∫ 1

−1
(1 − ξ)−σ kμ(ζ(ξ), η)dξ

(
θ − η

2

)1−σ

ũ(η) sin η

∣∣∣∣∣
η=θ

,

A2 = −μ

∫ θ

−π

∫ 1

−1
(1 − ξ)−σ kμ(ζ(ξ), η)

cos ζ(ξ) − cos η
sin(ζ(ξ))

ξ + 1

2
dξ

(
θ − η

2

)1−σ

ũ(η) sin ηdη,

A3 = 1 − σ

2

∫ θ

−π

∫ 1

−1
(1 − ξ)−σ kμ(ζ(ξ), η)dξ

(
θ − η

2

)−σ

ũ(η) sin ηdη,

A4 = −
∫ θ

−π

∫ 1

−1
(1 − ξ)−σ k1,μ(ζ(ξ), η) sin(ζ(ξ))

ξ + 1

2
dξ

(
θ − η

2

)1−σ

ũ(η) sin ηdη,

where k1,μ(ζ, η)=(cos ζ − cos η)−μ ∂K (x,y)
∂x . Next we estimate

∥∥Ai
∥∥2
L2[−π,0], i=1, · · · , 4,

term by term. For −π ≤ η ≤ ζ ≤ θ ≤ 0, it is observed that

(cos ζ − cos η)−μ � (ζ − η)−μ(−ζ )−
μ
2 (−η)−

μ
2 (ζ + π)−

μ
2 (η + π)−

μ
2 , (3.20)

| sin ζ | ≤ |ζ |, (3.21)

(θ + π)−
μ
2 � (ζ + π)−

μ
2 � (η + π)−

μ
2 , (3.22)

(−η)−
μ
2 � (−ζ )−

μ
2 � (−θ)−

μ
2 , (3.23)

|(η + π)−μ(−η)−μ sin η| � C . (3.24)

Using (3.20) and (3.22)–(3.24), we obtain
∣∣∣∣∣
∫ 1

−1
(1 − ξ)−σ kμ(ξ, η)dξ

(
θ − η

2

)1−σ

sin ηũ(η)

∣∣∣∣∣
�

∣∣∣∣∣
∫ 1

−1
(1 − ξ)−σ (ζ − η)−μ(−ζ )−

μ
2 (−η)−

μ
2 (ζ + π)−

μ
2 (η + π)−

μ
2 dξ

(
θ − η

2

)1−σ

sin ηũ(η)

∣∣∣∣∣
�

∣∣∣∣
∫ 1

−1
(1 − ξ)−σ (1 + ξ)−μdξ (θ − η)1−σ−μ (η + π)−μ (−θ)−

μ
2 (−η)−

μ
2 sin ηũ(η)

∣∣∣∣
�

∣∣(θ − η)1−σ−μ (η + π)−μ(−θ)−μ sin ηũ(η)
∣∣ .

Inserting η = θ into the right hand side of the above inequality, we get

A1 = 0. (3.25)
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Using (3.20), (3.23), and (3.24), we get

|A2|

�
∣∣∣∣
∫ 1

−1
(1 − ξ)−σ kμ(ζ(ξ), η)

cos ζ(ξ) − cos η
sin(ζ(ξ))

ξ + 1

2
dξ

∣∣∣∣
∣∣∣∣∣
(

θ − η

2

)1−σ

sin ηũ(η)

∣∣∣∣∣
�

∣∣∣∣
∫ 1

−1
(1 − ξ)−σ (1 + ξ)−μ(−ζ )−

μ+1
2 (−η)−

μ+1
2 (ζ + π)−

μ+1
2 (η + π)−

μ+1
2 sin(ζ(ξ))dξ

∣∣∣∣
· ∣∣(θ − η)−σ−μ sin ηũ(η)

∣∣
�

∣∣∣∣
∫ 1

−1
(1 − ξ)−σ (1 + ξ)−μdξ (θ − η)−σ−μ (η + π)−

μ+1
2 (−η)−

μ+1
2 sin ηũ(η)

∣∣∣∣
�

∣∣(θ − η)−σ−μ ũ(η)
∣∣ .

