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Abstract. In this paper, we examine the discontinuous Galerkin (DG) finite element approxi-
mation to convex distributed optimal control problems governed by linear parabolic equations, where
the discontinuous finite element method is used for the time discretization and the conforming finite
element method is used for the space discretization. We derive a posteriori error estimates for both
the state and the control approximation, assuming only that the underlying mesh in space is nonde-
generate. For problems with control constraints of obstacle type, which are the kind most frequently
met in applications, further improved error estimates are obtained.
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1. Introduction. Optimal control or design is crucial to many engineering ap-
plications. Efficient numerical methods are essential to successful applications of
optimal control. Nowadays, the finite element method seems to be the most widely
used numerical method in computing optimal control problems, and the relevant lit-
erature is extensive. Some recent progress in this area has been made in, for example,
[40, 41, 43]. Systematic introduction of the finite element method for PDEs and op-
timal control problems can be found in, for example, [10, 40, 43]. For instance, there
have been extensive theoretical studies for finite element approximation of various
optimal control problems; see [3, 15, 16, 18, 19], [20, 21, 22, 23, 24, 25, 26], and
[37, 39, 44, 45]. For optimal control problems governed by linear elliptic or parabolic
state equations, a priori error estimates of finite element approximation were estab-
lished long ago; see, for example, [15, 18, 26, 37]. Furthermore a priori error estimates
have been also established for some important flow control problems; see, e.g., [19, 20].
A priori error estimates have also been obtained for a class of state constrained con-
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trol problems in [44], although the state equation is assumed to be linear. In [32],
the linear assumption has been removed by reformulating the control problem as an
abstract optimization problem in some Banach spaces and then applying nonsmooth
analysis. In fact, the state equation there can be a variational inequality.

In this paper, we examine an important class of finite element algorithms for
a convex distributed optimal control problem governed by a linear parabolic equa-
tion, where the discontinuous polynomial base is used in time discretization and the
conforming finite element method is used in space discretization. We present an
a posteriori error analysis for this approximation.

Adaptive finite element approximation is among the most important means to
boost the accuracy and efficiency of the finite element discretization. It ensures a
higher density of nodes in certain areas of the given domain, where the solution is
more difficult to approximate using an a posteriori error indicator. The decision about
whether further refinement of meshes is necessary is based on the estimate of the
discretization error. If further refinement is to be performed, then the error indicator
is used as a guide to show how the refinement might be accomplished most efficiently.
The literature in this area is huge. Some of the techniques directly relevant to our
work can be found in [1, 5, 33, 36, 46]. It is our belief that adaptive finite element
enhancement is one of the future directions to pursue in developing sophisticated
numerical methods for optimal design problems.

Although adaptive finite element approximation is widely used in numerical sim-
ulations, it has not yet been fully utilized in optimal design. Initial attempts in
this aspect have only been reported recently for some design problems (see, e.g.,
[2, 4, 38, 42]), and only a posteriori error indicators of a heuristic nature are used
in most applications. For instance, in some existing work on adaptive finite element
approximation of optimal design, the mesh refinement is guided by a posteriori error
estimators based on a posteriori error estimates solely from the state equation for
a fixed control. Thus error information from the approximation of the control (de-
sign) is not utilized. This strategy was found to be inefficient in recent numerical
experiments (see [7, 27]). Although these methods may work well in some particular
applications, they cannot be applied confidently in general. It is unlikely that the
potential power of adaptive finite element approximation has been fully utilized due
to the lack of more sophisticated a posteriori error indicators.

It is not straightforward to rigorously derive suitable a posteriori error estimators
for general optimal control problems. In particular, it seems difficult to apply gradi-
ent recovery techniques since the control is normally not differentiable. Recovering
approximation in function values is in general difficult. For a similar reason, it also
seems difficult to apply the local solution strategy.

Very recently, some error indicators of residual type were developed in [6, 7, 27,
30, 34, 35, 36]. These error estimators are based on a posteriori estimation of the
discretization error for the state and the control (design).

When there is no constraint in a control problem, normally the optimality con-
ditions consist of coupled partial differential equations only. Consequently one may
be able to write down the dual system of the whole optimality conditions, and then
to apply the weighted a posteriori error estimation technique to obtain a posteri-
ori estimators for objective functional approximation error of the control problem;
see [6, 7]. Such estimators have indeed been derived for some unconstrained elliptic
control problems, and have proved quite efficient in the numerical tests carried out
in [6].
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However, there frequently exist some constraints for the control in applications.
In such cases, the optimality conditions often contain a variational inequality and
then have some very different properties. For example, the dual system is generally
unknown. Thus it does not seem to be always possible to apply the techniques used
in [6, 7] to constrained control problems.

In our work, constrained cases are studied via residual estimation using the norms
of energy type. A posteriori error estimators are derived for some constrained control
problems governed by elliptic and parabolic equations; see [27, 34, 35, 36].

In recent years, the discontinuous Galerkin (DG) discretization has proved useful
in computing time-dependent convection and diffusion equations; see [12, 13, 14] for
the DG time-stepping method where only time discretization is discontinuous. It
will be simply referred as to the DG method in this paper, although we are aware
that there exist several DG discretization schemes in the literature. The DG has
proved important in diffusion dominated equations, such as the heat equations, which
govern our control problems to be examined in this paper. Furthermore the DG
method has been found useful in computing optimal control of diffusion dominated
systems; see [40]. However, there is a lack of an a posteriori error analysis for the
DG approximation of the control systems, which is vital for further studies of mesh
adaptivity of the control problems.

The purpose of this work is to extend the approaches in [12, 27, 34, 35, 36]
and to derive a posteriori error estimates for the DG finite element approximation of
distributed convex optimal problems governed by linear parabolic equations. Deriving
such estimates for the DG finite element scheme is much more involved than for the
backward-Euler scheme; see [36]. For example, some approaches applied in [12, 13, 14]
have to be essentially modified for our purpose. Furthermore, novel approaches are
needed to derive the improved estimates for the control with constraints of obstacle
type. Optimal control with obstacle constraints is most frequently met in practical
control problems. In fact, the majority of the existing research on constrained control
concentrates on this type problem; see [28] and [43], for instance.

The plan of the paper is as follows. In section 2 we shall give a brief review of
the finite element method and the discontinuous Galerkin discretization, and then
construct the approximation schemes for the optimal control problem. In section 3,
a posteriori error bounds are derived for the control problem. In section 4, some
applications are discussed. In section 5, improved error estimates are derived for the
problem with an obstacle constraint.

Let Ω and ΩU be bounded open sets in R
n (n ≤ 3) with Lipschitz boundaries ∂Ω

and ∂ΩU . In this paper we adopt the standard notation Wm,q(Ω) for Sobolev spaces
on Ω with norm ‖ · ‖m,q,Ω and seminorm | · |m,q,Ω. We denote Wm,2(Ω) by Hm(Ω)
and set H1

0 (Ω) ≡ {v ∈ H1(Ω) : v|∂Ω = 0}.
We denote by Ls(0, T ;Wm,q(Ω)) the Banach space of all Ls integrable functions

from (0, T ) into Wm,q(Ω) with norm ‖v‖Ls(0,T ;Wm,q(Ω)) = (
∫ T

0
‖v‖sWm,q(Ω)dt)

1
s for

s ∈ [1,∞) and the standard modification for s = ∞. Similarly, we define the spaces
H1(0, T ;Wm,q(Ω)) and Cl(0, T ;Wm,q(Ω)). The details can be found in [29]. In
addition c or C denotes a general positive constant independent of h.

2. Approximation scheme of optimal control problems governed by
parabolic equations. In this section we study the finite element and the discontin-
uous Galerkin approximation of distributed convex optimal control problems, where
the state is governed by a parabolic equation. In this paper, we shall take the state
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space W = L2(0, T ;Y ) with Y = H1
0 (Ω) and the control space X = L2(0, T ;U)

with U = L2(ΩU) to fix the idea. Let B be a linear continuous operator from X to
L2(0, T ;Y ′) and K be a closed convex set in X. We are interested in the following
optimal control problem:

min
u∈K

∫ T

0

(g(y) + h(u)) dt

subject to ⎧⎪⎨
⎪⎩

∂ty − div(A∇y) = f + Bu, x ∈ Ω, t ∈ (0, T ],

y|∂Ω = 0, t ∈ [0, T ],

y(x, 0) = y0(x), x ∈ Ω,

where f ∈ L2(0, T ;Y ′), y0 ∈ H1
0 (Ω), and

A(x) = (aij(x))n×n ∈ (C∞(Ω̄))n×n

such that there is a constant c > 0 satisfying

(Aξ) · ξ ≥ c|ξ|2 ∀ξ ∈ R
n.

Let

a(v, w) =

∫
Ω

(A∇v) · ∇w ∀v, w ∈ H1(Ω),

(f1, f2) =

∫
Ω

f1f2 ∀f1, f2 ∈ L2(Ω),

(v, w)U =

∫
ΩU

vw ∀v, w ∈ L2(ΩU).

It follows from the assumptions on A that there are constants c and C > 0 such that

a(v, v) ≥ c‖v‖2
1,Ω, |a(v, w)| ≤ C|v|1,Ω|w|1,Ω ∀v, w ∈ Y.

Then a weak formulation of the convex optimal control problem reads as

min
u∈K

∫ T

0

(g(y) + h(u)) dt,(1)

where y ∈ W is subject to{
(∂ty, w) + a(y, w) = (f + Bu,w) ∀w ∈ Y, t ∈ (0, T ],

y(0) = y0.

