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Abstract. The deferred correction (DC) method is a classical method for solving

ordinary differential equations; one of its key features is to iteratively use lower
order numerical methods so that high-order numerical scheme can be obtained.

The main advantage of the DC approach is its simplicity and robustness. In this

paper, the DC idea will be adopted to solve forward backward stochastic differential
equations (FBSDEs) which have practical importance in many applications. Noted

that it is difficult to design high-order and relatively “clean” numerical schemes for
FBSDEs due to the involvement of randomness and the coupling of the FSDEs and

BSDEs. This paper will describe how to use the simplest Euler method in each

DC step–leading to simple computational complexity–to achieve high order rate of
convergence.
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1. Introduction

This work is concerned with the forward-backward stochastic differential equa-

tions (FBSDEs) on (Ω,F ,F, P ):














Xt = X0 +

∫ t

0
b(s,Xs, Ys, Zs)dt+

∫ t

0
σ(s,Xs, Ys, Zs)dWs, (FSDE)

Yt = ξ +

∫ T

t

f(s,Xs, Ys, Zs)ds−

∫ T

t

ZsdWs, (BSDE)

(1.1)
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Deferred Correction Methods for FBSDEs 223

where t ∈ [0, T ] with T > 0 being the deterministic terminal time; (Ω,F ,F, P ) is

a filtered complete probability space with F = (Ft)0≤t≤T being the natural filtration

of the standard m-dimensional Brownian motion W = (Wt)0≤t≤T ; X0 ∈ F0 is the

initial condition for the forward stochastic differential equation (FSDE); ξ ∈ FT is

the terminal condition for the backward stochastic differential equation (BSDE); b :
Ω×[0, T ]×R

d×R
q×R

q×m → R
d and σ : Ω×[0, T ]×R

d×R
q×R

q×m → R
d×m are referred

to the drift and diffusion coefficients, respectively; f : Ω× [0.T ]×R
d×R

q×R
q×m → R

q

is called the generator of BSDE, and (Xt, Yt, Zt) : [0, T ] × Ω → R
d × R

q × R
q×m is the

unknown.

We point out that b(·, x, y, z), σ(·, x, y, z), and f(·, x, y, z) are all Ft-adapted for any

fixed numbers x, y, and z, and that the two stochastic integrals with respect to Ws are

of the Itô type. A triple (Xt, Yt, Zt) is called an L2-adapted solution of the FBSDEs (1.1)

if it is Ft-adapted, square integrable, and satisfies (1.1). The FBSDEs (1.1) are called

decoupled if b and σ are independent of Yt and Zt.

Our interest is to design numerical schemes which can effectively find numerical

solutions of the FBSDEs (1.1). Great efforts have been made to the numerical solutions

of BSDEs, see, e.g., [1, 3, 8, 17, 19, 20]. However, for the fully coupled FBSDEs (1.1),

there exist only few numerical studies and satisfactory results [6, 11, 18]. In fact, it is

very difficult to design high-order and relatively “clean” numerical schemes for FBSDEs

due to the fully coupling of the FSDEs and BSDEs. We mention the work in [18],

where a class of multi-step type schemes are proposed, which turns out to be effective

in obtaining relatively high accurate solutions for (1.1).

In this paper, we will approximate the solutions of the FBSDEs (1.1) based on

the classical deferred correction (DC) method. The DC approach was first introduced

in [16] to solve ordinary differential equations (ODEs). Its main idea is to use some

low-order and simple schemes iteratively to achieve a high-order scheme. The ter-

minology of deffered correction was formally appeared in [15], while its convergence

theory for ODEs was established by Hairer [9]. In the past few decades, DC methods

have been successfully applied to solve ODEs, see, e.g., [5, 10, 14] as well as partial

differential equations (PDEs), see, e.g., [4, 7]. Our main task in this work is to de-

sign highly accurate numerical methods for the fully coupled FBSDEs based on the DC

approach. More precisely, we will describe how to use the simplest Euler method in

each iteration step–leading to lower overall computational complexity–to end up with

high-order of convergence. Moreover, numerical experiments will demonstrate that the

resulting DC-based scheme is highly accurate and stable.

The rest of the paper is organized as follows. Section 2 provides some relevant pre-

liminaries, while Section 3 presents the general framework of the deferred correction

methods for FBSDEs. More detailed construction of the DC-based algorithms for decou-

pled and coupled FBSDEs are discussed in Sections 4. In Section 5, several numerical

experiments are presented to demonstrate the effectiveness of the proposed scheme.

Some concluding remarks will be given in Section 6.

Some notation to be used:
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224 T. Tang, W. D. Zhao and T. Zhou

• |·|: the Euclidean norm in the Euclidean space R, Rd, and R
d×m;

• A⊤: the transpose of vector or matrix A;

• F t,x
s : the σ-algebra generated by the diffusion process {Xr, t ≤ r ≤ s,Xt = x};

• E
t,x
s [η]: the conditional expectation of the random variable η under F t,x

s , i.e.,

E
t,x
s [η] = E

[

η| F t,x
s

]

, and we use E
x
t [η] to denote E

t,x
t [η] for simplicity;

• Ck
b : the set of functions φ(x) with uniformly bounded derivatives up to the order

k;

• Ck1,k2: the set of functions f(t, x) with continuous partial derivatives up to k1
with respect to t, and up to k2 with respect to x.

2. Preliminaries

This section is devoted to some preliminaries. We will begin by introducing the

diffusion process generator and the Feynman-Kac formula. Moreover, a useful lemma

in designing our DC-based schemes will be presented.

2.1. The diffusion process generator

A stochastic process Xs is called a diffusion process starting at (t, x) if it satisfies the

SDE

Xs = x+

∫ s

t

brdr +

∫ s

t

σrdWr, s ∈ [t, T ], (2.1)

where br = b(r,Xr) and σr = σ(r,Xr) are measurable functions satisfying the linear

growth and Lipschits continuous conditions, i.e.,

|b(r, x)| + |σ(r, x)| ≤ C(1 + |x|), x ∈ R
d, r ∈ [t0, T ],

|b(r, x) − b(r, y)| + |σ(r, x) − σ(r, y)| ≤ L |x− y| , x, y ∈ R
d, r ∈ [t0, T ].

It is well known that under the above conditions the SDE (2.1) has a unique solution.

Moreover, it follows from the Markov property of the diffusion process that

E
x
t [Xs] = E [Xs|Xt = x] , ∀t ≤ s. (2.2)

Definition 2.1. Let Xt be a diffusion process in R
d satisfying (2.1). The generator Ax

t of

Xt on g : [0, T ]× R
d is defined by

Ax
t g(t, x) = lim

s↓t

E
x
t [g(s,Xs)]− g(t, x)

s− t
, x ∈ R

d, (2.3)

if the limit exists.
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We further define the second-order differential operator L0
t,x, by

L0
t,x =

∂

∂t
+
∑

i

bi(t, x)
∂

∂xi
+

1

2

∑

i,j

(

σσ⊤
)

i,j
(t, x)

∂2

∂xi∂xj
. (2.4)

Then, if g ∈ C1,2([0, T ]× R
d), we have Ax

t g(t, x) = L0
t,xg(t, x).

