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ON DISCRETE LEAST-SQUARES PROJECTION IN UNBOUNDED
DOMAIN WITH RANDOM EVALUATIONS AND ITS APPLICATION

TO PARAMETRIC UNCERTAINTY QUANTIFICATION∗
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Abstract. This work is concerned with approximating multivariate functions in an unbounded
domain by using a discrete least-squares projection with random point evaluations. Particular at-
tention is given to functions with random Gaussian or gamma parameters. We first demonstrate
that the traditional Hermite (Laguerre) polynomials chaos expansion suffers from the instability in
the sense that an unfeasible number of points, which is relevant to the dimension of the approxi-
mation space, is needed to guarantee the stability in the least-squares framework. We then propose
to use the Hermite/Laguerre functions (rather than polynomials) as bases in the expansion. The
corresponding design points are obtained by mapping the uniformly distributed random points in
bounded intervals to the unbounded domain, which involved a mapping parameter L. By using
the Hermite/Laguerre functions and a proper mapping parameter, the stability can be significantly
improved even if the number of design points scales linearly (up to a logarithmic factor) with the
dimension of the approximation space. Apart from the stability, another important issue is the rate
of convergence. To speed up the convergence, an effective scaling factor is introduced, and a prin-
ciple for choosing quasi-optimal scaling factor is discussed. Applications to parametric uncertainty
quantification are illustrated by considering a random ODE model together with an elliptic problem
with lognormal random input.

Key words. uncertainty quantification, least-squares projection, unbounded domain, Hermite
functions, scaling, stability

AMS subject classifications. 41A10, 42C05, 65D05, 65N12

DOI. 10.1137/140961894

1. Introduction. In recent years, there has been a growing need to model un-
certainty in mathematical and physical models and to quantify the resulting effect
on output quantities of interest (QoI). Several methodologies for accomplishing these
tasks fall under the growing subdiscipline of uncertainty quantification (UQ). In gen-
eral, one can use a probabilistic setting to include these uncertainties in mathematical
models. In such a framework, the random input parameters are modeled as random
variables; infinite-dimensional analogues leveraging random fields with a prescribed
correlation structure extend this procedure to more general settings. Frequently, the
goal of this mathematical and computational analysis becomes the prediction of sta-
tistical moments of the solution, or statistics of some QoI, given the probability dis-
tribution of the input random data.

A fundamental problems in UQ is approximation of a multivariate function Z =
f(x,y), where the parameters y = (y1, y2, . . . , yd) are d-dimensional random vectors.
The function Z might be a solution resulting from a stochastic PDE problem or
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a derived QoI from such a system. Efficient and robust numerical methods that
address such problems have been investigated in detail in recent years (see, e.g.,
[6, 32, 33, 12, 30, 31, 23] and references therein). One of these methods that has
enjoyed much attention and success is the generalized polynomial chaos (gPC) method
(see, e.g., [32, 33, 12]), which is a generalization of the Wiener–Hermite polynomial
chaos expansion [29]. In gPC, we expand the solution Z in polynomials of the input
random variables yi. When Z exhibits regular variation with respect to yi, gPC
yields efficient convergence rates with respect to the polynomial degree of expansion.
With intrusive gPC approaches, existing deterministic solvers must be rewritten, and
solvers for a coupled system of deterministic equations are needed, which can be very
complicated if the underlying differential equations have nontrivial nonlinear form; see,
e.g., [32, 6, 36]. By contrast, nonintrusive methods build a polynomial approximation
by leveraging only existing deterministic solvers in a Monte-Carlo-like fashion.

To efficiently build a gPC approximation, one can resort to the discrete least-
squares projection onto a polynomial space. A major design criterion for this ap-
proach is the specification of y sample locations. There exist a number of popular
design grids: randomly generated points, Quasi-Monte Carlo points, specially designed
points, etc.; see, e.g., [15, 9, 16, 35]. It is known that obtaining the optimal sample
design is not straightforward as demonstrated by a recent comparison work in [11].
Analysis for the least-squares approach utilizing random points is addressed in several
contexts; see, e.g., [22, 8, 35]. Generally speaking, the least-squares approach is stable
when the number of sample points behaves quadratically with the dimension of the
approximation space. This quadratic condition can be weakened if we work with the
Chebyshev measure [7].