Then applying the Hardy’s inequality [6,10] with p = q = 2, u = v = 1 to the last term
above, we obtain

‖A2‖2L2[−π,0] �
∥∥∥∥
∫ θ

−π

(θ − η)−σ−μ |ũ(η)|dη
∥∥∥∥
2

L2[−π,0]
� ‖ũ‖2L2[−π,0] = ‖u‖20,ω. (3.26)

Similarly, we have
‖A4‖2L2[−π,0] � ‖u‖20,ω. (3.27)

For A3, in virtue of (3.20)–(3.24), we have

|A3| =
∣∣∣∣∣
∫ 1

−1
(1 − ξ)−σ kμ(ζ(ξ), η)dξ

(
θ − η

2

)−σ

sin ηũ(η)

∣∣∣∣∣
�

∣∣∣∣
∫ 1

−1
(1 − ξ)−σ (1 + ξ)−μ(−ζ )−

μ
2 (−η)−

μ
2 (ζ + π)−

μ
2 (η + π)−

μ
2 dξ (θ − η)−σ−μ

sin ηũ(η)

∣∣∣∣
�

∣∣∣∣
∫ 1

−1
(1 − ξ)−σ (1 + ξ)−μdξ (θ − η)−σ−μ (η + π)−μ(−η)−

μ
2 (−θ)−

μ
2 sin ηũ(η)

∣∣∣∣
�

∣∣∣(θ − η)−σ−μ (−θ)−
μ
2 ũ(η)

∣∣∣ .
Once again, using the Hardy’s inequality with p = q = 2, u = (−θ)−μ, v = 1 leads to

‖A3‖2L2[−π,0] �
∥∥∥∥(−θ)−

μ
2

∫ θ

−π

(θ − η)−σ−μ |ũ(η)|dη
∥∥∥∥
2

L2[−π,0]
� ‖ũ‖2L2[−π,0] = ‖u‖20,ω.

(3.28)

Finally the estimate (3.15) follows from combining (3.16), (3.17), and (3.25)–(3.28).
2) Now we turn to the case of Legendre weight. It follows from the estimate (3.3) and

Lemma 3.1:

‖Su − �N Su‖0 � N−σ ‖Su‖Hσ � N−σ ‖−1D
σ
x Su‖0. (3.29)
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By change of order of integration, we have

−1D
σ
x Su = d

dx

∫ x

−1
(x − τ)−σ

∫ τ

−1
(τ − s)−μK (τ, s)u(s)ds dτ

= d

dx

∫ x

−1

∫ x

s
(x − τ)−σ (τ − s)−μK (τ, s)dτ u(s)ds. (3.30)

Then applying the variable change τ = x−s
2 ξ + x+s

2 gives

−1D
σ
x Su = d

dx

∫ x

−1

∫ 1

−1
(1 − ξ)−σ (1 + ξ)−μK (τ (ξ), s)dξ

( x − s

2

)1−σ−μ

u(s)ds

=: B1 + B2, (3.31)

where

B1 = 1 − μ − σ

2

∫ x

−1

∫ 1

−1
(1 − ξ)−σ (1 + ξ)−μK (τ (ξ), s)dξ (x − s)−σ−μu(s)ds,

B2 =
∫ x

−1

∫ 1

−1
(1 − ξ)−σ (1 + ξ)−μ ∂K (τ (ξ), s)

∂x
dξ

( x − s

2

)1−σ−μ

u(s)ds.

Consequently,

‖−1D
σ
x Su‖0 � ‖B1‖0 + ‖B2‖0. (3.32)

Applying Hardy’s inequality to the terms B1 and B2 yields

‖B1‖0 �
∥∥∥∥
∫ x

−1
(x − s)−σ−μu(s)ds

∥∥∥∥
0

� ‖u‖0, (3.33)

‖B2‖0 �
∥∥∥∥
∫ x

−1
(x − s)1−σ−μu(s)ds

∥∥∥∥
0

� ‖u‖0. (3.34)

Obviously, combining (3.29)–(3.34) gives the estimate (3.15) for the Legendre case. ��

4 Convergence Analysis

4.1 Error Estimates for the Spectral Galerkin Method

We start with establishing an error estimate for the discrete solution of the Chebyshey/
Legendre spectral Galerkin problem (2.4). According to the definition of the L2-projector
�ω

N , the problem (2.4) can be rewritten under the form: find uN ∈ PN (�) such that

uN + �ω
N SuN = �ω

N g. (4.1)

The error estimate of the numerical solution uN is given in the following theorem.

Theorem 4.1 The problem (4.1) admits a unique solution uN , which satisfies

‖uN‖0,ω � ‖g‖0,ω. (4.2)

Furthermore, if u is the solution of (2.1), and u ∈ Hm
ω (�),m ≥ 1, then for sufficiently large

N, the following error estimate holds

‖u − uN‖0,ω � N−m |u|Hm;N
ω

. (4.3)
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Proof First, we prove the existence and uniqueness of the solution of (4.1). It suffices to
prove that the following homogeneous problem

uN + �ω
N SuN = 0

has only the trivial solution in PN (�). In fact, we have

uN = −
∫ x

−1
(x − s)−μK (x, s)uN (s)ds + SuN − �ω

N SuN .