By Definition 2.1, together with the Itô formula and the tower rule of conditional

expectations, we have the following theorem [18]:

Theorem 2.1. Let t ≤ s be a fixed time, and x0 ∈ R
d be a fixed space point. If

f ∈ C1,2([0, T ] × R
d) and E

x
t

[∣

∣L0
t,Xt

f(t,Xt)
∣

∣

]

< +∞,

then we have
dEx

t [f(s,Xs)]

ds
= E

x
t

[

AXs
s f(s,Xs)

]

, s ≥ t. (2.5)

Moreover, the following identity holds

dEx
t [f(s,Xs)]

ds

∣

∣

∣

∣

s=t

=
dEx

t

[

f(s, X̄s)
]

ds

∣

∣

∣

∣

∣

s=t

, (2.6)

where X̄s is a diffusion process satisfying

X̄s = x+

∫ s

t

b̄rdr +

∫ s

t

σ̄rdWr, (2.7)

and b̄r = b̄(r, X̄r), σ̄r = σ̄(r, X̄r) are smooth functions of (r, X̄r) that satisfy

b̄(t, X̄t) = b(t, x), σ̄(t, X̄t) = σ(t, x).

Note that by choosing different b̄r and σ̄r, the identity (2.6) yields different ways

for approximating
dEx

t [f(s,Xs)]
ds

∣

∣

s=t
. The computational complexity can be significantly

reduced if appropriate b̄s and σ̄s are chosen. For example, one can simply choose

b̄(r, X̄r) = b(t, x) and σ̄(r,Xr) = σ(t, x) for all r ∈ [t, s].

2.2. The non-linear Feynman-Kac formula and a useful lemma

Consider the following decoupled FBSDEs,















Xt,x
s = x+

∫ s

t

b(r,Xt,x
r )dr +

∫ s

t

σ(t,Xt,x
r )dWr,

Y t,x
s = ϕ(Xt,x

T ) +

∫ T

s

f(r,Xt,x
r , Y t,x

r , Zt,x
r )dr −

∫ T

s

Zt,x
r dWr,

∀s ∈ [t, T ]. (2.8)
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226 T. Tang, W. D. Zhao and T. Zhou

Here the superscript t,x indicates that the forward SDE starts from (t, x), which will be

omitted if no ambiguity arises. The existence and uniqueness of the solution to (2.8)

was first addressed by Pardoux and Peng [12]. Moreover, it is shown [13] that

Y t,x
s = u(s,Xt,x

s ), Zt,x
s = ∇u(s,Xt,x

s )σ(s,Xt,x
s ), ∀s ∈ [t, T ), (2.9)

with u(t, x) ∈ C1,2([0, T ] × R
d) being the classical solution of the following Cauchy

problem:

L0
t,xu(t, x) + f(t, x, u(t, x), ∇u(t, x)σ(t, x)) = 0, (2.10a)

u(T, x) = ϕ(x), t ∈ [0, T ]. (2.10b)

The representation in (2.9) is the so-called nonlinear Feynman-Kac formula.

Note that (2.9) provides a precise link between the solutions of FBSDEs and those

of semi-linear PDEs. Motivated by the solution structure of decoupled FBSDEs, we

introduce the following lemma which will play an important role in designing our DC

schemes.

Lemma 2.1. Suppose that the function g(t,Xt) ∈ C1,2([0, T ] × R
d), where Xt is the

solution of the diffusion process in (2.8). Then under the conditions of Theorem 2.1, it

holds that

dEx
t [g(s,Xs)]

ds

∣

∣

∣

∣

s=t

= L0
t,xg(t, x), (2.11a)

dEx
t

[

g(s,Xs)(∆Wt,s)
⊤
]

ds

∣

∣

∣

∣

∣

s=t

= ∇g(t, x)σ(t, x), (2.11b)

where the increment ∆Wt,s is defined as ∆Wt,s := Ws −Wt.

Proof. It follows from Theorem 2.1 that

dEx
t [g(s,Xs)]

ds
=E

x
t

[

AXs
s g(s,Xs)

]

= E
x
t

[

L0
s,Xs

g(s,Xs)
]

=E
x
t

[

∂

∂s
g(s,Xs) +

d
∑

i

bi
∂

∂xi
g(s,Xs) +

1

2

d
∑

i,j

(

σσ⊤
)

i,j

∂2

∂xi∂xj
g(s,Xs)

]

.

Then, under the condition of the lemma, (2.11a) follows by letting s → t. We choose

the functions b̄(s, X̄s) and σ̄(s, X̄s) in (2.7) as b̄(s, X̄s) = b(t, x) and σ̄(s, X̄s) = σ(t, x).
Consequently, the diffusion process X̄s can be presented as

X̄s = x+ b(t, x)∆tt,s + σ(t, x)∆Wt,s,

where ∆tt,s = s− t and ∆Wt,s = Ws −Wt for t ≤ s. By Theorem 2.1, we have

dEx
t

[

g(s,Xs)(∆Wt,s)
⊤
]

ds

∣

∣

∣

∣

∣

s=t

=
dEx

t

[

g(s, X̄s)(∆Wt,s)
⊤
]

ds

∣

∣

∣

∣

∣

s=t

.
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Deferred Correction Methods for FBSDEs 227

Let ḡ = g(t, X̄), i.e.,

ḡ = g(s, x+ b(t, x)∆tt,s + σ(t, x)∆Wt,s).

Such a function ḡ can be viewed as a function of s and ∆Wt,s, and g(s, X̄s)(∆Wt,s)
⊤

too. We denote ḡ = g(s, x + b(t, x)∆tt,s + σ(t, x)∆Wt,s) by G(s,∆Wt,s). By Theorem

2.1, we deduce

dEx
t [G(s,∆Wt,s)]

ds
= E

x
t

[

L0
s,∆Wt,s

G(s,∆Wt,s)
]

=E
x
t

[

∂G

∂s
(s,∆Wt,s) +

1

2

∂2G

∂x2
(s,∆Wt,s)

]

=E
x
t





∂ḡ

∂s
∆Wt,s +

1

2





d
∑

i,j

(σσ⊤)i,j(t, x)
∂2ḡ

∂xi∂xj
∆Wt,s + 2∇ḡ(t, x)σ(t, x)







 ,

which gives

dEx
t [G(s,∆Wt,s)]

ds

∣

∣

∣

∣

s=t

= ∇ḡ(t, x)σ(t, x) = ∇g(t, x)σ(t, x).

This completes the proof of the lemma. �

3. The framework of DC method

3.1. The DC framework for ODEs

The idea of deferred correction (DC) method was first proposed in [15] for solving

the following ODE problems

{

y′(t) = f(t, y(t)), t ∈ (0, T ],
y(0) = y0.

(3.1)

It aims to create high-order methods from low-order schemes. More precisely, the DC

methods begin with a low-order scheme (such as the Euler scheme) and then promote it

to a higher-order one by iteratively corrected numerical solutions of residual equations.