We assume that g is a convex functional which is continuously differentiable on L2(Ω),
and h is a strictly convex and continuously differentiable function on U . We further
assume that h(u) → +∞ as ‖u‖U → ∞ and that the functional g(·) is bounded below.
This setting includes the most widely used quadratic control problem:

min
u∈K

{
1

2

∫ T

0

(‖y − zd‖2
L2(Ω) + ‖u‖2

L2(ΩU ))dt

}
,
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where y, u are defined as above and zd is a given state. It is well known (see, e.g., [28])
that the control problem (1) has a unique solution (y, u), and that a pair (y, u) is the
solution of (1) if and only if there is a costate p ∈ W such that the triplet (y, p, u)
satisfies the following optimality conditions:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(∂ty, w) + a(y, w) = (f + Bu,w) ∀w ∈ Y, y(0) = y0,

−(∂tp, q) + a(q, p) = (g′(y), q) ∀q ∈ Y, p(T ) = 0,∫ T

0

(h′(u) + B∗p, v − u)U dt ≥ 0 ∀v ∈ K,

(2)

where B∗ is the adjoint operator of B.
Let us consider the finite element approximation of the control problem (1). Here

we consider only n-simplices Lagrange elements.
Let Ωh be a polygonal approximation to Ω with boundary ∂Ωh. Let Th be a

partitioning of Ωh into disjoint regular n-simplex τ , so that Ω̄h = ∪τ∈Th τ̄ . Each
element has at most one face on ∂Ωh, and joint elements τ̄ and τ̄ ′ have either only
one common vertex or a whole edge or face if τ and τ ′ ∈ Th. We further require that
Pi ∈ ∂Ωh implies Pi ∈ ∂Ω, where {Pi} (i = 1, 2, . . . , J) is the vertex set associated
with the triangulation Th. We assume that Ω is a convex polygon so that Ω = Ωh.
The convexity assumption is also important to have the H2 a priori estimate for the
dual equations in Lemma 3.4, which is used in deriving our L2-L2 and L∞-L2 a pos-
teriori error estimates, although it is not needed for L2-H1 estimates. Without the
convexity assumption, in general the order of our estimates for the state and costate
approximation will be lower if ∂Ω is nonsmooth. We denote by hτ the maximum
diameter of the element τ in Th.

Associated with Th is a finite dimensional subspace Sh of C(Ω̄h) such that w|τ
are m-order polynomials (m ≥ 1) for all w ∈ Sh and τ ∈ Th. Let Y h = Sh ∩H1

0 (Ω),
Wh = L2(0, T ;Y h); it is easy to see that Y h ⊂ Y , Wh ⊂ W .

Similarly, we do a partitioning of ΩU and use the following corresponding nota-
tions: Th

U , τU , hτU , PU
i (i = 1, 2, . . . , JU), and Ωh

U = ΩU .
Associated with Th

U is another finite dimensional subspace Uh of L2(Ωh
U) such

that v|τU are m-order polynomials (m ≥ 0) for all v ∈ Uh and τU ∈ Th
U . Here there

is no requirement for the continuity. Let Xh = L2(0, T ;Uh). It is easy to see that
Uh ⊂ U and Xh ⊂ X.

Let Kh be an approximation of K. Here we assume that Kh ⊂ K and Kh ⊂ Xh

for ease of exposition. A nonconforming finite element method will be used later for
the problem with the constraint of obstacle type. For more general cases, the readers
are referred to [35]. Then a possible semidiscrete finite element approximation of (1)
is as follows:

min
uh∈Kh

∫ T

0

(g(yh) + h(uh)) dt(3)

with yh ∈ Wh subject to{
(∂tyh, w) + a(yh, w) = (f + Buh, w) ∀w ∈ Y h, t ∈ (0, T ],

yh(0) = yh0 ,

where Kh is a closed convex set in Xh, yh0 ∈ Y h is an approximation of y0.
It follows that the control problem (3) has a unique solution (yh, uh) and that a

pair (yh, uh) ∈ Wh×Kh is the solution of (3) if and only if there is a costate ph ∈ Wh
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such that the triplet (yh, ph, uh) ∈ Wh ×Wh ×Kh satisfies the following optimality
conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∂tyh, w) + a(yh, w) = (f + Buh, w) ∀w ∈ Y h, yh(0) = yh0 ,

−(∂tph, q) + a(q, ph) = (g′(yh), q) ∀q ∈ Y h, ph(T ) = 0,∫ T

0

(h′(uh) + B∗ph, v − uh)U dt ≥ 0 ∀v ∈ Kh.

(4)

The optimality conditions in (4) are the semidiscrete approximation to the prob-
lem (1). Now, we are going to consider the fully discrete approximation for the above
semidiscrete problem by using the DG method.

Let 0 = t0 < t1 < · · · < tN = T , Ik = (tk−1, tk], ∆tk = tk−tk−1 (k = 1, 2, . . . , N).
For k = 1, 2, . . . , N , construct the finite element spaces Y h,k ∈ H1

0 (Ω) (similar to Y h)
with the mesh Th,k, and construct the finite element spaces Uh,k ∈ L2(ΩU) (similar to

Uh) with the mesh Th,k
U . Let hτk (hτk

U
) denote the maximum diameter of the element

τk (τkU ) in Th,k (Th,k
U ). To simplify notation, we will regard a discrete quantity Qk as

Q(t) such that Q(t)|Ik ≡ Qk, and we will denote τ(t), τU(t), hτ (t), and hτU (t) by τ ,
τU , hτ , and hτU , respectively. Let

W δ =

⎧⎨
⎩w | w(x, t)|Ω×Ik =

r∑
j=0

tjϕj(x), ϕj ∈ Y h,k

⎫⎬
⎭ , r ≥ 0,

Xδ = {v | v(x, t)|Ω×Ik = ψ(x), ψ ∈ Uh,k}, Kδ ⊂ (Xδ ∩K),

[w]k = w+
k − w−

k , w±
k = lim

s→0±
w(tk + s).

The fully discrete approximation scheme is to find (yδ, uδ) ∈ W δ ×Xδ such that

min
uδ∈Kδ

∫ T

0

(g(yδ) + h(uδ)) dt(5)

subject to

∫ T

0

((∂tyδ, w) + a(yδ, w)) dt +

N−1∑
k=1

([yδ]k, w
+
k ) + ((yδ)

+
0 − yh0 , w

+
0 )

=

∫ T

0

(f + Buδ, w) dt ∀w ∈ W δ,

where yh0 ∈ Y h,0 is the approximation to y0. It follows that the control problem (5)
has a unique solution (yδ, uδ), and that a pair (yδ, uδ) ∈ W δ ×Xδ is the solutions of
(5) if and only if there is costate pδ ∈ W δ such that the triplet (yδ, pδ, uδ) satisfies
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the following optimality conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0

((∂tyδ, w) + a(yδ, w)) dt +

N−1∑
k=0

([yδ]k, w
+
k )

=

∫ T

0

(f + Buδ, w) dt ∀w ∈ W δ, (yδ)
−
0 = yh0 ,∫ T

0

(−(∂tpδ, q) + a(pδ, q)) dt−
N∑

k=1

([pδ]k, q
−
k )

=

∫ T

0

(g′(yδ), q) dt ∀q ∈ W δ, (pδ)
+
N = 0,∫ T

0

(h′(uδ) + B∗pδ, v − uδ)U dt ≥ 0 ∀v ∈ Kδ.

(6)

This is a finite dimensional optimization problem and may be solved by existing
mathematical programming methods. The above DG approximation of the control
problem has been used in practical problems; see [40].

In order to obtain a numerical solution of acceptable accuracy for the optimal
control problem, the finite element meshes have to be refined according to a mesh
refinement scheme. Adaptive finite element approximation uses a posteriori error
indicator to guide the mesh refinement procedure. In the following section we shall
derive some a posteriori error estimates for the DG finite element approximation of
the optimal control problem governed by parabolic equations, which can be used as
such an error indicator in developing adaptive finite element schemes of the control
problem.

3. A posteriori error estimates. In this section we derive a posteriori error
estimates for the DG finite element approximation of the convex optimal problem
governed by a parabolic equation. In general, analysis of the finite element approxi-
mation of a control problem governed by parabolic equations is more involved than
is that of a control problem governed by elliptic equations. The main complication
is due to the fact that the properties of the time variable and its discretization are
quite different from those of the space (elliptic) variables. Thus different techniques
are needed to handle the two groups of variables, and their interactions.

We now need more assumptions on B and g in deriving our estimates. We es-
sentially assume that B is bounded from L2(0, T ;L2(ΩU )) to L2(0, T ;L2(Ω)) so that
differential operators are excluded. To derive L∞ estimates, we need a continuity
from L2(ΩU ) to L2(Ω) uniformly with respect to t, while we have embedded U into
X. For g we assume that its derivative is Lipschitz continuous. Thus we make the
following assumptions:

|(Bv,w)X | = |(v,B∗w)| ≤ C‖v‖0,ΩU
‖w‖0,Ω ∀ v ∈ U,w ∈ Y,(7)

|(g′(v) − g′(w), q)| ≤ C‖v − w‖0,Ω‖q‖0,Ω ∀ v, w, q ∈ Y,(8)

and there is a constant c > 0 such that

(h′(v) − h′(w), v − w) ≥ c‖v − w‖2
0,ΩU

∀ v, w ∈ U,(9)

(g′(v) − g′(w), v − w) ≥ 0 ∀ v, w ∈ Y,(10)

which are convex conditions on the functionals h and g. These conditions hold for
the quadratic control problems where Ω = ΩU and B = I.
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The following lemma is important in deriving residual type a posteriori error
estimates.

Lemma 3.1. Let πh be the average interpolation operator defined in [21]. For
any v ∈ W 1,q(Ωh) and 1 ≤ q ≤ ∞,

‖v − πhv‖l,q,τ ≤ C
∑

τ̄ ′∩τ̄ �=∅
hm−l
τ |v|m,q,τ ′ , v ∈ Wm,q(τ ′), l = 0, 1, l ≤ m ≤ 2.

Remark 3.1. One of the key steps in deriving a posteriori error estimates for
the discontinuous Galerkin method is to construct a suitable L2 stable approximation
of the solution of the dual equation. In [12], this approximation is defined to be
the space-time L2-projection of the solution. However, for this selection the spatial
projection error cannot be bounded locally due to the global nature of the projecting onto
continuous piecewise polynomial functions. This leads to the inconvenience restriction
in [12] on the mesh used in the approximation: the change in the size of the elements
in the mesh must be very smooth, which may be unrealistic in an adaptive finite
element implementation. We shall define this approximation to be the L2-projection
of the solution of the dual equation in time, but the quasi-interpolant of the solution
in space as defined in [21]. It follows from Lemma 3.1 that this approximation is L2

stable. Furthermore, optimal approximation results hold on local patches surrounding
a particular element. It is then possible to derive a posteriori error estimates assuming
only nondegeneracy of the mesh.