It then follows by using the Gronwall inequality [5]:

‖uN‖0,ω � ‖SuN − �ω
N SuN‖0,ω. (4.4)

Using Lemma 3.6 we get, for 0 < σ < min{ 12 , 1 − μ},
‖SuN − �ω

N SuN‖0,ω � N−σ ‖uN‖0,ω. (4.5)

Combining (4.4) with (4.5), we obtain

‖uN‖0,ω � N−σ ‖uN‖0,ω. (4.6)

This implies that uN = 0 if N is large enough. This proves the well-posedness of the problem
(4.1) and estimate (4.2). Next, we prove the estimate (4.3). Subtracting (2.1) from (4.1) gives

uN − u + �ω
N SuN − Su = �ω

N g − g. (4.7)

Let e = uN − u. Then we derive from (4.7):

e = −Se + (I − �ω
N )Se + (�ω

Nu − u). (4.8)

Applying the Gronwall inequality to the above equation, we get

‖e‖0,ω � ‖u − �ω
Nu‖0,ω + ‖(I − �ω

N )Se‖0,ω. (4.9)

It remains to bound the RHS of (4.9). For the first term, by using the estimate (3.3), we have

‖u − �ω
Nu‖0,ω � N−m |u|Hm;N

ω
. (4.10)

For the second term, by using Lemma 3.6 for 0 < σ < min{ 12 , 1 − μ}, we obtain
‖Se − �ω

N Se‖0,ω � N−σ ‖e‖0,ω. (4.11)

Finally we get (4.3) by combining (4.9)–(4.11). ��
The following theorem provides an error estimate in the L∞-norm for the Chebyshev

spectral method.

Theorem 4.2 (L∞-convergence for the Chebyshev method) Suppose uN is the solution of
the problem (4.1)withω being the Chebyshev weight, u is the solution of (2.1), for sufficiently
large N, then the following estimates hold.
If u ∈ Hm

ω (�),m ≥ 1, then

‖u − uN‖∞ � N 3/4−m |u|Hm;N
ω

. (4.12)

If u ∈ Wm,∞(�), then

‖u − uN‖∞ � log NN−m‖u‖Wm,∞ . (4.13)

123



J Sci Comput

Proof Let e = uN − u. Applying the Gronwall inequality to (4.8), we have

‖e‖∞ � ‖(I − �ω
N )Se‖∞ + ‖u − �ω

Nu‖∞. (4.14)

The terms in RHS can be bounded by employing Lemma 3.3, inequalities (3.11) and (3.13):

‖(I − �ω
N )Se‖∞ = ‖(I − �ω

N )(Sv − TN Se)‖∞ � log N‖Sv − TN Se‖∞
� log NN−κ‖Se‖0,κ � log NN−κ‖e‖∞, (4.15)

where 0 < κ < 1 − μ. Thus for large enough N we have

‖e‖∞ � ‖u − �ω
Nu‖∞.

Then we conclude by simply applying the estimate (3.8) and Lemma 3.3. ��
We give in the following theorem an error estimate in the L∞-norm for the Legendre

spectral method.

Theorem 4.3 (L∞-convergence for Legendre method) If uN is the solution of the problem
(4.1) with ω being the Legendre weight, u is the solution of (2.1), and u ∈ Hm(�),m ≥ 1,
then for sufficiently large N, the following error estimate holds

‖u − uN‖∞ � N 1−m |u|Hm;N . (4.16)

Proof Applying the projector �ω
N to the both sides of (2.1), we obtain

�ω
Nu + �ω

N Su = �ω
N g. (4.17)

Subtracting (4.17) from (4.1) gives

uN − �ω
Nu + �ω

N SuN − �ω
N Su = 0. (4.18)

Let e := uN − �ω
Nu. Then we derive from (4.18):

e = −Se + (I − �ω
N )Se + �ω

N S(u − �ω
Nu). (4.19)

Applying the Gronwall inequality to the above equation, we get

‖e‖∞ � ‖ (
I − �ω

N

)
Se‖∞ + ‖�ω

N S
(
u − �ω

Nu
) ‖∞. (4.20)

Applying the estimates (3.3)–(3.4), Hardy’s inequality, and thewell known inverse inequality,
we have