We simply give the DC procedure for solving ODEs as follows. First, introduce a

regular time partition for [0, T ] as

0 = t0 < t1 < · · · < tn < · · · < tN = T, (3.2)

and a finer uniform partition G
n
K on the time sub-interval In = [tn, tn+1]

G
n
K = {tn,k|tn = tn,0 < tn,1 < · · · < tn,k < · · · < tn,K = tn+1} (3.3)

with the time sub-step δt = (tn+1 − tn)/K, where K is a given positive integer. Let

In,k = [tn,k, tn,k+1].
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228 T. Tang, W. D. Zhao and T. Zhou

Second, let {un,k}Kk=0 be the approximated values of the solution y(t) of (3.1)

at time points {tn,k}
K
k=0 ∈ G

n
K , which are obtained by using a low-order numerical

scheme; based on the discrete values {un,k}Kk=0, construct a continuous interpolation

function Iu(t); solve the residual equation

δ′(t) = f(t, δ(t) + Iu(t)) −
d

dt
Iu(t) (3.4)

with δ(0) = 0, where δ(t) = y(t) − Iu(t) is the error function. Note that this residual

equation is of the same form as (3.1), so the same numerical scheme for (3.1) can

be used to solve (3.4). This will yield approximated values {δk}Ki=0. Third, correct

the approximation solution un,k by un,k,new = un,k + δk, k = 0, 1, · · · ,K. The above

procedure can be repeated for J times, where J is a positive integer, and the rate of

convergence is given by (see [9])

O
(

(δt)min(J,K)+1
)

. (3.5)

To summarize, we write the DC method for ODEs in Algorithm 3.1 below.

Algorithm 3.1 (DC for ODEs).

1 Let un = y0, for n = 0.

2 For n = 1, 2, · · · , N − 1, do (1)-(3).

(1) Let un,0 = un−1.

(2) For j = 1, 2, · · · , J , do (i)-(iii).

(i) For k = 1, 2, · · · ,K, solve un,k,[j] by a lower-order numerical method at

time points tn,k ∈ G
n
K .

(ii) Let δ0,[j] = 0. For k = 1, 2, · · · ,K, solve δk,[j] by the same lower-order

method at time points tn,k ∈ G
n
K .

(iii) Update the numerical solutions un,k,[j], k = 1, 2, · · · ,K, by

un,k,[j+1] = un,k,[j] + δk,[j].

(3) Let un = un,K,[J ].

3.2. The DC framework for FBSDEs

In our DC method for FBSDEs, we need to introduce a space partition Dh of Rd,

which is a set of discrete grid points in R
d, i.e., Dh = {xi|xi ∈ R

d, i ∈ Z} with Z the set

of integers. We define the density of the grids in Dh by

h = max
x∈Rd

min
y∈Dh

|x− y| = max
x∈Rd

dist(x,Dh), (3.6)
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where dist(x,Dh) is the distance from x to Dh. For each x ∈ R
d, we define a local

subset Dh,x of Dh satisfying

• dist(x,Dh,x) < dist(x,Dh\Dh,x);

• the number of elements in Dh,x is finite and uniformly bounded, i.e., there exists

a positive integer Ne such that #Dh,x ≤ Ne.

We call Dh,x the neighbor grid set in Dh at x.

On the time partitions (3.2) and (3.3) and the space partition Dh, we will give a

framework of our DC method for solving FBSDEs. Consider the backward stochastic

differential equation on In = [tn, tn+1] ⊂ [0, T ]

Yt = Ytn+1
+

∫ tn+1

t

f(s,Xs, Ys, Zs)ds−

∫ tn+1

t

ZsdWs, t ∈ In. (3.7)

Suppose that we have obtained a numerical approximation (Y n,k
i , Zn,k

i ) of the solution

(Yt, Zt) of the BSDE (3.7) at time-space grid points (tn,k,Xtn,k
= xi), i ∈ Z, by a low-

order numerical method (denoted as Ml method). Based on these values (Y n,k
i , Zn,k

i ),
we can construct an interpolation approximate (IhYt, IhZt) of (Yt, Zt) for t ∈ In. Define

the error terms δYt and δZt as

δYt = Yt − IhYt, δZt = Zt − IhZt. (3.8)

It follows (3.7) and (3.8) that the processes δYt and δZt solve the following BSDE:

δYt = δYtn+1
+

∫ tn+1

t

F (s,Xs, δYs, δZs)ds−

∫ tn+1

t

δZsdWs + E(t), (3.9)

where

F (s,Xs, δYs, δZs) = f(s,Xs, δYs + IhYs, δZs + IhZs),

E(t) = IhYtn+1
−

∫ tn+1

t

IhZsdWs − IhYt.

After getting the approximated values (δY n,k
i , δZn,k

i ) of (δYt, δZt) at the grid points

(tn,k,Xtn,k
= xi), i ∈ Z by the method Ml for (3.7), we update the approximated

solutions (Y n,k,new
i , Zn,k,new

i ) by

(Y n,k,new
i , Zn,k,new

i ) = (Y n,k
i + δY n,k

i , Zn,k
i + δZn,k

i ).

The corrected procedure may be repeated several times if needed.

We now summarize our DC method for FBSDEs in Algorithm 3.2 below.

The detailed construction for such algorithm can be highly non-trivial (as will be

seen in the following sections). In Algorithm 3.2, we need to design some lower-order

numerical method, which should be easy to be implemented, on the sub-interval In,

n = 0, 1, · · · , N − 1.

For notation simplicity, in the sequel we will denote tn,k by τk for k = 0, 1, · · · ,K,

unless otherwise specified.
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Algorithm 3.2 (DC for FBSDEs).

1. Give Y N
i and ZN

i , i ∈ Z.

2. For n = N − 1, . . . , 1, 0, i ∈ Z, do (1)-(3).

(1) Let Y n,K
i = Y n+1

i and Zn,K
i = Zn+1

i .

(2) For j = 1, 2, · · · , J , do (i)-(iii).

(i) For k = K − 1, · · · , 1, 0, solve Y
n,k,[j]
i and Z

n,k,[j]
i by a lower-order nu-

merical method at grid points (tn,k, xi) ∈ G
n
K ×Dh.

(ii) Let δY
K,[j]
i = 0 and δZ

K,[j]
i = 0. For k = K − 1, · · · , 1, 0, solve δY

k,[j]
i

and δZ
k,[j]
i by the same lower-order method at grid points (tn,k, xi) ∈

G
n
K ×Dh.

(iii) Update the numerical solution pairs (Y
n,k,[j]
i , Z

n,k,[j]
i ), k = 0, 1, · · · ,K−

1, by

Y
n,k,[j+1]
i = Y

n,k,[j]
i + δY

k,[j]
i , Z

n,k,[j+1]
i = Z

n,k,[j]
i + δZ

k,[j]
i .

(3) Let Y n
i = Y

n,0,[J ]
i and Zn

i = Z
n,0,[J ]
i .

4. The DC method for FBSDEs

In this section, we will discuss our DC method for decoupled and coupled FBSDEs

in detail. The detailed derivation of the DC method for solving decoupled and cou-

pled FBSDEs on In is given in Subsections 4.1 and 4.2, respectively, and a conclusive

algorithm of our DC method for solving FBSEDs is presented in Subsection 4.3.