Lemma 3.2 (see [25]). For all v ∈ W 1,q(Ω), 1 ≤ q ≤ ∞,

‖v‖0,q,∂τ ≤ C(h−1/q
τ ‖v‖0,q,τ + h1−1/q

τ |v|1,q,τ ).(11)

3.1. L2(L2) error estimates. First, let us present a lemma which is essential
for our a posteriori error estimate analysis. Assuming that one can find an element v
in Kδ to approximate the optimal control in an appropriate way, the approximation
error in the control is then shown to be represented by an a posteriori error estimator,
plus the approximation error in the costate. For constraints of obstacle type, this
assumption can be verified for piecewise constant control approximation by taking v
to be the integral average of the optimal control; see Examples 3.1 and 3.2.

Lemma 3.3. Let (y, p, u) and (yδ, pδ, uδ) be the solutions of (2) and (6). Assume
that (9), (10), and (7) hold; Kδ ⊂ K; for all 1 ≤ k ≤ N , (h′(uδ) + B∗pδ)|τk

U×Ik ∈
H1(τkU × Ik); and there is a v ∈ Kδ such that

∣∣∣∣
∫
Ik

(h′(uδ) + B∗pδ, v − u)U dt

∣∣∣∣
≤ C

∫
Ik

∑
τU∈Th,k

U

(hτU |h′(uδ) + B∗pδ|1,τU + ∆tk‖∂t(h′(uδ) + B∗pδ)‖0,τU )‖u− uδ‖0,τU dt.

(12)

Then we have

‖u− uδ‖2
L2(0,T ;L2(ΩU )) ≤ C

(
η2
1 + ‖pδ − puδ‖2

L2(0,T ;L2(Ω))

)
,(13)

where

η2
1 =

N∑
k=1

∑
τU∈Th,k

U

∫
Ik

(h2
τU |h

′(uδ) + B∗pδ|21,τU + ∆t2k‖∂t(h′(uδ) + B∗pδ)‖2
0,τU ) dt
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and (yuδ , puδ) ∈ W ×W is defined by the following system:{
(∂ty

uδ , w) + a(yuδ , w) = (f + Buδ, w) ∀w ∈ Y, t ∈ (0, T ],

yuδ(0) = y0,
(14)

{
−(∂tp

uδ , q) + a(q, puδ) = (g′(yuδ), q) ∀q ∈ Y, t ∈ [0, T ),

puδ(T ) = 0.
(15)

Proof. It follows from (9), (2)3, and (6)3 that, for any v ∈ Kδ,

c‖u− uδ‖2
L2(0,T ;L2(ΩU )) ≤

∫ T

0

(h′(u), u− uδ)U dt−
∫ T

0

(h′(uδ), u− uδ)U dt

≤ −
∫ T

0

(B∗p, u− uδ)U dt−
∫ T

0

(h′(uδ), u− uδ)U dt +

∫ T

0

(h′(uδ) + B∗pδ, v − uδ)U dt

≤
∫ T

0

(h′(uδ) + B∗pδ, v − u)U dt +

∫ T

0

(B∗(pδ − puδ), u− uδ)U dt

+

∫ T

0

(B∗(puδ − p), u− uδ)U dt,

(16)

where puδ is defined in (15). It is easy to see from (2), (14), and (15) that

(∂t(y
uδ − y), w) + a(yuδ − y, w) = (B(uδ − u), w) ∀w ∈ Y,(17)

−(∂t(p
uδ − p), q) + a(q, puδ − p) = (g′(yuδ) − g′(y), q) ∀q ∈ Y.(18)

Taking w = puδ − p in (17) and q = yuδ − y in (18) and using (yuδ − y)|t=0 =
(puδ − p)|t=T = 0 and (10) lead to∫ T

0

(B(uδ − u), puδ − p) dt = (yuδ − y, puδ − p)
∣∣∣T
0

(19)

+

∫ T

0

(g′(yuδ) − g′(y), yuδ − y) dt ≥ 0.

Let v be the function satisfying (12). Then by (12), (7), and (19),

c‖u− uδ‖2
L2(0,T ;L2(ΩU )) ≤ C

(
η2
1 + ‖pδ − puδ‖2

L2(0,T ;L2(Ω))

)
+

c

2
‖u− uδ‖2

L2(0,T ;L2(ΩU )),

(20)

which completes the proof.
The assumption (12) is related to approximation properties of the convex set K.

For instance, it always holds for unconstrained control, where K = U . For constraints
of obstacle type, this assumption can also be verified.

We shall use the following dual equations: For given f ∈ L2(0, T ;L2(Ω)),{
∂tϕ− div(A∇ϕ) = f, (x, t) ∈ Ω × (0, T ],

ϕ|∂Ω = 0, t ∈ [0, T ], ϕ(x, 0) = 0, x ∈ Ω,
(21)

and {
−∂tψ − div(A∗∇ψ) = f, (x, t) ∈ Ω × [0, T ),

ψ|∂Ω = 0, t ∈ [0, T ], ψ(x, T ) = 0, x ∈ Ω.
(22)
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A similar idea is used in [21] for a Lagrange–Galerkin method.
Lemma 3.4 (see [21]). Assume that Ω is a convex domain. Let ϕ and ψ be the

solutions of (21) and (22), respectively. Then, for v = ϕ or v = ψ,

‖v‖L∞(0,T ;L2(Ω)) ≤ C‖f‖L2(0,T ;L2(Ω)),

‖∇v‖L2(0,T ;L2(Ω)) ≤ C‖f‖L2(0,T ;L2(Ω)),

‖D2v‖L2(0,T ;L2(Ω)) ≤ C‖f‖L2(0,T ;L2(Ω)),

‖∂tv‖L2(0,T ;L2(Ω)) ≤ C‖f‖L2(0,T ;L2(Ω)),

where D2v = max1≤i,j≤n |∂2v/∂xi∂xj |.
In the following we deal with the error ‖pδ − puδ‖L2(0,T ;L2(Ω)) to derive the final

estimates. Let ∂Th,k be the set consisting of all the faces l of any τk ∈ Th,k such that
l is not on ∂Ω. The A-normal derivative jump over the interior face l is defined by

[(A∇v) · n]l = ((A∇v)|∂τ1
l
− (A∇v)|∂τ2

l
) · n,

where n is the unit outer normal vector of τ1
l on l = τ̄1

l ∩ τ̄2
l . Let hl be the maximum

diameter of the face l.
Lemma 3.5. Let (y, p, u), (yδ, pδ, uδ), and puδ be the solutions of (2), (6), and

(15), respectively. Under the conditions of Lemma 3.4 and (8),

‖pδ − puδ‖2
L2(0,T ;L2(Ω)) ≤ C

∑
i=0,2–7

η2
i ,

where

η2
0 = ‖yh0 − y0‖2

0,Ω,

η2
2 =

N∑
k=1

∑
τ∈Th,k

∫
Ik

h4
τ

∥∥∥∥∂tpδ + g′(yδ) + div(A∗∇pδ) +
[pδ]k
∆tk

∥∥∥∥
2

0,τ

dt,

η2
3 =

N∑
k=1

∑
τ∈Th,k

∫
Ik

∆t2k ‖(πk − I)(g′(yδ) + div(A∗∇pδ))‖2
0,τ dt,

η2
4 =

N∑
k=1

∑
τ∈Th,k

∫
Ik

h4
τ

∥∥∥∥∂tyδ − f −Buδ − div(A∇yδ) +
[yδ]k−1

∆tk

∥∥∥∥
2

0,τ

dt,

η2
5 =

N∑
k=1

∑
τ∈Th,k

∫
Ik

∆t2k ‖(πk − I)(f + div(A∇yδ))‖2
0,τ dt,

η2
6 =

N∑
k=1

∑
l∈∂Th,k

∫
Ik

h3
l (‖[(A∇yδ) · n]‖2

0,l + ‖[(A∗∇pδ) · n]‖2
0,l) dt,

η2
7 =

N∑
k=1

∑
τ∈Th,k

∆tk(‖[yδ]k−1‖2
0,Ω + ‖[pδ]k‖2

0,Ω),

where πk : L2(Ik) → Pr(Ik) is the L2-projection operator on the variable t.
Proof. Let ϕ be the solution of (21) with f = pδ − puδ and ϕI ∈ Xδ be the

interpolation of ϕ such that

ϕI |Ω×Ik = πh,kπkϕ, k = 1, 2, . . . , N,(23)



1042 WENBIN LIU, HEPING MA, TAO TANG, AND NINGNING YAN

where πh,k is defined in Lemma 3.1 corresponding to the partitioning Th,k and πk :
L2(Ik) → Pr(Ik) is the L2-projection operator on the variable t. Then it follows from
(21), (15), (6), and Green’s formula that

‖pδ − puδ‖2
L2(0,T ;L2(Ω)) =

∫ T

0

(pδ − puδ , f) dt

=

∫ T

0

(pδ − puδ , ∂tϕ− div(A∇ϕ)) dt

=

∫ T

0

(−(∂t(pδ − puδ), ϕ) + a(ϕ, pδ − puδ)) dt−
N∑

k=1

([pδ]k, ϕ
−
k )

=

∫ T

0

(−(∂tpδ + g′(yuδ), ϕ) + a(ϕ, pδ) − a(ϕI , pδ) + (∂tpδ + g′(yδ), ϕI)) dt

+

N∑
k=1

([pδ]k, (ϕI − ϕ)−k ) ,

which leads to

‖pδ − puδ‖2
L2(0,T ;L2(Ω))

=

N∑
k=1

∫
Ik

−
(
∂tpδ + g′(yδ) + div(A∗∇pδ) +

[pδ]k
∆tk

, ϕ− ϕI

)
dt

+

∫ T

0

(g′(yδ) − g′(yuδ), ϕ) dt +

∫ T

0

∑
l∈∂Th

∫
l

[(A∗∇pδ) · n](ϕ− ϕI) dt

+

N∑
k=1

∫
Ik

(
[pδ]k
∆tk

, (ϕI)
−
k − ϕI + ϕ− ϕ−

k

)
dt

:=

4∑
i=1

Ii.

(24)

For simplicity, let

rp(x, t)
∣∣∣
Ω×Ik

:= ∂tpδ + g′(yδ) + div(A∗∇pδ) +
[pδ]k
∆tk

.