‖ (
I − �ω

N

)
Se‖∞ � ‖Se‖∞ + ‖�ω

N Se‖∞ � ‖e‖∞ + N‖�ω
N Se‖0

� N‖e‖0 + N‖Se‖0 � N‖e‖0, (4.21)

and

‖�ω
N S

(
u − �ω

Nu
) ‖∞ � N‖�ω

N S
(
u − �ω

Nu
) ‖0 � N‖S (

u − �ω
Nu

) ‖0
� N‖u − �ω

Nu‖0 � N 1−m |u|Hm;N . (4.22)

Using all these estimates and the one for ‖e‖0, we obtain
‖uN − �ω

Nu‖∞ � N 1−m |u|Hm;N . (4.23)

Finally we conclude by using the triangular inequality. ��
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4.2 Error Estimates for the Pseudo-Spectral Method

In virtue of the exactitude (2.3) of theGauss quadrature, the solution ūN of the pseudo-spectral
problem (2.9) satisfies

(ūN , vN )ω +
(
I ρ
2N S̃N ūN , vN

)
ρ

= (g, vN )ω, ∀vN ∈ PN (�), (4.24)

where ρ is defined in (2.7), I ρ
2N is the interpolation operator based on 2N + 1 degree Jacobi

Gauss points associated to the weight function ρ. Before carrying out the error analysis for
the problem (4.24), we first reformulate the term involving the discrete integral operator S̃N ,
which is the most difficult to treat.

By using (2.3), and let 
k being defined in (2.8), we have
(
I ρ
2N S̃N ūN , vN (x)

)
ρ

=
(
I ρ
2N

N∑
k=0

K̄ (x, θk)ūN (sx (θk))
k, vN (x)

)

ρ

=
(
I ρ
2N

∫ 1

−1
(1 − θ)−μ I 
,(θ)

N K̄ (x, θ)ūN (sx (θ))dθ, vN (x)

)
ρ

=
(∫ 1

−1
(1 − θ)−μ I ρ

2N

[
I 
,(θ)

N K̄ (x, θ)ūN (sx (θ))
]
dθ, vN (x)

)
ρ

=
∫ 1

−1
vN (x)(1 + x)α+1−μ(1 − x)α

∫ 1

−1
(1 − θ)−μ I ρ

2N

[
I 
,(θ)

N K̄ (x, θ)ūN (sx (θ))
]
dθdx

=
∫ 1

−1
(1 − θ)−μ

∫ 1

−1
vN (x)(1 + x)α+1−μ(1 − x)α I ρ

2N

[
I 
,(θ)

N K̄ (x, θ)ūN (sx (θ))
]
dxdθ

=
∫ 1

−1
(1 − θ)−μ

(
I 
,(θ)

N K̄ (x, θ)ūN (sx (θ)), vN (x)
)
2N ,ρ

dθ

=
∫ 1

−1
(1 − θ)−μ

(
I 
,(θ)

N K̄ (x, θ), ūN (sx (θ))vN (x)
)
2N ,ρ

dθ

=
∫ 1

−1
(1 − θ)−μ

(
I ρ
2N I


,(θ)

N K̄ (x, θ), ūN (sx (θ))vN (x)
)

ρ
dθ

=
∫ 1

−1
vN (x)(1 + x)α+1−μ(1 − x)α

∫ 1

−1
(1 − θ)−μūN (sx (θ))I ρ

2N I

,(θ)

N K̄ (x, θ)dθdx

= (K̃N ūN , vN )ρ,

where I 
,(θ)

N denotes the interpolation with respect to variable θ , and

K̃N ūN (x) =
∫ 1

−1
(1 − θ)−μūN (sx (θ))I ρ

2N I

,(θ)

N K̄ (x, θ)dθ.

Let K̂N ūN (x) =: (1 + x)1−μ K̃N ūN (x). Then the variable change θx (s) = 2s−x+1
x+1 gives

K̂N ūN (x) = 21−μ

∫ x

−1
(x − s)−μūN (s)I ρ

2N I

,(θ)

N K̄ (x, θx (s))ds.
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And (4.24) becomes

(ūN , vN )ω + (K̂N ūN , vN )ω = (g, vN )ω, ∀vN ∈ PN (�), (4.25)

or, equivalently,
ūN + �ω

N K̂N ūN = �ω
N g. (4.26)

Theorem 4.4 For large enough N, the problem (4.26)admits a unique solution ūN inPN (�).
Furthermore, if u is the solution of (2.1), and u ∈ Wm,∞(�). Then we have

‖u − ūN‖0,ω
� N−m |u|Hm;N

ω
+ N−m

(
max−1≤θ≤1

∥∥K̄ (·, θ)
∥∥
Hm;N

ρ
+ max−1≤x≤1

∥∥K̄ (x, ·)∥∥Hm;N



)
‖g‖0,ω.