4.1. DC schemes for decoupled FBSDEs

In this subsection, we shall focus on the DC methods for the following decoupled

FBSDEs on the time sub-interval In,k = [τk, tn+1]:















Xt = Xτk +

∫ t

τk

b(s,Xs)ds+

∫ t

τk

σ(s,Xs)dWs, t ∈ In,k,

Yt = Ytn+1
+

∫ tn+1

t

f(s,Xs, Ys, Zs)ds−

∫ tn+1

t

ZsdWs, t ∈ In,k.

(4.1)

By taking the conditional expectation E
x
τk
[·] on both sides of the BSDE in (4.1), we

obtain

E
x
τk
[Yt] = E

x
τk

[

Ytn+1

]

+

∫ tn+1

t

E
x
τk
[f(s,Xs, Ys, Zs)] ds, t ∈ In,k. (4.2)
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The integrand E
x
τk
[f(s,Xs, Ys, Zs)] is a continuous function of s. Then, by taking the

derivative with respect to t on both sides of (4.2), one obtains the following reference

ODE:
dEx

τk
[Yt]

dt
= −E

x
τk
[f(t,Xt, Yt, Zt)] , t ∈ In,k. (4.3)

Note that we also have

Yτk = Yt +

∫ t

τk

f(s,Xs, Ys, Zs)ds−

∫ t

τk

ZsdWs, t ∈ In,k.

Let ∆Wτk,t := Wt −Wτk for t ≥ τk. By multiplying both sides of the above equation by

(∆Wtn,t)
⊤ and taking the conditional expectation E

x
τk
[·] on both sides of the derived

equation, we obtain for t ∈ In,k:

E
x
τk

[

Yt(∆Wτk ,t)
⊤
]

+

∫ t

τk

E
x
τk

[

f(s,Xs, Ys, Zs)(∆Wτk ,s)
⊤
]

ds−

∫ t

τk

E
x
τk
[Zs] ds = 0. (4.4)

Again, the two integrands in (4.4) are continuous functions of s [18]. Upon taking the

derivative with respect to t ∈ In,k in (4.4), we get the following reference ODE:

dEx
τk

[

Yt(∆Wτk ,t)
⊤
]

dt
= −E

x
τk

[

f(t,Xt, Yt, Zt)(∆Wτk ,t)
⊤
]

+ E
x
τk
[Zt] . (4.5)

For (3.9), by using the same arguments in obtaining (4.3) and (4.5), we derive the

following two reference ODEs for the error pair (δYt, δZt) for t ∈ In,k:

dEx
τk
[δYt]

dt
= −E

x
τk
[f (t,Xt, δYt + IhYt, δZt + IhZt)]−

dEx
τk
[IhYt]

dt
, (4.6a)

dEx
τk

[

δYt(∆Wτk,t)
⊤
]

dt
= −E

x
τk

[

f (t,Xt, δYt + IhYt, δZt + IhZt) (∆Wτk,t)
⊤
]

+ E
x
τk
[δZt + IhZt]−

dEx
τk

[

IhYt(∆Wtn,t)
⊤
]

dt
. (4.6b)

The Eqs. (4.3) and (4.5)-(4.6b) give us reference ODEs for solving the BSDE in (4.1),

which will serve as fundamental tools in designing the DC-based numerical schemes.

Specifically speaking, our DC schemes will be derived by approximating the conditional

expectations and the derivatives in (4.3) and (4.5)-(4.6b).

4.1.1. The semi-discrete scheme

We now propose the semi-discrete DC scheme for decoupled FBSDEs on In. We choose

smooth functions b̄(t, x) and σ̄(t, x) for t ∈ In,k and x ∈ R
d with constraints b̄(τk, x) =

b(τk, x) and σ̄(τk, x) = σ(τk, x). Define the diffusion process X̄τk ,x
t by

X̄τk ,x
t = x+

∫ t

τk

b̄(s, X̄τk ,x
s )ds+

∫ t

τk

σ̄(s, X̄τk ,x
s )dWs. (4.7)
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Let (Xτk ,x
t , Y τk ,x

t , Zτk ,x
t ) be the solution of the decoupled FBSDEs (4.1), and

(Ȳ
X̄

τk,x

t
t , Z̄

X̄
τk,x

t
t ) be the values of (Y τk ,x

t , Zτk ,x
t ) at (t, X̄τk ,x

t ). Then by Theorem 2.1 we
have

dEx
τk
[Yt]

dt

∣

∣

∣

∣

t=τk

=
dEx

τk
[Ȳt]

dt

∣

∣

∣

∣

t=τk

=
Ex
τk
[Ȳτk+1

]− Yτk

δt
+ R̃k

y , (4.8a)

dEx
τk
[Yt(∆Wτk,t)

⊤]

dt

∣

∣

∣

∣

∣

t=τk

=
dEx

τk
[Ȳt(∆Wτk,t)

⊤]

dt

∣

∣

∣

∣

∣

t=τk

=
Ex
τk
[Ȳτk+1

(∆Wτk,t)
⊤]

δt
+ R̃k

z , (4.8b)

where R̃k
y and R̃k

z are truncation errors, defined by

R̃k
y =

dEx
τk
[Yt]

dt

∣

∣

∣

∣

t=τk

−
E
x
τk
[Ȳτk+1

]− Yτk

δt
,

R̃k
y =

dEx
τk
[Yt(∆Wτk ,t)

⊤]

dt

∣

∣

∣

∣

∣

t=τk

−
E
x
τk
[Ȳτk+1

(∆Wτk,t)
⊤]

δt
.

Inserting (4.8a) and (4.8b) into (4.3) and (4.5), respectively, we obtain the following

reference equations for solving BSDE:

Yτk = E
x
τk
[Ȳτk+1

] + δt · f(τk,Xτk , Yτk , Zτk) +Rk
y , (4.9a)

Zτk = E
x
τk
[Ȳτk+1

(∆Wτk ,t)
⊤]/δt +Rk

z , (4.9b)

where Rk
y = −R̃k

y and Rk
z = R̃k

z . For the forward SDE, we choose the simplest form

b̄(t,Xτk ,x
t ) = b(τk, x) and σ̄(t,Xτk ,x

t ) = σ(τk, x) for t ∈ In,k, which results in the Euler

scheme for the SDE, i.e.,

Xk+1 = Xk + b(τk,X
k)δt+ σ(τk,X

k)∆Wτk,τk+1
.

Now let Y k and Zk be the numerical approximations for the solutions Yt and Zt of

the BSDE in (2.8) at time τk, respectively. By removing the truncation errors Rk
y and

Rk
z from (4.9a) and (4.9b), respectively, we propose the time semi-discrete numerical

scheme for solving (Yt, Zt) of the BSDE (4.2)

Scheme 4.1 (The Euler scheme). Given Y K and ZK on Dh, for k = K − 1, · · · , 1, 0,

solve Xk+1, Y k = Y k(Xk) and Zk = Zk(Xk) for all Xk ∈ Dh by

7Xk+1 = Xk + b(τk,X
k)δt+ σ(τk,X

k)∆Wτk ,τk+1
, (4.10a)

Zk = E
Xk

τk

[

Ȳ k+1(∆Wτk,τk+1
)⊤
]

/δt, (4.10b)

Y k = E
Xk

τk

[

Ȳ k+1
]

+ δt · f(τk,X
k, Y k, Zk), (4.10c)

where Ȳ k+1 is the value of Y k+1 at the space point Xk+1.
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The above scheme is of multi-step type as proposed in [18]. The main advantage

of the use of the Euler scheme can dramatically reduce the total computational com-

plexity [18]. However, unlike the multi-step schemes in [18], we can not expect an

high-order convergence rate by only considering Scheme 4.1. To fix this, below we

shall design high-order DC schemes based on the above Euler scheme.