Note that all the above results are for random parameters in bounded domains.
As far as we have known, there are no exhaustive investigations for problems in
unbounded domains, i.e., for functions f(y) with Gaussian or gamma random param-
eters. In this paper, we will consider the problem of approximating functions with
Gaussian or gamma random parameters by using a discrete least-squares projection
with random points evaluations. In this case, the traditional approach is to use the so-
called Hermite or Laguerre chaos expansions, where the collocation points with respect
to the Gaussian or gamma measure will be generated. However, we will show that
such an approach suffers from an instability in the sense that the corresponding design
matrices in the least-squares approach are well conditioned only when the number of
random points is exponentially related to the dimension of the approximation space,
i.e., the number of random points equals (#Λ)c#Λ with #Λ being the dimension of
the approximation space. This is obviously unacceptable for practical computations.

To improve the stability we will propose to use the Hermite (Laguerre) function
approximation to replace the Hermite (Laguerre) polynomial approach. Then the
mapped uniformly distributed random points are used to control the condition number
of the design matrix. By choosing a suitable mapping parameter, it is demonstrated
numerically that these two strategies will make the condition number small provided
that the number of design points is linearly proportional to the dimension of the
approximation space. This stability result is further justified by a theoretical proof.

The rate of convergence is another serious issue. In fact, approximating a function
by Hermite polynomials or functions was rejected by Gottlieb–Orszag ([13, pp. 44–
45]). They pointed out that to study the rate of convergence of Hermite series, we
consider the expansion of sin(x) . . . . The result is very bad: to resolve M wavelengths
of sin(x) requires nearly M2 Hermite polynomials! Because of the poor resolution
properties of Hermite polynomials the authors doubt they will be of much practical
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value in applications of spectral methods.
How to improve the resolution property of the Hermite expansion methods? One

remedy is to use the so-called scaling factor which expands the underlying function
by hn(αx) instead of hn(x), where α > 0 is a properly chosen constant. In [27], a
scaling factor formula combining the size of the solution decay rate and the roots of
hN (x) is proposed, where N is the largest expansion term in the Hermite spectral
expansion. Numerical analysis based on asymptotic analysis numerical experiments
demonstrate that the use of the scaling factor can indeed provide a significant improve-
ment over the observation of Gottlieb and Orszag. The theoretical justification of the
use of the scaling factor proposed in [27] was made in [10, 20]. In particular, Hermite
spectral methods are investigated in [20] for linear diffusion equations and nonlinear
convection-diffusion equations in unbounded domains. When the solution domain is
unbounded, the diffusion operator no longer has a compact resolvent, which makes
the Hermite spectral methods unstable. To overcome this difficulty, a time-dependent
scaling factor is employed in the Hermite expansions, which yields a positive bilinear
form. As a consequence, stability is recovered and spectral convergence speed is signif-
icantly enhanced. In fact, in the past ten years, the use of the scaling factor proposed
in [27] has been used in many areas including computational optics [17], computa-
tional astrophysics [24], etc. In particular, the scaling factor formula is included in
the recent MATLAB code GSGPEs [4].

When studying uncertainty using the gPC methods, Jardak, Su, and Karniadakis
[18] and Xiu and Karniadakis [32] pointed out that the relatively poor resolution
properties of Hermite and Laguerre expansions are well documented in [13]. They
further pointed out the rescaling procedure as done in [27] can be employed to ac-
celerate convergence. However, the progress of using the scaling factor for the UQ
problems has not been great. This is one of the main motivations for the present work.
In this work, we will introduce suitable scaling factors to speed up the convergence.
Applications to parametric UQ are discussed by considering random ODE models
and elliptic-type problems with lognormal random input. A number of numerical
examples are provided to confirm the efficiency of the Hermite (Laguerre) function
approach with the use of the scaling factors. We summarize here the distinct features
of our approach.

• We investigate the discrete least-squares approach for functions with Gaussian
or gamma random parameters; applications to UQ are discussed.

• We propose to use the Hermite (Laguerre) functions as the approximation
bases, which is different from the traditional Hermite (Laguerre) polynomials.
Stability is guaranteed with an acceptable number of evaluation points and
relevant theoretical justification is provided.

• We introduce the scaling factor in the least-squares approach to speed up
the convergence, and a principle for choosing the scaling is provided. The
numerical results indicate that the use of the proposed scaling factor is indeed
very useful.

The rest of this paper is organized as follows. In section 2, we introduce the
approximation problem of a function in d dimensions by discrete least-squares projec-
tion. Some commonly used high-dimensional approximation spaces are discussed. We
also show that the Hermite (Laguerre) gPC expansions need an unacceptable number
of evaluation points to guarantee the stability. In section 3, we propose to use the
Hermite (Laguerre) function approach. Stability under this approach is ensured with
the use of mapped uniform random points. Moreover, a useful scaling factor is intro-
duced to speed up the convergence. Applications to parametric UQ are discussed in
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section 4. Some conclusions are drawn in the final section.