By Lemmas 3.1 and 3.4,

I1 =

N∑
k=1

∫
Ik

(rp, (πh,k − I)πkϕ + (πk − I)ϕ) dt

=

N∑
k=1

∫
Ik

((rp, (πh,k − I)πkϕ) − ((πk − I)(g′(yδ) + div(A∗∇pδ)), (πk − I)ϕ)) dt

≤ C

N∑
k=1

∑
τ∈Th,k

∫
Ik

(
h4
τ‖rp‖2

0,τ + ∆t2k‖(πk − I)(g′(yδ) + div(A∗∇pδ))‖2
0,τ

)
dt

+ σ(‖D2(πkϕ)‖2
L2(0,T ;L2(Ω)) + ‖∂tϕ‖2

L2(0,T ;L2(Ω)))

≤ C(η2
2 + η2

3) + Cσ‖puδ − pδ‖2
L2(0,T ;L2(Ω)).

(25)
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It is easy to see that from (8) and Lemma 3.4,

I2 =

∫ T

0

(g′(yδ) − g′(yuδ), ϕ) dt

≤ C‖yδ − yuδ‖2
L2(0,T ;L2(Ω)) + σ‖puδ − pδ‖2

L2(0,T ;L2(Ω)).

(26)

Similarly, by Lemmas 3.1, 3.2, and 3.4,

I3 =

∫ T

0

∑
l∈∂Th

∫
l

[(A∗∇pδ) · n](ϕ− ϕI) dt

=

N∑
k=1

∑
l∈∂Th,k

∫
Ik

∫
l

[(A∗∇pδ) · n](ϕ− πh,kϕ) dt

≤ C

N∑
k=1

∑
l∈∂Th,k

∫
Ik

h3
l ‖[(A∗∇pδ) · n]‖2

0,l dt + σ‖D2ϕ‖2
L2(0,T ;L2(Ω))

≤ Cη2
6 + Cσ‖puδ − pδ‖2

L2(0,T ;L2(Ω)).

(27)

It follows from Lemma 3.4 and the Schwarz inequality that

I4 =

N∑
k=1

∫
Ik

(
[pδ]k
∆tk

, (ϕI)
−
k − ϕI + ϕ− ϕ−

k

)
dt

≤
N∑

k=1

∆tk‖[pδ]k‖2
0,Ω + σ

(
‖∂tϕI‖2

L2(0,T ;L2(Ω)) + ‖∂tϕ‖2
L2(0,T ;L2(Ω))

)
≤ Cη2

7 + Cσ‖puδ − pδ‖2
L2(0,T ;L2(Ω)).

(28)

Thus, the above estimates give

‖pδ − puδ‖2
L2(0,T ;L2(Ω)) ≤ C

∑
i=2,3,6,7

η2
i + C‖yδ − yuδ‖2

L2(0,T ;L2(Ω)).(29)

Similarly, let ψ be the solution of (22) with f = yδ − yuδ and ψI ∈ Xδ be the
interpolation of ψ such that

ψI |Ω×Ik = πh,kπkψ, k = 1, 2, . . . , N.(30)
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Then, by Lemma 3.4, (14), (6), and Green’s formula,

‖yδ − yuδ‖2
L2(0,T ;L2(Ω)) =

∫ T

0

(yδ − yuδ , f) dt =

∫ T

0

(yδ − yuδ ,−∂tψ − div(A∗ψ)) dt

=

∫ T

0

((∂t(yδ − yuδ), ψ) + a(yδ − yuδ , ψ)) dt +

N−1∑
k=1

([yδ]k, ψ
+
k ) + ((yδ − yuδ)+0 , ψ

+
0 )

=

∫ T

0

((∂tyδ − f −Buδ, ψ) + a(yδ, ψ) − a(yδ, ψI) − (∂tyδ − f −Buδ, ψI)) dt

+

N−1∑
k=0

([yδ]k, (ψ − ψI)
+
k ) + ((yδ − yuδ)+0 , ψ

+
0 ) − ([yδ]0, ψ

+
0 )

=
N∑

k=1

∫
Ik

(
∂tyδ − f −Buδ − div(A∇yδ) +

[yδ]k−1

∆tk
, ψ − ψI

)
dt

+

∫ T

0

∑
l∈∂Th

∫
l

[(A∇yδ) · n](ψ − ψI) dt

+

N∑
k=1

∫
Ik

(
[yδ]k−1

∆tk
, ψ+

k−1 − ψ + ψI − (ψI)
+
k−1

)
dt

+((yδ)
−
0 − (yuδ)+0 , ψ

+
0 ) :=

4∑
i=1

Ji.

(31)

Let

ry(x, t)
∣∣∣
Ik

:= ∂tyδ − f −Buδ − div(A∇yδ) +
[yδ]k−1

∆tk
.

Then, as in (25), (27), and (28),

J1 =

N∑
k=1

∫
Ik

(ry, (πh,k − I)πkψ + (πk − I)ψ) dt

=

N∑
k=1

∫
Ik

((ry, (πh,k − I)πkψ) + ((πk − I)(f + div(A∇yδ)), (πk − I)ψ)) dt

≤ C
N∑

k=1

∑
τ∈Th,k

∫
Ik

(
h4
τ‖ry‖2

0,τ + ∆t2k‖(πk − I)(f + div(A∇yδ))‖2
0,τ

)
dt

+ σ(‖D2(πkψ)‖2
L2(0,T ;L2(Ω)) + ‖∂tψ‖2

L2(0,T ;L2(Ω)))

≤ C(η2
4 + η2

5) + Cσ‖yuδ − yδ‖2
L2(0,T ;L2(Ω)),

(32)

J2 =

∫ T

0

∑
l∈∂Th

∫
l

[(A∇yδ) · n](ψ − ψI) dt ≤ Cη2
6 + σ‖yuδ − yδ‖2

L2(0,T ;L2(Ω)),(33)

J3 =

N∑
k=1

∫
Ik

(
[yδ]k−1

∆tk
, ψ+

k−1 − ψ + ψI − (ψI)
+
k−1

)
dt

≤ Cη2
7 + σ‖yuδ − yδ‖2

L2(0,T ;L2(Ω)),

(34)
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and

J4 = ((yδ)
−
0 − (yuδ)+0 , ψ

+
0 ) ≤ Cη2

0 + σ‖yuδ − yδ‖2
L2(0,T ;L2(Ω)).

Hence

‖yδ − yuδ‖2
L2(0,T ;L2(Ω)) ≤ C

∑
i=0,4-7

η2
i .(35)

We complete the proof by combining the estimates (29) and (35).
From Lemmas 3.3 and 3.5, we have the following a posteriori error estimates.
Theorem 3.1. Let (y, p, u) and (yδ, pδ, uδ) be the solutions of (2) and (6).

Assume that the conditions in Lemmas 3.3–3.5 are valid; then

‖u− uδ‖2
L2(0,T ;L2(Ω)) + ‖y − yδ‖2

L2(0,T ;L2(Ω)) + ‖p− pδ‖2
L2(0,T ;L2(Ω)) ≤ C

7∑
i=0

η2
i ,

where ηi are defined in Lemmas 3.3 and 3.5.
Proof. We obtain from (13), (35), and (29) that

‖u− uδ‖2
L2(0,T ;L2(Ω)) + ‖yuδ − yδ‖2

L2(0,T ;L2(Ω)) + ‖puδ − pδ‖2
L2(0,T ;L2(Ω)) ≤ C

7∑
i=0

η2
i .

Then the desired results follows from the triangle inequality and

‖p− puδ‖L2(0,T ;L2(Ω)) ≤ C‖y − yuδ‖L2(0,T ;L2(Ω)) ≤ C‖u− uδ‖L2(0,T ;L2(Ω)),(36)

which can be derived from (17) and (18).
It seems to be difficult to derive any lower error bounds for the control prob-

lem. As matter of fact, there seem to be no good lower a posteriori error bounds in
the literature even for the full backward-Euler finite element approximation of lin-
ear parabolic equations. The main difficulty seems to be that the properties of the
time variable and its discretization are quite different from those of the space vari-
ables. Novel techniques are yet to be developed to derive lower bounds for such mixed
approximations.

Remark 3.2. It is clear that the above a posteriori error estimator consists
of two parts. The η2

1 part results from the approximation error of the inequality in
the optimality condition (2). The other (more familiar) part (η2

i (i = 0, 2, . . . , 7)) is
contributed from the approximation error of the state and costate equations and in this
sense is more or less standard. Among them, η2

1 mainly indicates the approximation
error for the control, and the other part mainly reflects the approximation error for
the state and costate.

The part (η2
i (i = 0, 2, . . . , 7)) can be further divided into two parts: one from

the approximation error of the state equation and the other from that of the costate
equation. Clearly, a posteriori error estimators obtained solely from the state equation,
which only present the part contributed from the state equation, may fail to reflect the
main approximation error of the optimal control problem and thus fail to yield efficient
mesh refinements.

The above error estimates are applicable to a wide range of control problems. It
may be possible to further improve them in some individual cases, as will be seen
in the next section. To this end, it is clear that one needs to derive improved error
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estimates for the approximation of the inequality in (2), and thus one requires explicit
information on the structure of K.

Remark 3.3. It is generally difficult to know the exact bounding constant C in
Theorem 3.1, as is true for most a posteriori error estimates of residual type. The
constant is contributed from those in the interpolation results (e.g., Lemmas 3.1–3.2),
the stability results (e.g., Lemmas 3.3–3.4), and the Sobolev embedding theorems. For
simpler situations, it may be possible to trace down all those constants and to give
the bounding constant good upper bounds; see [9] for some of the latest advances on
this aspect. Generally this is a complex procedure. On the other hand, a posteriori
estimators of residual type can be (actually have widely been) used to guide mesh
refinements without having exact knowledge on the bounding constants, provided they
are not too large. It seems that the magnitude of the bounding constants does not cause
any serious problems in guiding mesh refinements for elliptic and parabolic equations,
although it does bring up serious concerns in CFD (see [23]), since it can indeed be
extremely large there.

In our case, it seems that the bounding constant in Theorems 3.1–3.2 will have a
similar magnitude as those for the standard parabolic equation case, as the only new
contribution here is from the constant C in Lemma 3.3. This constant can be traced
down in Examples 3.1–3.2, which in turns depends on the bounding constant for the
integral averaging interpolator πa

δ,k. It is known that the bounding constant associated
with πa

δ,k will not be very large; see [9] for the details.
Remark 3.4. It is not straightforward to develop suitable implementation tech-

niques for (x-t) mesh adaptivity of parabolic control problems. To the best of our
knowledge, there seems to be no existing work in the literature, even using the same
meshes for the state and the control. For instance, it seems impossible to simply extend
the mesh adaptivity techniques developed for evolutional equations (e.g., parabolic or
Navier–Stokes equations) to the control problem that we have just studied. Although
the state equation is evolutional, the optimal control problem itself is clearly not. It
is impossible to solve the control problem step by step in time, although this is possible
for the state equation. This calls for new implementation techniques on mesh adap-
tivity for the optimal control governed by evolutional state equations. From the above
analysis of η2

1 (η2
i ), it is also clear that the most suitable implementation, and thus the

optimal mesh refinements will greatly depend on what is the most important quantity
to be computed in a particular control problem. It also depends on the structure of the
meshes used in the computations. Furthermore, as some large discretized optimization
problems may need to be repeatedly solved, one may have to use a suitable multigrids
method together with mesh adaptivity. Issues like which items in the estimator are
more important and how to pick up the constant C are also important. It is clear that
a systematic study of this is much needed. These issues will be investigated in our
future research.