Similarly, denote by δY k and δZk the approximated solution of δYt and δZt on In,
respectively. We propose the Euler scheme to solve the solution (δYt, δZt) of (4.6a) and
(4.6b):



























δZk = EXk

τk
[δȲ k+1(∆Wτk,τk+1

)⊤]/δt− Zk +
dEXk

τk
[IhYt(∆Wτk,τk+1

)⊤]

dt

∣

∣

∣

∣

∣

t=τk

,

δY k = EXk

τk
[δȲ k+1] + δt ·

(

f(τk, X
k, δY k + Y k, δZk + Zk) +

dEXk

τk
[IhYt]

dt

∣

∣

∣

∣

∣

t=τk

)

,

(4.11)

where δȲ k+1 is the value of δY k+1 at the space point Xk+1. Notice that by Lemma 2.1,

we have the two identities

dEXk

τk
[IhYt]

dt

∣

∣

∣

∣

∣

t=τk

= L0
τk,X

k(IhYτk), (4.12a)

dEXk

τk
[IhYt(∆Wτk ,τk+1

)⊤]

dt

∣

∣

∣

∣

∣

t=τk

= ∇(IhYτk)σ(τk,X
k). (4.12b)

Now combining Eqs. (4.11)-(4.12b), we propose our time semi-discrete for solving the

error pair (δYt, δZt) on In as

Scheme 4.2. Let δY K = 0 and δZK = 0 on Dh. Then for k = K − 1, · · · , 1, 0, solve

Xn+1, δY k = δY k(Xk) and δZk = δZk(Xk) for all Xk ∈ Dh by

Xk+1 = Xk + b(τk,X
k)δt+ σ(τk,X

k)∆Wτk,τk+1
, (4.13a)

δZk = E
Xk

τk

[

δȲ k+1(∆Wτk ,τk+1
)⊤
]

/

δt− Zk +∇(IhYτk)σ(τk,X
k), (4.13b)

δY k = E
Xk

τk

[

δȲ k+1
]

+ δt
(

f(τk,X
k, δY k + Y k, δZk + Zk) + L0

τk,Xk(IhYτk)
)

, (4.13c)

where δȲ k+1 is the value of δY k+1 at the space point Xk+1.

Note that the above scheme involves the terms
dEx

τk
[IhYt]

dt and
dEx

τk
[IhYt(∆Wτk,t)⊤]

dt . By

Lemma 1 and due to the definition of the operator L0 in (2.4), we need to pay attention

to the derivatives
∂(IhYt)

∂t
,
∂(IhYt)

∂x
, and

∂2(IhYt)
∂x2 of IhYt. Thus, high-order accuracy of the

DC scheme relies heavily on the approximation quality of
∂(IhYt)

∂t
,
∂(IhYt)

∂x
, and

∂2(IhYt)
∂x2 .
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4.1.2. The fully-discrete scheme

The main purpose here is to solve Y k and Zk at the grid points x ∈ Dh. Precisely, for

each x ∈ Dh, k = K − 1, · · · , 1, 0, we seek to solve Y k = Y k(x) and Zk = Zk(x) by

{

Zk = E
x
τk

[

Ȳ k+1(∆Wτk,τk+1
)⊤
]

/δt,

Y k = E
x
τk

[

Ȳ k+1
]

+ δt · f(τk,X
k, Y k, Zk),

(4.14)

where Ȳ k+1 are the values of Y k+1 at the space point Xk+1 defined by

Xk+1 = Xk + b(τk,X
k)δt+ σ(τk,X

k)∆Wτk,τk+1
. (4.15)

Generally, the Xk+1 does not belong to Dh on the condition of Xk = x ∈ Dh. Thus, to

solve Y k and Zk, interpolation methods are needed to approximate the value of Y k+1

at Xk+1 using the values of Y k+1 on Dh. Here, we will adopt a local interpolation

operator Ikh,X such that Ikh,Xg is the interpolation value of the function g at space point

X ∈ R
d by using the values of g only on Dk

h,X . Note that any interpolation methods

can be used here, however, care should be made if one wants to guarantee the stability

and accuracy.

In numerical simulations, the conditional expectations Ex
τk

[

Ȳ k+1(∆Wτk,τk+1
)⊤
]

and

E
x
τk

[

Ȳ k+1
]

in (4.14) should also be approximated. The approximation operator of

E
x
τk
[·] is denoted by E

x,h
τk [·], which can be any quadrature method such as the Monte

Carlo method, the quasi-Monte Carlo method, and the Gaussian quadrature method,

and so on.

Now by introducing the operators Ikh,x and E
x,h
τk [·] , we rewrite (4.14) in the equiv-

alent form














Yτk = E
x,h
τk

[

Ik+1
h,X̄τk+1

Yτk+1

]

+ δt · f (τk, x, Yτk , Zτk) +Rk
y +Rk,E

y +Rk,Ih
y ,

Zτk = E
x,h
τk

[

Ik+1
h,X̄τk+1

Yτk+1
(∆Wτk,τk+1

)⊤
]

/

δt+Rk
z +Rk,E

z +Rk,Ih
z ,

(4.16)

where

Rk,E
y =

(

E
x
τk

− E
x,h
τk

)

[

Ȳτk+1

]

,

Rk,E
z =

(

E
x
τk

− E
x,h
τk

) [

Ȳτk+1
(∆Wτk,τk+1

)⊤
]/

δt,

Rk,Ih
y = E

x,h
τk

[

Ȳτk+1
− Ik+1

h,X̄τk+1

Yτk+1

]

,

Rk,Ih
z = E

x,h
τk

[(

Ȳτk+1
− Ik+1

h,X̄τk+1

Yτk+1

)

(

Wτk ,τk+1

)⊤

]

/

δt.

The two terms Rk,E
y and Rk,E

z are numerical errors introduced by approximating con-

ditional expectations, and the other two terms Rk,Ih
y and Rk,Ih

z are numerical errors

caused by numerical interpolations.
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By removing the six error terms Rk
y , Rk,E

y , Rk,Ih
y , Rk

z , Rk,E
z , and Rk,Ih

z from (4.16), we

propose our fully discrete scheme for solving the solution (Xt, Yt, Zt) of the decoupled

FBSDEs (4.1) on In.

Scheme 4.3. Given Y K and ZK on Dh, for k = K − 1, · · · , 1, 0, solve Xk+1, Y k =
Y k(Xk) and Zk = Zk(Xk) for all Xk ∈ Dh by

Xk+1 = Xk + b(τk,X
k)δt + σ(τk,X

k)∆Wτk,τk+1
,

Zk = E
x,h
τk

[

Ik+1
h,Xk+1Y

k+1(∆Wτk ,τk+1
)⊤
]/

δt,

Y k = E
x,h
τk

[

Ik+1
h,Xk+1Y

k+1
]

+ δt · f(τk,X
k, Y k, Zk).