2. The least-squares projection. In this section, we follow closely the works
[22, 8, 35] to give a basic introduction to the discrete least-squares approach, however,
please note that we shall focus on problems in unbounded domains.

Let y = (y1, . . . , yd)
T be a vector with d random variables, which takes values in

Γ ≡ Rd or Γ ≡ Rd
+. We will focus on the cases where {yi}di=1 are Gaussian random

variables (Γ ≡ Rd) or gamma random variables (Γ ≡ Rd
+). We suppose that the

variables {yi}di=1 are independent with marginal probability density function (PDF) ρi
for each random variable yi. The joint PDF is given by ρ(y) =

∏d
i=1 ρi(yi) : Γ → R+.

Assume that the functions considered in this paper are in the space L2
ρ endowed

with the norm

‖f‖L2
ρ
= E

[
f2(y)

]
=

(∫
Γ

f2(y)ρ(y)dy

)1/2

.(2.1)

The purpose is to efficiently build a finite dimension approximation of f(y) or some
general functionals g ◦ f associated with f(y). To this end, we first choose the one-
dimensional orthogonal bases (not only limited to polynomials) with respect to each
random variable yi:

{φi
j}∞j=1 ∈ L2

ρ, i = 1, . . . , d,

where φi
j is called the jth order basis. Then the multidimensional bases can be formed

by tensorizing the univariate bases {φi
j}∞j=1. To explicitly form these bases, let us first

define the following multi-index:

n = (n1, . . . , nd) ∈ N
d with |n| =

d∑
i=1

ni.

Define the d-dimensional bases Φn as

Φn(y) =
d∏

i=1

φi
ni
(yi),(2.2)

where {φi
ni
}∞ni=1 is the one-dimensional basis. Let Λ ⊂ Nd be a finite multi-index

set, and denote by N := #Λ the cardinality of an index set Λ. The finite-dimensional
approximation space defined by Λ is given by

PΛ := span{Φn(y), n ∈ Λ}.

Throughout the paper, the best approximation of f(y) in PΛ will be denoted by PΛf ,
namely,

PΛf := argmin
p∈PΛ

‖f − p‖L2
ρ
.(2.3)

A formula for the best approximation PΛf involves standard Fourier coefficients with
respect to the Φn, but these coefficients require high-order moment information for
the function f and in general cannot be computed explicitly.

Alternatively, we consider the construction of such an approximation fΛ ∈ PΛ

for the function Z = f(y) by the least-squares approach. To this end, we compute the



A2276 TAO TANG AND TAO ZHOU

exact function values of f at y1, . . . ,ym ∈ Rd with m > N , and then find a discrete
least-squares approximation fΛ by requiring

fΛ = PΛ
mf = argmin

p∈PΛ

1

m

m∑
k=1

(p(yk)− f(yk))
2
.(2.4)

We introduce the discrete inner product

〈u, v〉m =
1

m

m∑
k=1

u(yk)v(yk).(2.5)

Remark 2.1. We remark that usually the L2
ρ-best approximation polynomial

is chosen as the approximation basis, which yields the so-called gPC method. For
example, the Hermite polynomials are used for functions with Gaussian parameters,
and the Laguerre polynomials are suitable for functions with gamma parameters, and
so on [33]. In such gPC expansions, a natural way to choose the design points is the
random sampling method, that is, the random samples are generated with respect
to ρ. Of course, other kinds (nonpolynomial) of orthogonal bases can be used in the
least-squares approach.

2.1. Multivariate approximation spaces. Given a basis order q and the di-
mension parameter d ∈ N, define the following index sets

Λq,d
P :=

{
n = (n1, . . . , nd) ∈ N

d : max
j=1,...,d

nj ≤ q
}
,(2.6)

Λq,d
D := {n = (n1, . . . , nd) ∈ N

d : |n| ≤ q}.(2.7)

The traditional tensor product (TP) space is defined as

Pd
q := span

{
Φn(y) : n ∈ Λq,d

P

}
.(2.8)

That is, we require in Pd
q that the basis order in each variable be less than or equal

to q. A simple observation is that the dimension of Pd
q is

dim(Pd
q) = #Λq,d

P = (q + 1)d.(2.9)