(4.27)

If ω is the Chebyshev weight, then

‖u − ūN‖∞ � N−m log N‖u‖Wm,∞

+ log2 N
(
N 2−μ−m max−1≤θ≤1

∥∥K̄ (·, θ)
∥∥
Hm;N

ρ
+ N−mK ∗)‖g‖∞, (4.28)

where

K ∗ =
∥∥∥∥∥∥

√∫ T

0

( ∂

∂x
K̄ (x, θ)

)2
dx +

∫ T

0
K̄ 2(x, θ)dx

∥∥∥∥∥∥
Hm;N




. (4.29)

If ω is the Legendre weight, then

‖u − ūN‖∞
� N 1−m |u|Hm;N + N 1−m

(
max−1≤θ≤1

∥∥K̄ (·, θ)
∥∥
Hm;N

ρ
+ max−1≤x≤1

∥∥K̄ (x, ·)∥∥Hm;N



)
‖g‖0.
(4.30)

Proof First, we prove the existence and uniqueness of the solution to (4.26). Obviously, we
just need to prove that the zero function is the only solution of (4.26) if g = 0. To this end,
let g = 0. Then we have

ūN = −21−μ

∫ x

−1
(x − s)−μūN (s)I ρ

2N I

,(θ)

N K̄ (x, θx (s))ds + K̂N ūN − �w
N K̂N ūN .

Applying the Gronwall inequality to the above equation and using Lemma 3.6, we get

‖ūN‖0,ω � ‖K̂N ūN − �w
N K̂N ūN‖0,ω � N−σ ‖ūN‖0,ω.

Thus ūN ≡ 0 for large enough N . This proves the well-posedness of (4.26).
Similarly, applying Gronwall inequality to (4.26) and using (4.15), Lemma 3.3, we get

‖ūN‖0,ω � ‖g‖0,ω, ‖ūN‖∞ � log N‖g‖∞. (4.31)

Now we derive the estimates (4.27), (4.28), and (4.30). Subtracting (4.26) from (4.1), we
obtain

ūN − uN + �ω
N K̂N ūN − �ω

N SuN = 0. (4.32)
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A direct computation shows that

�ω
N K̂N ūN − �ω

N SuN

= �ω
N K̂N ūN − �ω

N SūN + �ω
N SūN − �ω

N SuN

= �ω
N K̂N ūN − �ω

N SūN + S(ūN − uN ) − [
(I − �ω

N )S(ūN − uN )
]
. (4.33)

Inserting (4.33) into (4.32) and let e = ūN − uN , we get

e(x) = −
∫ x

−1
(x − s)−μK (x, s)e(s)ds + �ω

N (S − K̂N )ūN + (Se − �ω
N Se).

It follows from using Gronwall inequality that

‖e‖0,ω � ‖�ω
N (S − K̂N )ūN‖0,ω + ‖Se − �ω

N Se‖0,ω, (4.34)

and
‖e‖∞ � ‖�ω

N (S − K̂N )ūN‖∞ + ‖Se − �ω
N Se‖∞. (4.35)

For the first termon the right hand side of (4.34), byHardy’s inequality, Lemma3.2, inequality
(4.31), and the inequality [21]

sup
N

‖Iα,β
N v‖ωα,β ≤ C‖v‖∞,

we have

‖�ω
N (S − K̂N )ūN‖0,ω

� ‖(S − K̂N )ūN‖0,ω
�

∥∥∥(1 + x)1−μ

∫ 1

−1
(1 − θ)−μ

(
K̄ (x, θ) − I ρ

2N I

,(θ)

N K̄ (x, θ)
)
ūN (sx (θ))dθ

∥∥∥
0,ω

�
∥∥∥ (1 + x)1−μ

∫ 1

−1
(1 − θ)−μ

(
K̄ (x, θ) − I ρ

2N K̄ (x, θ)
)
ūN (sx (θ))dθ

∥∥∥
0,ω

+
∥∥∥ (1 + x)1−μ

∫ 1

−1
(1 − θ)−μ

(
I ρ
2N K̄ (x, θ) − I ρ

2N I

,(θ)

N K̄ (x, θ)
)
ūN (sx (θ))dθ

∥∥∥
0,ω

�
(

max−1≤θ≤1

∥∥K̄ (x, θ) − I ρ
2N K̄ (x, θ)

∥∥
0,ρ

+N−m
∥∥(1 + x)1−μ

∥∥I ρ
2N K̄ (x, ·)∥∥Hm;N




∥∥
0,ω

)
‖ūN‖0,ω

�
(
N−m max−1≤θ≤1

∥∥K̄ (·, θ)
∥∥
Hm;N

ρ
+ N−m max−1≤x≤1

‖K̄ (x, ·)‖Hm;N



)
‖g‖0,ω. (4.36)

For the second term, use of Lemma 3.6 gives

‖Se − �ω
N Se‖0,ω � N−σ ‖e‖0,ω.