3.2. L∞(L2) error estimates. In some adaptive schemes, it is more desirable
to have L∞(L2) estimates. In this subsection, we give error estimates in L∞(L2)-
norm. Concretely, we shall use the norm of the following form:

‖v‖Ik,Q =

{
1

∆tk

∫
Ik

‖v(t)‖2
0,Q dt

}1/2

, Q = ΩU , τU ,Ω, τ, l.
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We now need to consider the following dual equations for any 1 ≤ k ≤ N − 1:{
∂tϕ− div(A∇ϕ) = 0, (x, t) ∈ Ω × (tk, T ],

ϕ|∂Ω = 0, t ∈ [tk, T ], ϕ(x, tk) = ϕ∗(x), x ∈ Ω,
(37)

and {
−∂tψ − div(A∗∇ψ) = 0, (x, t) ∈ Ω × [0, tk),

ψ|∂Ω = 0, t ∈ [0, tk], ψ(x, tk) = ψ∗(x), x ∈ Ω.
(38)

We have the following stability results [12].
Lemma 3.6. Assume that Ω is a convex domain. Let ϕ and ψ be the solutions

of (37) and (38), respectively. Then

‖ϕ‖L∞(tk,T ;L2(Ω)) ≤ C‖ϕ∗‖L2(Ω),

‖ϕ‖L2(tk,tk+ε;L2(Ω)) ≤ C
√
ε‖ϕ∗‖L2(Ω), 0 < ε < T − tk,

‖∇ϕ‖L2(tk,T ;L2(Ω)) ≤ C‖ϕ∗‖L2(Ω),

‖
√
t− tk |D2ϕ|‖L2(tk,T ;L2(Ω)) ≤ C‖ϕ∗‖L2(Ω),

‖
√
t− tk ∂tϕ‖L2(tk,T ;L2(Ω)) ≤ C‖ϕ∗‖L2(Ω)

and

‖ψ‖L∞(0,tk;L2(Ω)) ≤ C‖ψ∗‖L2(Ω),

‖ψ‖L2(tk−ε,tk;L2(Ω)) ≤ C
√
ε‖ψ∗‖L2(Ω), 0 < ε < tk,

‖∇ψ‖L2(0,tk;L2(Ω)) ≤ C‖ψ∗‖L2(Ω),

‖
√
tk − t |D2ψ|‖L2(0,tk;L2(Ω)) ≤ C‖ψ∗‖L2(Ω),

‖
√
tk − t ∂tψ‖L2(0,tk;L2(Ω)) ≤ C‖ψ∗‖L2(Ω),

where D2v = max1≤i,j≤n |∂2v/∂xi∂xj |.
Theorem 3.2. Let (y, p, u) and (yh, ph, uh) be the solutions of (2) and (6),

respectively. Assume that the conditions in Theorem 3.1 and Lemma 3.6 are valid;
then

max
1≤k≤N

(
‖u− uh‖2

Ik,ΩU
+ ‖y − yh‖2

Ik,Ω
+ ‖p− ph‖2

Ik,Ω

)
≤ C

8∑
i=0

N
2
i ,

where

N
2
0 = ‖yh0 − y0‖2

0,Ω,

N
2
1 = max

1≤k≤N

∑
τU∈Th,k

U

(
h2
τU ‖∇(h′(uδ) + B∗pδ)‖2

Ik,τU
+ ∆t2k‖∂t(h′(uδ) + B∗pδ)‖2

Ik,τU

)
,

N
2
2 = max

1≤k≤N

∑
τ∈Th,k

h2
τ (∆tk + LNh2

τ )

∥∥∥∥∂tpδ + g′(yδ) + div(A∗∇pδ) +
[pδ]k
∆tk

∥∥∥∥
2

Ik,τ

,

N
2
3 = max

1≤k≤N

∑
τ∈Th,k

∆t2k ‖(πk − I)(g′(yδ) + div(A∗∇pδ))‖2
Ik,τ

,

N
2
4 = max

1≤k≤N

∑
l∈∂Th,k

hl(∆tk + LNh2
l ) ‖[(A∗∇pδ) · n]‖2

Ik,l
,
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N
2
5 = max

1≤k≤N

∑
τ∈Th,k

h2
τ (∆tk + LNh2

τ )

∥∥∥∥∂tyδ − f −Buδ − div(A∇yδ) +
[yδ]k−1

∆tk

∥∥∥∥
2

Ik,τ

,

N
2
6 = max

1≤k≤N

∑
τ∈Th,k

∆t2k ‖(πk − I)(f + div(A∇yδ))‖2
Ik,τ

,

N
2
7 = max

1≤k≤N

∑
l∈∂Th,k

hl(∆tk + LNh2
l ) ‖[(A∇yδ) · n]‖2

Ik,l
,

N
2
8 = max

1≤k≤N
(‖[yδ]k−1‖2

0,Ω + ‖[pδ]k‖2
0,Ω),

where

LN = max

{
max

1≤k≤N−2

N∑
k′=k+2

∆tk′

tk′−1 − tk
, max

2≤k≤N

k−1∑
k′=1

∆tk′

tk − tk′

}
.

Proof. We first consider ‖u−uh‖L2(Ik;L2(ΩU )). As in (16) and (20), for any v ∈ Kδ,
we have

c‖u− uδ‖2
L2(Ik;L2(ΩU )) ≤

∫
Ik

(h′(u), u− uδ)U dt−
∫
Ik

(h′(uδ), u− uδ)U dt

≤
∫
Ik

(h′(uδ) + B∗pδ, v − u)U dt +

∫
Ik

(B∗(pδ − p), u− uδ)U dt

≤ C

∫
Ik

(
h2
τU |h

′(uδ) + B∗pδ|21,τU + ∆t2k‖∂t(h′(uδ) + B∗pδ)‖2
0,τU

)
dt

+C
(
‖pδ − puδ‖2

L2(Ik;L2(Ω)) + ‖puδ − p‖2
L2(Ik;L2(Ω))

)
+

c

2
‖u− uδ‖2

L2(Ik;L2(ΩU )).

It is easy to see from (18) and (8) that

‖puδ − p‖Ik,Ω ≤ ‖puδ − p‖2
L∞(0,T ;L2(Ω)) ≤ C‖yuδ − y‖2

L2(0,T ;L2(Ω))

≤ C‖u− uδ‖2
L2(0,T ;L2(ΩU )).

We thus obtain

‖u− uδ‖2
Ik,ΩU

≤ C
(
N

2
1 + ‖pδ − puδ‖2

Ik,Ω

)
+ C‖u− uδ‖2

L2(0,T ;L2(ΩU )).(39)

The last term above has been estimated in Theorem 3.1.
We consider ‖pδ − puδ‖2

Ik,Ω
for any 1 ≤ k ≤ N . Let ϕ be the solution of the dual

problem

{
∂tϕ− div(A∇ϕ) = pδ − puδ , (x, t) ∈ Ω × Ik,

ϕ|∂Ω = 0, t ∈ Ik, ϕ(x, tk−1) = 0, x ∈ Ω,
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and let ϕI be defined as in (23). Then, similarly to (24),

‖pδ − puδ‖2
L2(Ik;L2(Ω)) =

∫
Ik

(pδ − puδ , ∂tϕ− div(A∇ϕ)) dt

=

∫
Ik

(−(∂t(pδ − puδ), ϕ) + a(ϕ, pδ − puδ)) dt + (pδ − puδ , ϕ)−k

=

∫
Ik

(−(∂tpδ + g′(yuδ), ϕ) + a(ϕ, pδ) − a(ϕI , pδ) + (∂tpδ + g′(yδ), ϕI)) dt

+([pδ]k, (ϕI)
−
k ) + (pδ − puδ , ϕ)−k

=

∫
Ik

(
∂tpδ + g′(yδ) + div(A∗∇pδ) +

[pδ]k
∆tk

, ϕI − ϕ

)
dt +

∫
Ik

(g′(yδ) − g′(yuδ), ϕ) dt

+

∫
Ik

∑
l∈∂Th

∫
l

[(A∗∇pδ) · n](ϕ− ϕI) dt +

∫
Ik

(
[pδ]k
∆tk

, (ϕI)
−
k − ϕI + ϕ− ϕ+

k−1

)
dt

+(pδ − puδ , ϕ)−k :=

5∑
i=1

Ii.