By using the same arguments, i.e., by approximating the two conditional expec-

tations E
x
τk
[δȲτk+1

(∆Wτk ,τk+1
)⊤] and E

x
τk
[δȲτk+1

], we propose our fully discrete Euler

scheme for solving the error pair (δYt, δZt) on In as follows.

Scheme 4.4. Let δY K = 0 and δZK = 0 on Dh, then for k = K − 1, · · · , 1, 0, solve

Xk+1, δY k = δY k(Xk) and δZk = δZk(Xk) for all Xk ∈ Dh by

Xk+1 = Xk + b(τk,X
k)δt+ σ(τk,X

k)∆Wτk,τk+1
,

δZk = E
x,h
τk

[

Ik+1
h,Xk+1δY

k+1(∆Wτk ,τk+1
)⊤
]/

δt− Zk +∇(IhYτk)σ(τk,X
k),

δY k = E
x,h
τk

[

Ik+1
h,Xk+1δY

k+1
]

+ δt
(

f(τk,X
k, δY k + Y k, δZk + Zk) + L0

τk ,X
k(IhYτk)

)

.

Consequently, Scheme 4.3 and Scheme 4.4 are the DC numerical schemes for solv-

ing (Y k, Zk) and (δY k, δZk) on In, respectively. They can be applied in Algorithm 3.2.

Note that the above schemes involve solving nonlinear equations with respect to

Y k and δY k. Thus, some iteration methods are required. Suppose that the function

f(t, x, y, z) is Lipschitz continuous with respect to y, for small time partition δt, we

propose the following iteration procedure to solve Y k :

Y k,[l+1] = E
x,h
τk

[

Ik+1
h,Xk+1Y

k+1
]

+ δt · f(τk, x, Y
k,[l], Zk), (4.17)

until the iteration error |Y k,[l+1] − Y k,[l]| ≤ ǫ0, where ǫ0 > 0 is a prescribed tolerance.

Similar iteration procedures can be used for solving δY k.
The local truncation errors of the above Schemes 4.3-4.4 consist of six terms Rk

y ,

Rk,E
y , Rk,Ih

y , Rk
z , Rk,E

z , and Rk,Ih
z . The two terms Rk

y and Rk
z defined, respectively, in

(4.9a) and (4.9b) come from the approximations of the derivatives, and the two terms

Rk,Ih
y and Rk,Ih

z defined in (4.16) are the local interpolation errors. Under certain

regular conditions on the data b, σ, f and ϕ, by approximation theory, it holds that

Rk
y = O

(

(∆τk)
2
)

, Rk
z = O

(

(∆τk)
2
)

, (4.18a)

Rk,Ih
z = O

(

hl+1
)

, Rk,Ih
y = O

(

hl+1
)

, (4.18b)
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where l is the number of the grid points used in forming the interpolation polynomial

Ikh,X . The other two terms Rn,E
y and Rn,E

z are the local truncation errors resulted from

the approximations of the conditional mathematical expectations in (4.16). It is noted

that these conditional expectations are functions of Gaussian random variables, which

can be represented as integrals with Gaussian kernels, and thus can be approximated

by Gauss-Hermite quadrature with high accuracy.

4.2. DC schemes for coupled FBSDEs

In this subsection, we shall extend our DC schemes for solving fully coupled FBSDEs

(1.1) on In. To this end, we make a trivial extension of Schemes 4.3-4.4 for decoupled

cases to the following Schemes 4.5-4.6 for the coupled case on In.

Scheme 4.5. Assume Y K and ZK defined on DK
h are known. For k = K − 1, · · · , 1, 0,

solve Xk+1, Y k = Y k(x) and Zk = Zk(x) for all x ∈ Dh by

Xk+1 = Xk + b
(

τk,X
k, Y k, Zk

)

δt+ σ
(

τk,X
k, Y k, Zk

)

∆Wτk,τk+1
,

Zk = E
x,h
τk

[

Ik+1
h,Xk+1Y

k+1(∆Wτk,tk=1
)⊤
]/

δt,

Y k = E
x,h
τk

[

Ik+1
h,Xk+1Y

k+1
]

− δt · f(τk, x, Y
k, Zk).

Scheme 4.6. Let δY K = 0 and δZK = 0 on Dh, then for k = K − 1, · · · , 1, 0, solve the

errors δY k and δZk by

Xk+1 = Xk + b(τk,X
k, Y k + δY k, Zk + δZk)δt

+ σ(τk,X
k, Y k + δY k, Zk + δZk)∆Wτk ,τk+1

,

δZk = E
x,h
τk

[

Ik+1
h,Xk+1δY

k+1(∆Wτk ,τk+1
)⊤
]/

δt− Zk

+∇(IhYτk)σ
(

τk,X
k, Y k + δY k, Zk + δZk

)

,

δY k = E
x,h
τk

[

Ik+1
h,Xk+1δY

k+1
]

+ δt
(

f(τk,X
k, δY k + Y k, δZk + Zk) + L0

τk,X
k(IhYτk)

)

.

The main difference between Schemes 4.5-4.6 and Schemes 4.3-4.4 is that the equa-

tions in Schemes 4.5-4.6 are all coupled together, and thus, it requires to solve the

relevant nonlinear equations. In the practical computation, we propose the following

iterative Scheme 4.7 and Schem 4.8 to solve (Y k, Zk) and (δY k, δZk), respectively, on

In.

Scheme 4.7. Assume Y K and ZK defined on DK
h are known. For k = K − 1, · · · , 1, 0,

and for x ∈ Dh, solve Y k = Y k(x) and Zk = Zk(x) by

1. Let Y k,[0] = Y k+1(x) and Zk,[0] = Zk+1(x), and let l = 0;
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2. For l = 0, 1, · · · , solve Y k,[l+1] = Y k,[l+1](x) and Zk,[l+1] = Zk,[l+1](x) by

Xk+1 = Xk + b(τk,X
k, Y k,[l], Zk,[l])δt+ σ(τk,X

k, Y k,[l], Zk,[l])∆Wτk,τk+1
,

Zk,[l+1] = E
x,h
τk

[

Ik+1
h,Xk+1Y

k+1(∆Wτk,τk+1
)⊤
]/

δt,

Y k,[l+1] = E
x,h
τk

[

Ik+1
h,Xk+1Y

k+1
]

− δt · f(τk, x, Y
k,[l+1], Zk,[l+1]),

until max(|Y k,[l+1] − Y k,[l]|, |Zk,[l+1] − Zk,[l]|) < ǫ0;

3. Let Y k = Y k,[l+1] and Zk = Zk,[l+1].

Scheme 4.8. For k = K − 1, · · · , 1, 0, solve the errors δY k and δZk by

1. Let δY k,[0] = δY k+1(x) and δZk,[0] = δZk+1(x) with δY K(x) = 0 and δZK(x) = 0,

and let l = 0;