Inserting above two inequalities into (4.34), we obtain, for big enough N ,

‖e‖0,ω � N−m
(

max−1≤θ≤1

∥∥K̄ (·, θ)
∥∥
Hm;N

ρ
+ max−1≤x≤1

∥∥K̄ (x, ·)∥∥Hm;N



)
‖g‖0,ω. (4.37)

Then the estimate (4.27) follows from combining (4.37) with (4.2).
Now we estimate the errors in the L∞-norm. If ω is the Chebyshev weight, the first term
on the right hand side of (4.35) can be bounded by using Hardy’s inequality, Lemma 3.2,
Lemma 3.4, and inequality (4.31),
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‖�ω
N (S − K̂N )ūN‖∞

� log N‖(S − K̂N )ūN‖∞

� log N
∥∥∥ (1 + x)1−μ

∫ 1

−1
(1 − θ)−μ

(
K̄ (x, θ) − I ρ

2N I

,(θ)

N K̄ (x, θ)
)
ūN (sx (θ))dθ

∥∥∥∞

� log N
∥∥∥ (1 + x)1−μ

∫ 1

−1
(1 − θ)−μ

(
K̄ (x, θ) − I ρ

2N K̄ (x, θ)
)
ūN (sx (θ))dθ

∥∥∥∞

+ log N
∥∥∥ (1 + x)1−μ

∫ 1

−1
(1 − θ)−μ

(
I ρ
2N K̄ (x, θ) − I ρ

2N I

,(θ)

N K̄ (x, θ)
)
ūN (sx (θ))dθ

∥∥∥∞

� log N
(

max−1≤θ≤1

∥∥∥K̄ (·, θ) − I ρ
2N K̄ (·, θ)

∥∥∥∞ + N−m max−1≤x≤1

∥∥I ρ
2N K̄ (x, ·)∥∥Hm;N




)
‖ūN‖∞

� log2 N
(
N 2−μ−m max−1≤θ≤1

∥∥K̄ (·, θ)
∥∥
Hm;N

ω
+ N−mK ∗)‖g‖∞,

where K ∗ is defined in (4.29).
If ω is the Legendre weight, then by combining the inverse inequality with inequality (4.36),
we get

‖�ω
N (S − K̂N )ūN‖∞

� N‖(S − K̂N )ūN‖0
�

(
N 1−m max−1≤θ≤1

∥∥K̄ (·, θ)
∥∥
Hm;N

ρ
+ N 1−m max−1≤x≤1

∥∥K̄ (x, ·)∥∥Hm;N



)
‖g‖0. (4.38)

For the second term, it follows from (4.15) and (4.21):

‖(I − �ω
N )Se‖∞ �

{
log NN−κ‖e‖∞, 0 < κ < 1 − μ, if ω is the Chebyshev weight,
N‖e‖0, if ω is the Legendre weight.

(4.39)

By combining the inequalities (4.35), (4.37)–(4.39), it holds, for N big enough,

‖e‖∞ � log2 N
(
N 2−μ−m max−1≤θ≤1

∥∥K̄ (·, θ)
∥∥
Hm;N

ω
+ N−mK ∗)‖g‖∞, (4.40)

if ω is the Chebyshev weight, and

‖e‖∞ �
(
N 1−m max−1≤θ≤1

∥∥K̄ (·, θ)
∥∥
Hm;N

ρ
+ N 1−m max−1≤x≤1

∥∥K̄ (x, ·)∥∥Hm;N



)
‖g‖0, (4.41)

if ω is the Legendre weight. Here the error estimates given in (4.37) has been used to bound
‖e‖0.
Finally, the estimates (4.28) and (4.30) are direct consequences of (4.40)-(4.41), the triangular
inequality, Theorem 4.2, and Theorem 4.3. ��

5 Numerical Results

In this section, we present numerical results to validate the error estimates obtained in The-
orem 4.4 for the proposed Chebyshev and Legendre pseudo-spectral methods. Theorem 4.4
indicates that the convergence of numerical solutions would be exponential with respect to
the polynomial degree if the exact solution and the kernel function K were smooth.
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Fig. 1 Example 5.1. a L2-errors versus N ; b L∞-errors versus N

Example 5.1 Consider the Volterra integral equation having smooth kernel and smooth solu-
tion:

u(x) = g(x) −
∫ x

0
(x − s)−μ exp(x − s)u(s)ds, 0 ≤ x ≤ 2,

where g(x) is chosen such that the exact solution is u(x) = sin(πx).