It is easy to see that Ii (i = 1–4) can be estimated in the same way as in (25)–(28)
such that

I1 ≤ C
∑
τ∈Th

∫
Ik

(
h4
τ‖rp‖2

0,τ + ∆t2k‖(πk − I)(g′(yδ) + div(A∗∇pδ))‖2
0,τ

)
dt(40)

+σ‖pδ − puδ‖2
L2(Ik;L2(Ω)),

I2 ≤ C‖yδ − yuδ‖2
L2(Ik;L2(Ω)) + σ‖pδ − puδ‖2

L2(Ik;L2(Ω)),

I3 ≤ C
∑

l∈∂Th

∫
Ik

h3
l ‖[(A∗∇pδ) · n]‖2

0,l dt + σ‖pδ − puδ‖2
L2(Ik;L2(Ω)),(41)

I4 ≤ ∆tk‖[pδ]k‖2
0,Ω + σ‖pδ − puδ‖2

L2(0,T ;L2(Ω)).(42)

We bound I5 by

I5 ≤ ‖(pδ − puδ)−k ‖0,Ω

√
∆tk ‖∂tϕ‖L2(Ik;L2(Ω))

≤ C∆tk‖(pδ − puδ)−k ‖2
0,Ω + σ‖pδ − puδ‖2

L2(Ik;L2(Ω)).
(43)

Thus, the above estimates give

‖pδ − puδ‖2
Ik,Ω

≤ C

⎛
⎝ ∑

i=2–4,8

N
2
i + ‖yδ − yuδ‖2

Ik,Ω
+ ‖(pδ − puδ)−k ‖2

0,Ω

⎞
⎠ .(44)

We then consider ‖yδ − yuδ‖2
Ik,Ω

. Let ψ be the solution of the dual problem

⎧⎨
⎩

−∂tψ − div(A∗∇ψ) = yδ − yuδ , (x, t) ∈ Ω × Ik,

ψ|∂Ω = 0, t ∈ Ik, ψ(x, tk) = 0, x ∈ Ω,
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and let ψI be defined as in (30). Then, similarly to (31), for 1 ≤ k ≤ N ,

‖yδ − yuδ‖2
L2(Ik;L2(Ω)) =

∫
Ik

(yδ − yuδ ,−∂tψ − div(A∗ψ)) dt

=

∫
Ik

((∂t(yδ − yuδ), ψ) + a(yδ − yuδ , ψ)) dt + (yδ − yuδ , ψ)+k−1

=

∫
Ik

((∂tyδ − f −Buδ, ψ) + a(yδ, ψ) − a(yδ, ψI) − (∂tyδ − f −Buδ, ψI)) dt

−([yδ]k−1, (ψI)
+
k−1) + (yδ − yuδ , ψ)+k−1

=

∫
Ik

(
∂tyδ − f −Buδ − div(A∇yδ) +

[yδ]k−1

∆tk
, ψ − ψI

)
dt

+

∫
Ik

∑
l∈∂Th

∫
l

[(A∇yδ) · n](ψ − ψI) dt +

∫
Ik

(
[yδ]k−1

∆tk
, ψ−

k − ψ + ψI − (ψI)
+
k−1

)
dt

+(yδ − yuδ , ψ)+k−1 :=

4∑
i=1

Ji,

where Ji (i = 1–3) can be estimated as in (40)–(43) so that

J1 ≤ C

∫
Ik

(
h4
τ‖ry‖2

0,τ + ∆t2k‖(πk − I)(f + div(A∇yδ))‖2
0,τ

)
dt

+σ‖yδ − yuδ‖2
L2(Ik;L2(Ω)),

J2 ≤ C
∑

l∈∂Th

∫
Ik

h3
l ‖[(A∇yδ) · n]‖2

0,l dt + σ‖yδ − yuδ‖2
L2(Ik;L2(Ω)),

J3 ≤ ∆tk‖[yδ]k−1‖2
0,Ω + σ‖yδ − yuδ‖2

L2(Ik;L2(Ω)),

J4 ≤ C∆tk‖(yδ − yuδ)+k−1‖2
0,Ω + σ‖yδ − yuδ‖2

L2(Ik;L2(Ω)).

Therefore,

‖yδ − yuδ‖2
Ik,Ω

≤ C

( ∑
i=5–8

N
2
i + ‖(yδ − yuδ)+k−1‖2

0,Ω

)
.(45)

We need to further consider ‖(pδ−puδ)−k ‖2
0,Ω and ‖(yδ−yuδ)+k−1‖2

0,Ω (1 ≤ k ≤ N).

We note that ‖(pδ −puδ)−N‖2 = ‖[pδ]N‖2
0,Ω ≤ N2

8. For any 1 ≤ k ≤ N −1, let ϕ be the

solution of (37) with ϕ∗ = (pδ − puδ)−k and ϕI be defined as in (23). Then, by (37),
(15), and (6),

‖(pδ − puδ)−k ‖2
0,Ω = ((pδ − puδ)−k , ϕ∗) − ((pδ − puδ)+k , ϕ∗) + (pδ − puδ , ϕ)+k

=

∫ T

tk

(−(∂t(pδ − puδ), ϕ) + a(ϕ, pδ − puδ)) dt−
N∑

k′=k+1

([pδ]k′ , ϕ−
k′) − ([pδ]k, ϕ∗)

=

∫ T

tk

(−(∂tpδ + g′(yuδ), ϕ) + a(ϕ, pδ) − a(ϕI , pδ) + (∂tpδ + g′(yδ), ϕI)) dt

+
N∑

k′=k+1

([pδ]k′ , (ϕI − ϕ)−k′) − ([pδ]k, ϕ∗)
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=

N∑
k′=k+1

∫
Ik′

(
∂tpδ + g′(yδ) + div(A∗∇pδ) +

[pδ]k′

∆tk′
, ϕI − ϕ

)

+

∫ T

tk

(g′(yδ) − g′(yuδ), ϕ) dt

+

∫ T

tk

∑
l∈∂Th

∫
l

[(A∗∇pδ) · n](ϕ− ϕI) dt

+
N∑

k′=k+1

∫
Ik′

(
[pδ]k′

∆tk′
, (ϕI)

−
k′ − ϕI + ϕ− ϕ−

k′

)

−([pδ]k, ϕ∗) :=

5∑
i=1

IIi.

We have to treat the cases in which tk is near T and away from T differently. For
simplicity, let ck = 1 for 1 ≤ k ≤ N − 2 and cN−1 = 0. We decompose II1 as follows:

II1 =

( ∑
k′=k+1

+ck

N∑
k′=k+2

)∫
Ik′

((rp, (πh,k − I)πkϕ) + ((πk − I)rp, (πk − I)ϕ)) dt

:= II11 + ckII12.

By Lemmas 3.1 and 3.6, we have

II11 ≤ C

∫
Ik+1

∑
τ∈Th

hτ‖rp‖0,τ |πkϕ|1,τ dt +

∫
Ik+1

‖(πk − I)rp‖0,Ω‖ϕ‖0,Ω dt

≤ C

∫
Ik+1

∑
τ∈Th

h2
τ‖rp‖2

0,τ dt + σ

∫
Ik+1

|ϕ|21,Ω dt

+C∆tk+1

∫
Ik+1

‖(πk − I)rp‖2
0,Ω dt + σ‖ϕ‖2

L∞(Ik+1;L2(Ω))

≤ C(N2
2 + N

2
3) + Cσ‖(pδ − puδ)−k ‖2

0,Ω,

(46)

and

II12 ≤ C

N∑
k′=k+2

⎛
⎝∫

Ik′

∑
τ∈Th

h2
τ‖rp‖0,τ |πkϕ|2,τ dt

+∆tk′‖(πk − I)rp‖L2(Ik′ ;L2(Ω))‖∂tϕ‖L2(Ik′ ;L2(Ω))

)

≤ C

N∑
k′=k+2

∫
Ik′

(tk′−1 − tk)
−1

∑
τ∈Th

h4
τ‖rp‖2

0,τ dt + σ

∫ T

tk+1

(t− tk)‖D2ϕ‖2
0,Ω dt

+C

N∑
k′=k+2

∆tk′‖(πk − I)rp‖L2(Ik′ ;L2(Ω))
1√

tk′−1 − tk
‖
√
t− tk∂tϕ‖L2(Ik′ ;L2(Ω))

≤ CLN max
k+2≤k′≤N

∑
τ∈Th

(
h4
τ ‖rp‖

2
Ik,τ

+ ∆t2k′ ‖(πk − I)rp‖2
Ik,τ

)

(47)
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+ σ

∫ T

tk+1

|t− tk|
(
‖D2ϕ‖2

0,Ω + ‖∂tϕ‖2
0,Ω

)
dt

≤ C(N2
2 + N

2
3) + Cσ‖(pδ − puδ)−k ‖2

0,Ω.

It follows from (8) and Lemma 3.6 that

II2 ≤ C‖yδ − yuδ‖2
L2(0,T ;L2(Ω)) + σ‖(pδ − puδ)−k ‖2

0,Ω.

By using (11) and Lemma 3.1, we can estimate II3 in the same way as for II1 such
that

II3 =

(∫ tk+1

tk

+ck

∫ T

tk+1

) ∑
l∈∂Th

∫
l

[(A∗∇pδ) · n](ϕ− πh,kϕ) dt

≤ C

∫ tk+1

tk

∑
l∈∂Th

hl‖[(A∗∇pδ) · n]‖2
0,l dt + σ

∫ tk+1

tk

|ϕ|21,Ω dt

+Cck

∫ T

tk+1

|t− tk|−1
∑

l∈∂Th

h3
l ‖[(A∗∇pδ) · n]‖2

0,l dt + σ

∫ T

tk+1

|t− tk|‖D2ϕ‖2
0,Ω dt

≤ CN
2
4 + Cσ‖(pδ − puδ)−k ‖2

0,Ω.

(48)

We rewrite II4 as

II4 =

( ∑
k′=k+1

+ck

N∑
k′=k+2

)∫
Ik′

(
[pδ]k′

∆tk′
, (ϕI)

−
k′ − ϕI + ϕ− ϕ−

k′

)
dt := II41 + ckII42.

We then use Lemma 3.6 again to obtain

II41 = ([pδ]k+1, (ϕI − ϕ)−k+1) +

∫ tk+1

tk

(
[pδ]k+1

∆tk+1
, ϕ− πh,kϕ

)
dt

≤ C‖[pδ]k+1‖0,Ω(∆t
−1/2
k+1 ‖ϕ‖L2(Ik+1;L2(Ω)) + ‖ϕ‖L∞(Ik+1;L2(Ω)))

≤ C‖[pδ]k+1‖2
0,Ω + σ‖(puδ − pδ)

−
k ‖2

0,Ω,

(49)

II42 =

N∑
k′=k+2

∫
k′

(
[pδ]k′

∆tk′
, (ϕI)

−
k′ − ϕI + ϕ− ϕ−

k′

)
dt

≤ C

N∑
k′=k+2

‖[pδ]k′‖0,Ω

√
∆tk′‖∂tϕ‖L2(Ik′ ;L2(Ω))

≤ C

N∑
k′=k+2

∆tk′

tk′−1 − tk
‖[pδ]k′‖2

0,Ω + σ‖
√
t− tk ∂tϕ‖2

L2(tk+1,T ;L2(Ω))

≤ CLN max
k+2≤k′≤N

‖[pδ]k′‖2
0,Ω + Cσ‖(puδ − pδ)

−
k ‖2

0,Ω,

(50)

and

II5 ≤ C‖[pδ]k‖2
0,Ω + σ‖(puδ − pδ)

−
k ‖2

0,Ω.(51)