2. For l = 0, 1, · · · , solve δY k,[l+1] = δY k,[l+1](x) and δZk,[l+1] = δZk,[l+1](x) by

Xk+1 = Xk + b(τk,X
k, Y k + δY k,[l], Zk + δZk,[l])δt

+ σ(τk,X
k, Y k + δY k,[l], Zk + δZk,[l])∆Wτk,τk+1

,

δZk,[l+1] = E
x,h
τk

[Ik+1
h,Xk+1δY

k+1(∆Wτk,τk+1
)⊤]/δt− Zk

+∇(IhYτk)σ(τk,X
k, Y k + δY k,[l], Zk + δZk,[l]),

δY k,[l+1] = E
x,h
τk

[Ik+1
h,Xk+1δY

k+1] + δt
(

f(τk,X
k, δY k,[l+1] + Y k, δZk,[l+1] + Zk)

+ L0
τk,X

k(IhYτk)
)

,

until max(|δY k,[l+1] − Y k,[l]|, |δY k,[l+1] − Y k,[l]|) < ǫ1;

3. Let δY k = δY k,[l+1] and δZk = δZk,[l+1].

Remark 4.1. If the drift coefficient b and the diffusion coefficient σ do not depend on

Y. and Z., then Scheme 4.5 and Scheme 4.6 coincide with Scheme 4.3 and Scheme 4.4,

respectively.

The mesh Dk
h is essentially unbounded. In applications, one is often interested in

obtaining certain values of (Yt, Zt) at (τk, x) with x in a bounded domain. For instance,

in option pricing, people are only interested in the option values at the current option

price. Thus, in practice, only a bounded submesh of Dh is used on each time level. In

our numerical experiments, we use the Gauss-Hermite integral rule to approximate the

conditional expectations, in which only a small number of integral points are used.

4.3. DC algorithm for FBSDEs

Combining Algorithm 3.2 with the schemes on In presented in Subsection 4.1 and

4.2, we are able to present our DC algorithm for solving decoupled and coupled FBSDEs

on [0, T ] in Algorithm 4.1 below.
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Algorithm 4.1 (DC for decoupled & coupled FBSDEs).

1. Give Y N
i and ZN

i , i ∈ Z.

2. For n = N − 1, · · · , 1, 0, i ∈ Z, do (1)-(3).

(1) Let Y n,K
i = Y n+1

i and Zn,K
i = Zn+1

i .

(2) For j = 1, 2, · · · , J , do (i)-(iii).

(i) For k = K − 1, · · · , 1, 0, solve Y
n,k,[j]
i and Z

n,k,[j]
i by

{

Schemes 4.3 for decoupled FBSDEs

Schemes 4.7 for coupled FBSDEs

at grid points (tn,k, xi) ∈ G
n
K ×Dh.

(ii) Let δY
K,[j]
i = 0 and δZ

K,[j]
i = 0. For k = K − 1, · · · , 1, 0, solve δY

k,[j]
i

and δZ
k,[j]
i by

{

Schemes 4.4 for decoupled FBSDEs

Schemes 4.8 for coupled FBSDEs

at grid points (tn,k, xi) ∈ G
n
K ×Dh.

(iii) Update the numerical solution pairs (Y
n,k,[j]
i , Z

n,k,[j]
i ), k = 0, 1, · · · ,K−

1, by

Y
n,k,[j+1]
i = Y

n,k,[j]
i + δY

k,[j]
i , Z

n,k,[j+1]
i = Z

n,k,[j]
i + δZ

k,[j]
i .

(3) Let Y n
i = Y

n,0,[J ]
i and Zn

i = Z
n,0,[J ]
i .

5. Numerical experiments

In this section, we will provide several numerical examples to demonstrate the high

accuracy and effectiveness of our DC schemes proposed in Section 4. For simplicity,

we will use uniform partitions in both time and space. The time interval [0, T ] will

be uniformly divided into N parts with time step ∆t = T
N

and time grids tn = n∆t,
n = 0, 1, · · · , N , and each time sub-interval In = [tn, tn+1] is divided into K uniform

parts with time substep δt = T
NK

and time grids tn,k = tn + kδt, k = 0, 1, · · · ,K. The

space partition Dh of one-dimensional real axis R is defined by

Dh = {xi : xi = ih, i = 0,±1, · · · }

with h the discretized spatial step. Let Dh,x ⊂ Dh denote the subset of some neighbor

grids near x ∈ R. According to the error estimate (3.5), we set J = K, Ik+1
h,Xk+1 the local
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standard Lagrange interpolation operator on Dh,x, and E
x,h
τk [·] the Gaussian approxima-

tion operator of the conditional mathematical expectation E
x
τk
[·]. In all the examples,

the terminal time T is set to be 1.0. And in all the tables, we use CR to denote the con-

vergence rate. The numerical results, including numerical errors and convergence rates

are obtained by using the Algorithm 4.1 to solve the following FBSDEs. The Algorithm

4.1 is coded in FORTRAN 95 with the intrinsic data type: REAL (KIND=16)

5.1. Test 1

In this subsection, we will test the stability, accuracy and effectiveness of our DC

method for solving decoupled and coupled FBSDEs.

The decoupled FBSDEs model:















dXt =
1

1 + 2 exp(t+Xt)
dt+

exp(t+Xt)

1 + exp(t+Xt)
dWt,

−dYt =

(

−
2Yt

1 + 2 exp(t+Xt)
−

1

2

(

YtZt

1 + exp(t+Xt)
− Y 2

t Zt

))

dt− ZtdWt,

(5.1)

with the initial condition X0 = x and terminal condition YT = exp(T+XT )
1+exp(T+XT ) . The

analytic solutions Yt and Zt of (5.1) are

Yt =
exp(t+Xt)

1 + exp(t+Xt)
, Zt =

(exp(t+Xt))
2

(1 + exp(t+Xt))3
. (5.2)

The coupled FBSDEs model:















dXt =
1

1 + exp(t+Xt)

1

1 + Yt

dt+ YtdWt,

−dYt =

(

−
2Yt

1 + 2 exp(t+Xt)
−

1

2

(

YtZt

1 + exp(t+Xt)
− Y 2

t Zt

))

dt− ZtdWt,

(5.3)

with the initial condition X0 = x and the terminal condition YT = exp(T+XT )
1+exp(T+XT ) . The

analytic solutions Yt and Zt of (5.3) are

Yt =
exp(t+Xt)

1 + exp(t+Xt)
, Zt =

(exp(t+Xt))
2

(1 + exp(t+Xt))3
.

For decoupled problem (5.1) and coupled problem (5.3), we set x = 1 and x = 0,

respectively. For K = 1, · · · , 4, we solve (5.1) and (5.3) by Algorithm 4.1 for different

time partitions. The errors |Y0 − Y 0|, |Z0 − Z0|, and the convergence rates CR with

respect to time step ∆t = 1
N

are listed in Table 1 and Table 2 for problem (5.1) and

problem (5.3), respectively.

Numerical results listed in Tables 1 and 2 clearly show that our DC method proposed

in this paper for solving FBSDEs is stable and effective, and is of K-th order method

at least for K = 1, · · · , 4. The results observed in these tests are consistent with those

ones for DC methods to solve ODEs.
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Table 1: Errors and convergence rates for (5.1).