In Fig. 1, we plot the L2-errors (a) and L∞-errors (b) respectively in semi-log scale as
a function of N , for μ = 1

3 ,
1
2 ,

2
3 . As expected, the error variations are linear versus the

degrees of polynomial N , which means that the error decays exponentially. More precisely,
a careful verification shows that the error decays as e−cN with the constant c close to 5.5.

Next test is for the purpose to examine the sharpness of the estimate given in Theorem
4.4. To this end, we consider the following two examples with γ being no integer.

Example 5.2 Consider the equation (2.1)–(2.2) with the smooth kernel function K (x, s) =
exp(x − s), and limited regular solution u(x) = |x − 0.5|γ .

Example 5.3 Consider the equation (2.1)–(2.2) with the smooth solution u(x) = sin(πx)
and limited regular kernel function K (x, s) = |x + s|γ + 1.

For the example 5.2, it can be verified that the solution u(x) belongs to the space

Hγ+ 1
2−ε(I ) orW [γ ],∞(I ) if γ is not an integer. In Fig. 2a, we plot the L2-errors as functions

of the polynomial degrees N with μ = 1
4 for two different γ = 5

3 ,
16
3 . Since K (x, s) is a

smooth function, the second term in the error estimates (4.27), (4.28) and (4.30) is expected
to be negligible as compared with the first term in these estimates for sufficiently large N . As
a consequence, the error behavior shown in this figure should reflect the impact of the regu-

larity of the exact solution. To precisely observe the error decay rates, the N− 13
6 and N− 35

6

decay rates are also plotted in the figure. Two points can be drawn from the observation:
(1) all the error curves are straight lines in this log-log representation, which indicates the
algebraic convergence due to the limited regularity of the solutions; (2) the errors decrease

with rates approximately conform to the estimate (4.27), i.e., N− 13
6 decay rate for γ = 5

3

and N− 35
6 decay rate for γ = 16

3 . The L∞-error behavior is plotted in Fig. 2b with μ = 3
4

for two different γ = 5
3 ,

16
3 . The N

− 5
3 and N− 16

3 decay rates are also shown for comparison
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Fig. 2 Example 5.2. a L2-errors versus N ; b L∞-errors versus N
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Fig. 3 Example 5.3. a L2-errors versus N ; b L∞-errors versus N

reason. Similar to the L2-errors, the L∞-error curves are also straight lines, and the observed

error decay rates are in good agreement with the estimates (4.28) and (4.30), i.e., N− 5
3 rate

for γ = 5
3 and N− 6

3 rate for γ = 16
3 .

In the example 5.3, we investigate the impact of the regularity of the kernel function on the
convergence rate. We plot in Fig. 3 the L2-errors and L∞-errors respectively as functions of
the polynomial degrees N withμ = 1

4 andμ = 3
4 for two different γ = 7

3 ,
16
3 . N

−3 and N−6

decay lines are shown for comparison. Once again, we observe the algebraic convergence
from the error straight lines in the log–log plot, and that the convergence rates are closely
related to the regularity, i.e., γ , of the kernel functions.

Example 5.4 Consider the Volterra integral equation:

u(x) = g(x) −
∫ x

0
(x − s)−μu(s)ds, 0 ≤ x ≤ 1,
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Fig. 4 Example 5.4. a L2-errors versus N ; b L∞-errors versus N

with the solution u(x) = sin x
xμ , μ being the rational number q

p , q < p, and the source
function

g(x) = sin(x)

xμ
+ √

π(1 − μ)x
1
2−μ sin

x

2
B

(
1

2
− μ,

x

2

)
,

where B(·, ·) is the Bessel function, i.e.,

B(μ, x) =
( x
2

)μ
+∞∑
k=0

(−x2)k

k!(μ + k + 1)4k
.

Clearly this solution has singularity at the left end point, i.e., u′(x) ∼ 1
xμ at x = 0.

By applying the smoothing transformation proposed in Remark 2.1, we get the transformed
Eq. (2.12) with the exact solution ū(x) = u(x p) = sin x p

x pμ , which is now regular at the left end
point x = 0. Thus the proposed spectral method remains applicable to the Eq. (2.12) with
efficiency. In Fig. 4, we plot the L2-errors (a) and L∞-errors (b) respectively in semi-log
scale as a function of N for 1

2 ,
2
3 . As expected, the error variations are nearly linear versus

the degrees of polynomial N , which indicates the exponential convergence of the proposed
method.