We thus have shown that

‖(puδ − pδ)
−
k ‖2

0,Ω ≤ C
∑

i=2–4,8

N
2
i + C‖yδ − yuδ‖2

L2(0,T ;L2(Ω)).(52)
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The last term above has been estimated in Theorem 3.1.
It remains to estimate ‖(yδ − yuδ)+k ‖2

0,Ω (0 ≤ k ≤ N − 1). Since

‖(yδ − yuδ)+0 ‖2
0,Ω ≤ ‖[yδ]0‖2

0,Ω + ‖(yδ)−0 − (yuδ)+0 ‖2
0,Ω ≤ N

2
8 + N

2
0,

we need only to consider the cases of 1 ≤ k ≤ N − 1. Let ψ be the solution of (38)
with ψ∗ = (yδ − yuδ)+k and ψI be defined as in (30). Then, by (38) and (14),

‖(yδ − yuδ)+k ‖2
0,Ω = ((yδ − yuδ)+k , ψ∗) − (yδ − yuδ , ψ)−k + (yδ − yuδ , ψ)−k

=

∫ tk

0

((∂t(yδ − yuδ), ψ) + a(yδ − yuδ , ψ)) dt +

k−1∑
k′=0

([yδ]k′ , ψ+
k′)

+(yh0 − y0, ψ
+
0 ) + ([yδ]k, ψ∗)

=

∫ tk

0

((∂tyδ − f −Buδ, ψ) + a(yδ, ψ) − a(yδ, ψI) − (∂tyδ − f −Buδ, ψI)) dt

+
k∑

k′=1

([yδ]k′−1, (ψ − ψI)
+
k′−1) + (yh0 − y0, ψ

+
0 ) + ([yδ]k, ψ∗)

=

k∑
k′=1

∫
Ik′

(
∂tyδ − f −Buδ − div(A∇yδ +

[yδ]k′−1

∆tk′
, ψ − ψI

)

+

∫ tk

0

⎛
⎝ ∑

l∈∂Th

∫
l

[(A∇yδ) · n](ψ − ψI)

⎞
⎠ dt

+
k∑

k′=1

∫
Ik′

(
[yδ]k′−1

∆tk′
, ψ+

k′−1 − ψ + ψI − (ψI)
+
k′−1

)

+(yh0 − y0, ψ
+
0 ) + ([yδ]k, ψ∗) :=

5∑
i=1

JJ i.

Let c1 = 0 and ck = 1 for 2 ≤ k ≤ N − 1. Then, as in (46)–(51),

JJ 1 =

(
ck

k−1∑
k′=1

+
∑
k′=k

)∫
Ik′

{(ry, (πh,k − I)πkψ) + ((πk − I)ry, (πk − I)ψ)} dt

≤ C(N2
5 + N

2
6) + σ‖(yuδ − yδ)

+
k ‖2

0,Ω,

JJ 2 =

(
ck

k−1∑
k′=1

+
∑
k′=k

)∫
Ik′

∑
l∈∂Th

∫
l

[(A∇yδ) · n](ψ − πh,kψ) dt

≤ CN
2
7 + σ‖(yuδ − yδ)

+
k ‖2

0,Ω,

JJ 3 =

(
ck

k−1∑
k′=1

+
∑
k′=k

)∫
Ik′

(
[yδ]k′−1

∆tk′
, (ψI)

−
k′ − ψI + ψ − ψ−

k′

)
dt

≤ CN
2
8 + σ‖(yuδ − yδ)

+
k ‖2

0,Ω,

JJ 4 ≤ C‖yh0 − y0‖2
0,Ω + σ‖(yuδ − yδ)

+
k ‖2

0,Ω,

JJ 5 ≤ C‖[yδ]k‖2
0,Ω + σ‖(yuδ − yδ)

+
k ‖2

0,Ω.

Hence

‖(yδ − yuδ)+k ‖2
0,Ω ≤ C

∑
i=0,5–8

N
2
i .(53)
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We complete the proof by combining the estimates (39), (44), (45), (52), and (53)
and the result of Theorem 3.1.

In the rest of the section, we apply the results obtained to some model control
problems. We only consider the piecewise constant finite element space for the ap-
proximation of the control.

Example 3.1. Consider the case K = {v ∈ X : v ≥ φ0}, where φ0 is a constant.
Let Kδ = {v ∈ Xδ : v ≥ φ0}. Then it is easy to see that Kδ ⊂ K. Let v in Lemma 3.3
be such that v|τk

U×Ik
= πa

δ,ku, where πa
δ,ku is the integral average of u on τkU ×Ik. Then

v = πa
δ,ku ∈ Kδ, and for 1 ≤ k ≤ N ,∣∣∣∣

∫
Ik

(h′(uδ) + B∗pδ, v − u)U dt

∣∣∣∣ =

∣∣∣∣
∫
Ik

(h′(uδ) + B∗pδ, π
a
δ,ku− u)U dt

∣∣∣∣
=

∣∣∣∣
∫
Ik

((πa
δ,k − I)(h′(uδ) + B∗pδ), (π

a
δ,k − I)(u− uδ))U dt

∣∣∣∣
≤ C

∫
Ik

∑
τU∈Th,k

U

(hτU |h′(uδ) + B∗pδ|1,τU + ∆tk‖∂t(h′(uδ) + B∗pδ)‖0,τU )‖u− uδ‖0,τU dt.

Hence, the condition (12) in Lemma 3.3 is satisfied. Consequently the estimates
obtained in Theorems 3.1–3.2 are applicable.

Example 3.2. Consider the case K = {v ∈ X :
∫
ΩU

v ≥ 0}. Let Kδ = {v ∈ Xδ :∫
ΩU

v ≥ 0}. Then it is easy to see that Kδ ⊂ K. Let v in Lemma 3.3 be defined as in

Example 3.1. Then, the condition (12) in Lemma 3.3 is also satisfied.

4. Improved error estimates for the constraint of obstacle type. It seems
to be difficult to further improve the estimates obtained in Theorems 3.1 and 3.2 with-
out having structure information on the constraint set K. In this section, we consider
a case where the constraint set is of obstacle type, which is met very frequently in
real applications. We are then able to derive improved error estimates for the DG
scheme of the finite element approximation to the parabolic optimal control problem
(6). As mentioned in section 3, the essential step is to derive improved estimates for
the approximation of the inequality in (2), via utilizing the structure information of
K. Such improved estimates are found to be useful in computing elliptic control prob-
lems; see [27]. We shall only examine piecewise constant or piecewise linear control
approximation.

We assume that the constraint on the control is an obstacle such that

K = {v ∈ X : v ≥ φ a.e. in ΩU × (0, T ]},

where φ ∈ X. We define the coincidence set (contact set) Ω−
U (t) and the noncoinci-

dence set (noncontact set) Ω+
U (t) as follows:

Ω−
U (t) := {x ∈ ΩU : u(x, t) = φ(x, t)}, Ω+

U (t) := {x ∈ ΩU : u(x, t) > φ(x, t)}.

Let

Kδ = {v ∈ Xδ : v ≥ φδ in ΩU × (0, T ]},(54)

where φδ ∈ Xδ is an approximation to φ satisfying φδ ≥ φ. Hence, we have that
Kδ ⊂ K. In this section, we assume that

h(u) =

∫
ΩU

j(u),
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where j(·) is a convex continuously differentiable function on R. Then, it is easy to
see that

∫ T

0

(h′(u), v)U =

∫ T

0

(j′(u), v)U =

∫ T

0

∫
ΩU

j′(u)v.

We shall assume the following uniform convexity condition:

(j′(t) − j′(s))(t− s) ≥ c(t− s)2 ∀s, t ∈ R.

It can be seen that the inequality in (2) is now equivalent to the following:

j′(u) + B∗p ≥ 0, u ≥ φ, (j′(u) + B∗p)(u− φ) = 0, a.e. in ΩU × (0, T ].(55)

In order to have the improved a posteriori error estimate, we divide ΩU × (0, T ] into
the following three subsets:

Ωφ = {(x, t) ∈ ΩU × (0, T ] : (B∗pδ)(x, t) ≤ −j′(φδ)},
Ω0

φ = {(x, t) ∈ ΩU × (0, T ] : (B∗pδ)(x, t) > −j′(φδ), uδ = φδ},
Ω+

φ = {(x, t) ∈ ΩU × (0, T ] : (B∗pδ)(x, t) > −j′(φδ), uδ > φδ}.

Then, it is easy to see that the above three subsets do not overlap each other, and

Ω̄U × (0, T ] = Ω̄φ ∪ Ω̄0
φ ∪ Ω̄+

φ .

We shall show that h′(uδ) + B∗pδ can be replaced by (j′(uδ) + B∗pδ)|Ωφ
in the error

estimates. Note that j′(u) + B∗p = 0 when u > φ. Thus in a sense, the set Ωφ is an
approximation of the noncoincidence set {(x, t) : x ∈ Ω+

U (t), t ∈ (0, T ]}.
Theorem 4.1. Let (y, p, u) and (yδ, pδ, uδ) be the solutions of (2) and (6),

respectively. Assume that all the conditions of Lemma 3.5 hold, and Kδ is defined
in (54) with φ ∈ L2(0, T ;L2(ΩU )). Moreover, assume that j′(·) and g′(·) are locally
Lipschitz continuous. Then

‖uδ − u‖2
L2(0,T ;L2(ΩU )) + ‖yδ − y‖2

L2(0,T ;L2(Ω)) + ‖pδ − p‖2
L2(0,T ;L2(Ω)) ≤ C

8∑
i=0

η̂2
i ,

where η̂2
i = η2

i (i = 0, 2–7) are given in Lemma 3.5 and

η̂2
1 =

∫
Ωφ

|j′(uδ) + B∗pδ|2,

η̂2
8 = ‖φ− φδ‖2

0,Ω0
φ
.

Proof. We consider ‖uδ − u‖2
L2(0,T ;L2(ΩU )). From the uniform convexity of j, we
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have that

c‖u− uδ‖2
L2(0,T ;L2(ΩU )) ≤

∫ T

0

(j′(u) − j′(uδ), u− uδ)U

=

∫ T

0

(j′(u) + B∗p, u− uδ)U +

∫ T

0

(j′(uδ) + B∗pδ, uδ − u)U

+

∫ T

0

(B∗(pδ − puδ), u− uδ)U +

∫ T

0

(B∗(puδ − p), u− uδ)U(56)

=

∫ T

0

(j′(u) + B∗p, u− uδ)U +

∫ T

0

(j′(uδ) + B∗pδ, uδ − u)U

+

∫ T

0

(B∗(pδ − puδ), u− uδ)U +

∫ T

0

(yuδ − y, y − yuδ)

≤
∫ T

0

(j′(u) + B∗p, u− uδ)U +

∫ T

0

(j′(uδ) + B∗pδ, uδ − u)U

+

∫ T

0

(B∗(pδ − puδ), u− uδ)U :=

3∑
1

Ii.