K N = 4 N = 6 N = 8 N = 10 N = 12 CR

1
|Y 0 − Y0| 1.446E-02 9.670E-03 7.262E-03 5.813E-03 4.846E-03 0.995

|Z0 − Z0| 1.923E-02 1.286E-02 9.665E-03 7.742E-03 6.456E-03 0.994

2
|Y 0 − Y0| 2.617E-05 1.925E-05 1.475E-05 1.167E-05 9.456E-06 1.993
|Z0 − Z0| 2.621E-05 1.933E-05 1.484E-05 1.175E-05 9.535E-06 1.980

3
|Y 0 − Y0| 2.238E-06 6.237E-07 2.554E-07 1.285E-07 7.351E-08 3.109

|Z0 − Z0| 1.536E-05 4.584E-06 1.945E-06 9.996E-07 5.801E-07 2.982

4
|Y 0 − Y0| 2.346E-07 4.387E-08 1.352E-08 5.453E-09 2.603E-09 4.097
|Z0 − Z0| 6.786E-07 1.318E-07 4.145E-08 1.694E-08 8.160E-09 4.024

Table 2: Errors and convergence rates for problem (5.3).

K N = 4 N = 6 N = 8 N = 10 N = 12 CR

1
|Y 0 − Y0| 1.013E-02 6.989E-03 5.334E-03 3.619E-03 4.312E-03 0.937

|Z0 − Z0| 1.064E-02 7.054E-03 5.280E-03 4.220E-03 3.515E-03 1.008

2
|Y 0 − Y0| 3.666E-04 1.618E-04 9.065E-05 5.785E-05 4.009E-05 2.014
|Z0 − Z0| 6.196E-04 2.891E-04 1.669E-04 1.085E-04 7.618E-05 1.908

3
|Y 0 − Y0| 1.312E-05 3.965E-06 1.681E-06 8.599E-07 4.960E-07 2.981

|Z0 − Z0| 1.256E-05 3.798E-06 1.529E-06 7.261E-07 3.831E-07 3.171

4
|Y 0 − Y0| 2.137E-07 3.930E-08 1.194E-08 4.756E-09 2.247E-09 4.146
|Z0 − Z0| 4.800E-07 9.500E-08 2.995E-08 1.215E-08 5.776E-09 4.021

5.2. Test 2

The aim of this subsection is to show the performance of our DC method for solving

FBSDEs in accuracy, effectiveness and stability. The chosen FBSDEs model is














dXt = sin(t+Xt)dt+
3

10
cos(t+Xt)dWt,

−dYt =

(

3

20
YtZt − cos(t+Xt)(1 + Yt)

)

dt− ZtdWt,
(5.4)

with the initial condition X0 = x and the terminal condition YT = sin(T + XT ). The

analytic solutions Yt and Zt of (5.4) are

Yt = sin(t+Xt), Zt =
3

10
cos(t+Xt)

2. (5.5)

In the tests, we set the initial condition x = 0.5. We use Algorithm 4.1 to solve

the above decoupled FBSDEs. The errors |Y0 − Y 0|, |Z0 − Z0|, and the convergence

rates CR with respect to time step ∆t = 1
N

are listed in Table 3 for different time

partitions. The results in Table 3 clearly show that our DC method is of K-th order

method (K = 1, 2, . . . , 12), stable and effective with very high convergence rate (up

to 12). The results also show that our DC method is very efficient, which can be seen

from the fact that the errors obtained with N = 4 and K = 2 are much smaller than

those obtained with N = 12 and K = 1 (the Euler scheme).
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Table 3: Errors and convergence rates for Example 5.3.

K N = 4 N = 6 N = 8 N = 10 N = 12 CR

1
|Y 0 − Y0| 2.512E-01 1.766E-01 1.360E-01 1.104E-01 9.286E-02 0.906
|Z0 − Z0| 1.064E-01 7.021E-02 5.287E-02 4.235E-02 3.542E-02 1.001

2
|Y 0 − Y0| 2.934E-04 2.260E-04 1.793E-04 1.456E-04 1.206E-04 2.193

|Z0 − Z0| 5.994E-05 4.717E-05 3.808E-05 3.138E-05 2.630E-05 2.031

3
|Y 0 − Y0| 1.400E-05 9.856E-06 7.197E-06 5.414E-06 4.175E-06 2.985
|Z0 − Z0| 1.350E-06 9.692E-07 7.183E-07 5.468E-07 4.257E-07 2.848

4
|Y 0 − Y0| 4.618E-08 2.819E-08 1.816E-08 1.222E-08 8.515E-09 4.170

|Z0 − Z0| 6.305E-08 3.884E-08 2.520E-08 1.705E-08 1.194E-08 4.103

5
|Y 0 − Y0| 8.858E-10 4.914E-10 2.901E-10 1.801E-10 1.165E-10 5.003

|Z0 − Z0| 1.375E-09 7.669E-10 4.545E-10 2.833E-10 1.839E-10 4.962

6
|Y 0 − Y0| 8.025E-09 7.979E-10 1.430E-10 3.702E-11 1.222E-11 5.911

|Z0 − Z0| 7.891E-08 6.083E-09 9.958E-10 2.467E-10 7.932E-11 6.284

7
|Y 0 − Y0| 4.346E-10 4.671E-11 7.536E-12 1.735E-12 5.117E-13 6.155

|Z0 − Z0| 3.310E-09 1.973E-10 2.653E-11 5.589E-12 1.565E-12 6.970

8
|Y 0 − Y0| 1.244E-10 4.416E-12 4.141E-13 6.637E-14 1.493E-14 8.219
|Z0 − Z0| 1.061E-10 2.914E-12 2.357E-13 3.427E-14 7.210E-15 8.739

9
|Y 0 − Y0| 3.227E-12 1.134E-13 9.450E-15 1.347E-15 2.702E-16 8.551

|Z0 − Z0| 5.400E-12 1.101E-13 7.252E-15 8.975E-16 1.647E-16 9.465

10
|Y 0 − Y0| 2.938E-13 4.422E-15 2.290E-16 2.325E-17 3.609E-18 10.293
|Z0 − Z0| 1.449E-13 3.654E-15 2.241E-16 2.480E-17 4.057E-18 9.556

11
|Y 0 − Y0| 7.235E-15 9.917E-17 4.448E-18 3.937E-19 5.396E-20 10.750

|Z0 − Z0| 6.106E-15 7.201E-18 7.865E-19 1.202E-19 2.072E-20 11.083

12
|Y 0 − Y0| 3.058E-16 1.663E-18 4.397E-20 2.702E-21 2.786E-22 12.658

|Z0 − Z0| 9.577E-16 7.915E-18 2.465E-19 1.659E-20 1.763E-21 12.017

6. Conclusions

In this work, based on the theories of deferred correction methods, SDEs and FB-

SDEs, we proposed the deferred correction method (DC method) for solving FBSDEs.

In this method, the solutions of FBSDEs are iteratively corrected by the Euler approxi-

mation solutions of FBSDEs and the associated residual FBSDEs. Our numerical exper-

iments showed that the DC method is stable, effective, and admits high-order accuracy

for solving FBSDEs. We believe that the DC methods proposed in this paper are promis-

ing in many practical applications, such as finance, stochastic control, risk measure, etc.
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