References

1. Baratella, P., Palamara Orsi, A.: A new approach to the numerical solution of weakly singular Volterra
integral equations. J. Comp. Appl. Math. 163, 401–418 (2004)

2. Brunner, H.: Collocation methods for Volterra integral and related functional differential equations. Cam-
bridge University Press, Cambridge (2004)

3. Canuto,C.,Hussaini,M.Y.,Quarteroni,A., Zang, T.A.: Spectralmethods: fundamentals in single domains.
Springer, Berlin (2006)

4. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math.
Comput. 38(157), 67–86 (1982)

5. Chen,Y., Tang, T.: Spectralmethods forweakly singularVolterra integral equationswith smooth solutions.
J. Comput. Appl. Math. 233, 938–950 (2009)

6. Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral
equations with a weakly singular kernel. Math. Comput. 79(269), 147–167 (2010)

7. Chen, Y.P., Li, X.J., Tang, T.: A note on Jacobi spectral-collocation methods for weakly singular Volterra
integral equations with smooth solutions. J. Comput. Math. 31, 47–56 (2013)

123



J Sci Comput

8. Elliott, D., Prossdorf, S.: An algorithm for the approximate solution of integral equations of Mellin type.
Numer. Math. 70, 427452 (1995)

9. Kolk, M., Pedas, A.: Numerical solution of Volterra integral equations with singularities. Front. Math.
China 8(2), 239–259 (2013)

10. Kufner, A., Persson, L.E.: Weighted inequalities of hardy types. World Scientific, Singapore (2003)
11. Li, X.J., Tang, T.: Convergence analysis of Jacobi spectral collocation methods for Abel–Volterra integral

equations of second kind. Front. Math. China 7(1), 69–84 (2012)
12. Li, X.J., Xu, C.J.: Existence and uniqueness of the weak solution of the space-time fractional diffusion

equation and a spectral method approximation. Commun. Comput. Phys. 8(5), 1016–1051 (2011)
13. Mastroianni, G., Occorsio, D.: Optimal systems of nodes for Lagrange interpolation on bounded intervals.

A survey. J. Comput. Appl. Math. 134(1–2), 325–341 (2001)
14. Monegato, G., Scuderi, L.: High order methods for weakly singular integral equations with nonsmooth

input functions. Math. Comput. 224(67), 1493–1515 (1989)
15. Podlubny, I.: Fractional differential equations. Academic Press, San Diego, London (1999)
16. Ragozin, D.L.: Polynomial approximation on compact manifolds and homogeneous spaces. Trans. Am.

Math. Soc. 150(1), 41–53 (1970)
17. Ragozin, D.L.: Constructive polynomial approximation on spheres and projective spaces. Trans. Am.

Math. Soc. 162, 157–170 (1971)
18. Sedaghat, S., Ordokhani, Y., Dehghan, M.: On spectral method for Volterra functional integro-differential

equations of neutral type. Numer. Func. Anal. Optim. 35(2), 223–239 (2014)
19. Sidi, A.: A new variable transformation for numerical integration. In: H. Brass, G. Hammerlin (eds.)

Numerical Integration IV, International Series of Numerical Mathematics, vol. 112, pp. 359–373.
Birkhäuser, Basel (1993)

20. Tao, X., Xie, Z.Q., Zhou, X.J.: Spectral Petrov–Galerkin methods for the second kind Volterra type
integro-differential equations. Numer. Math. Theor. Meth. Appl. 4(2), 216–236 (2011)

21. Xie, Z.Q., Li, X.J., Tang, T.: Convergence analysis of spectral Galerkin methods for Volterra type integral
equations. J. Sci. Comput. 53(2), 414–434 (2012)

22. Zhang, R., Zhu, B., Xie, H.: Spectral methods for weakly singular Volterra integral equations with pan-
tograph delays. Front. Math. China 8(2), 281–299 (2013)

123


	Numerical Solutions for Weakly Singular Volterra Integral Equations Using Chebyshev and Legendre Pseudo-Spectral Galerkin Methods
	Abstract
	1 Introduction
	2 Chebyshev/Legendre Spectral Galerkin Methods
	3 Some Preliminary Results
	4 Convergence Analysis
	4.1 Error Estimates for the Spectral Galerkin Method
	4.2 Error Estimates for the Pseudo-Spectral Method

	5 Numerical Results
	References