We first estimate I1. Note that

∫ T

0

(j′(u) + B∗p, u− uδ)U(57)

=

∫
Ωφ∪Ω+

φ

(j′(u) + B∗p)(u− uδ) +

∫
Ω0

φ

(j′(u) + B∗p)(u− φδ).

Let

w =

{
uδ, (x, t) ∈ Ωφ ∪ Ω+

φ ,

u, (x, t) ∈ Ω0
φ.

Then, w ∈ K, and hence

∫
Ωφ∪Ω+

φ

(j′(u) + B∗p)(u− uδ) =

∫ T

0

∫
ΩU

(j′(u) + B∗p)(u− w) ≤ 0.(58)

Note that (j′(u) + B∗p)(u− φ) = 0. We have that

∫
Ω0

φ

(j′(u) + B∗p)(u− φδ) =

∫
Ω0

φ

(j′(u) + B∗p)((u− φ) + (φ− φδ))

=

∫
Ω0

φ

(j′(u) + B∗p)(φ− φδ).(59)

It follows from (57)–(59) that

I1 =

∫ T

0

(j′(u) + B∗p, u− uδ)U ≤
∫

Ω0
φ

(j′(u) + B∗p)(φ− φδ).(60)
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Next we estimate I2. It is clear that∫ T

0

(j′(uδ) + B∗pδ, uδ − u)U

=

∫
Ωφ

(j′(uδ) + B∗pδ)(uδ − u) +

∫
Ω+

φ

(j′(uδ) + B∗pδ)(uδ − u)

+

∫
Ω0

φ

(j′(φh) + B∗pδ)(φ
δ − u).(61)

First it is easy to see that∫
Ωφ

(j′(uδ) + B∗pδ)(uδ − u) ≤ C

∫
Ωφ

(j′(uδ) + B∗pδ)
2 + Cσ‖uδ − u‖2

L2(0,T ;L2(ΩU ))

= Cη̂2
1 + Cσ‖uδ − u‖2

L2(0,T ;L2(ΩU )).(62)

Second, let τU × (ti, ti+1] be such that uδ|τU×(ti,ti+1] > φδ; it follows from (6) that

there exist ε > 0 and ψ ∈ Xδ, such that ψ ≥ 0, ‖ψ‖L∞(ti,ti+1;L∞(τU )) = 1, and∫ ti+1

ti

∫
τU

(j′(uδ) + B∗pδ)(uδ − (uδ − εψ)) = ε

∫ ti+1

ti

∫
τU

(j′(uδ) + B∗pδ)ψ ≤ 0.

Note that on Ω+
φ , (j′(uδ) + B∗pδ) > (j′(φδ) + B∗pδ) > 0. We have that∫

(τU×(ti,ti+1])∩Ω+
φ

|j′(uδ) + B∗pδ|ψ =

∫
(τU×(ti,ti+1])∩Ω+

φ

(j′(uδ) + B∗pδ)ψ

≤ −
∫

(τU×(ti,ti+1])∩Ωφ

(j′(uδ) + B∗pδ)ψ ≤
∫

(τU×(ti,ti+1])∩Ωφ

|j′(uδ) + B∗pδ|.

Let τ̂Uti be the reference element of τU × (ti, ti+1], τ
0
Uti

= (τU × (ti, ti+1]) ∩ Ω+
φ , and

τ̂0
Uti

⊂ τ̂Uti be the image of τ0
Uti

. Let n be the dimension of ΩU and ki = ti+1 − ti.
Note that j′(·) is locally Lipschitz continuous. It follows from the equivalence of the
norm in a finite dimensional space that∫

τ0
Uti

|j′(uδ) + B∗pδ|2 ≤ Chn
τUki

∫
τ̂0
Uti

|j′(uδ) + B∗pδ|2

≤ Chn
τUki

(∫
τ̂0
Uti

|j′(uδ) + B∗pδ|ψ
)2

≤ Ch−n
τU k−1

i

(∫
τ0
Uti

|j′(uδ) + B∗pδ|ψ
)2

≤ Ch−n
τU k−1

i

(∫
τUti

∩Ωφ

|j′(uδ) + B∗pδ|
)2

≤ C

∫
τUti

∩Ωφ

|j′(uδ) + B∗pδ|2.

Therefore, ∫
Ω+

φ

(j′(uδ) + B∗pδ)(uδ − u)

≤ C

∫
Ω+

φ

(j′(uδ) + B∗pδ)
2 + Cσ‖uδ − u‖2

L2(0,T ;L2(ΩU ))

≤ C

∫
Ωφ

(j′(uδ) + B∗pδ)
2 + Cσ‖uδ − u‖2

L2(0,T ;L2(ΩU ))(63)

= Cη̂2
1 + Cσ‖uδ − u‖2

L2(0,T ;L2(ΩU )).
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It follows from the definition of Ω0
φ that (j′(φδ) + B∗pδ) > 0 on Ω0

φ. Then we have∫
Ω0

φ

(j′(φh) + B∗pδ)(φ
δ − u) =

∫
Ω0

φ

(j′(φδ) + B∗pδ)((φ
δ − φ) + (φ− u))

≤
∫

Ω0
φ

(j′(uδ) + B∗pδ)(φ
δ − φ).(64)

Thus it follows from (61)–(64) that

I2 =

∫ T

0

(j′(uδ) + B∗pδ, uδ − u)U ≤ Cη̂2
1 +

∫
Ω0

φ

(j′(uδ) + B∗pδ)(φ
δ − φ)

+Cδ‖uδ − u‖2
L2(0,T ;L2(ΩU )).(65)

Then it follows from (60) and (65) that

I1 + I2 =

∫ T

0

(j′(u) + B∗p, u− uδ)U +

∫ T

0

(j′(uδ) + B∗pδ, uδ − u)U

≤ Cη̂2
1 +

∫
Ω0

φ

(j′(u) + B∗p− j′(uδ) −B∗pδ)(φ− φδ)

+Cσ‖uδ − u‖2
L2(0,T ;L2(ΩU ))(66)

≤ C(η̂2
1 + ‖φ− φδ‖2

0,Ω0
φ
) + Cσ(‖uδ − u‖2

L2(0,T ;L2(ΩU ))

+‖j′(uδ) − j′(u)‖2
L2(0,T ;L2(ΩU )) + ‖B∗(pδ − puδ)‖2

L2(0,T ;L2(ΩU ))

+‖B∗(puδ − p)‖2
L2(0,T ;L2(ΩU )))

≤ C(η̂2
1 + η̂2

8) + Cσ‖uδ − u‖2
L2(0,T ;L2(ΩU )) + C‖pδ − puδ‖2

L2(0,T ;L2(Ω)).

Here we used the inequalities

‖j′(uδ) − j′(u)‖2
L2(0,T ;L2(ΩU )) ≤ C‖uδ − u‖2

L2(0,T ;L2(ΩU )),

‖B∗(pδ − puδ)‖2
L2(0,T ;L2(ΩU )) ≤ C‖pδ − puδ‖2

L2(0,T ;L2(ΩU )),

and

‖B∗(puδ − p)‖2
L2(0,T ;L2(ΩU )) ≤ C‖puδ − p‖2

L2(0,T ;L2(Ω)) ≤ C‖uδ − u‖2
L2(0,T ;L2(ΩU )).

Finally for I3, it is easy to show that

I3 =

∫ T

0

(B∗(pδ − puδ), u− uδ)U

≤ C‖B∗(pδ − puδ)‖2
L2(0,T ;L2(Ω)) + Cσ‖uδ − u‖2

L2(0,T ;L2(ΩU ))(67)

≤ C‖pδ − puδ‖2
L2(0,T ;L2(Ω)) + Cσ‖uδ − u‖2

L2(0,T ;L2(ΩU )).

Thus, we obtain from (56), (66), and (67) that

‖uδ − u‖2
L2(0,T ;L2(ΩU )) ≤ C(η̂1 + η̂8 + ‖pδ − puδ‖2

L2(0,T ;L2(Ω))).
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The remainder of the proof is the same as for Lemma 3.5 and Theorem 3.1.
Remark 4.1. By the same argument, we can obtain a similar estimate in the

L∞(L2) norm considered in Theorem 3.2. It is worth noting that there may be differ-
ent approaches to derive sharp a posteriori error bounds for the obstacle constraints.
Noticeably, it may be possible to design some penalty schemes to solve the optimality
system, and then apply the techniques used in [8, 17, 22] to derive sharp bounds.

Remark 4.2. Here the key idea is to remove some inactive data in the coincidence
set and to thus obtain sharper error estimates for the approximation of the inequality
in (2). In fact, as seen in the above proof, only the part where j′(uδ) + B∗pδ ≤ 0
needs to be left in the estimator η̂2

1. Let us define

Ω̂φ = {(x, t) ∈ ΩU × (0, T ] : (B∗pδ)(x, t) ≤ −j′(uδ)}.

In a sense, the set Ω̂φ is an approximation of the noncoincidence set. It follows that

(j′(uδ) + B∗pδ)|Ω̂φ
≤ 0, while j′(u) + B∗p ≥ 0. Thus on Ω̂φ, j′(uδ) + B∗pδ truly

indicates the error. In fact, we have∫
Ω̂φ

|j′(uδ) + B∗pδ|2 ≤
∫

Ω̂φ

|j′(uδ) + B∗pδ − (j′(u) + B∗p)|2

≤ C(‖u− uδ‖2
L2(0,T ;L2(ΩU )) + ‖p− pδ‖2

L2(0,T ;L2(Ω))).

For ease of computation, we have used the set Ωφ, which is a little larger than Ω̂φ.
However, we still have

η̂2
1 ≤ C(‖u− uδ‖2

L2(0,T ;L2(ΩU )) + ‖p− pδ‖2
L2(0,T ;L2(Ω)) + η̂2

8).

On the coincidence set, u = φ. Therefore the error should be indicated by η̂8, and the
term j′(uδ) + B∗pδ should not appear there.
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