Note that when d � 1 the dimension of TP spaces grows very quickly with respect
to the degree q, which is the so-called curse of dimensionality. As a result, the TP
spaces are rarely used in practice when d is large. Alternatively, when d is large, the
following total degree (TD) space is often employed instead of using the TP space
[23, 31]:

Dd
q := span

{
Φn(x) : n ∈ Λq,d

D

}
.(2.10)

The dimension of Dd
q is

dim(Dd
q) = #Λq,d

D =

(
q + d

d

)
.(2.11)

It is seen that the growth of the dimension of Dd
q is much slower than that of Pd

q .
Remark 2.2. We remark that the TP and TD spaces are originally defined for

polynomial spaces. However, spaces based on general one-dimensional bases can be
constructed in the same way. Consequently, we will still use the names TP and TD for
the spaces with general bases. Moreover, other types of spaces can also be considered,
e.g., the hyperbolic cross spaces [7].
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2.2. Algebraic formulation. Consider the approximation in the space PΛ =
span{Φn}n∈Λ with random samples {yk}mk=1. If we choose a proper ordering scheme
for the multi-index, we can order the multidimensional bases via a single index. For
example, we can arrange the index set Λ in lexicographical order, namely, given n′,
n′′ ∈ Λ

n′ < n′′ ⇔ [|n′| < |n′′|] ∨ [ (|n′| = |n′′|) ∧ (∃ j : n′
j < n′′

j ∧ (n′
i = n′′

i , ∀i < j)
) ]

.

Then the space PΛ can be rewritten as PΛ = span{{Φn}Nj=1} with N = #Λ. The
least-squares solution can be written

fΛ =
N∑
j=1

cjΦj ,(2.12)

where c = (c1, . . . , cN)� is the coefficient vector. The algebraic problem to determine
the unknown coefficient c can be formulated as

c = argmin
z∈RN

‖Dz− b‖2,(2.13)

where

D =
(
Φj(yk)

)
, j = 1, . . . , N, k = 1, . . . ,m,

and b = [f(y1), . . . , f(ym)]� contains the evaluations of the target function f in
the collocation points. The solution to the least-squares problem (2.13) can also be
computed by solving an N ×N system, namely,

Az = f(2.14)

with

A := D�D =
(〈Φi,Φj〉m

)
i,j=1,...,N

, f := D�b =
(〈f,Φj〉m

)
j=1,...,N

.(2.15)

From the computational point of view, we can solve problem (2.13) by using the QR
factorization. Alternatively, we can also solve (2.14) by the Cholesky factorization.

2.3. The Hermite (Laguerre) chaos expansion: Stability issue. As was
discussed in Remark 2.1, a natural way to approximate functions with Gaussian
(gamma) parameters is the Hermite (Laguerre) chaos expansion. In this section, we
shall show, by numerical examples, that the least-squares projection with Hermite
(Laguerre) polynomial expansion is unstable, in the sense that an unfeasible number
of random points, i.e., m = (#Λ)c#Λ, are needed to guarantee the stability.

To this end, let us recall that the one-dimensional normalized Hermite polynomials
{Hk(y)}∞k=0, defined on the whole line R := (−∞,+∞), are orthogonal with respect

to the weight function ρG(y) = e−y2

, namely,∫ +∞

−∞
ρG(y)Hm(y)Hn(y)dy = δmn.(2.16)

We denote by Hn(y) the multivariate Hermite polynomial with multi-index n, which
was obtained by tensorizing the one-dimensional Hermite polynomials. Then, a natural
way to approximate a multivariate function fG(y) with Gaussian parameters y is

fG(y) =
∑
n

cnHn(y), n ∈ Λ,(2.17)

where Λ is the index set that can be either Λq,d
P or Λq,d

D .
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Similarly, for a function fE(y) with gamma random parameters y, a natural
basis for such an expansion would be the tensorized Laguerre polynomials Ln that
are orthogonal with respect to the weight function ρE(y) =

∏d
i=1 e

−yi . More precisely,
we expand

fE(Y) =
∑
n

cnLn(y), n ∈ Λ.(2.18)

Note that we consider here a special type of gamma random parameter y, for which
the PDF yields ρ(y) = e−y. Such random variables are also referred to as exponential
random variables. More general types of gamma random parameters with PDF

ρE(y) =
βαyα−1e−βy

Γ(α)
(2.19)

can be considered in a similar way, and the corresponding chaos expansion is the
generalized Laguerre chaos expansion.

In the least-squares framework, to construct the expansions (2.17) and (2.18), a
natural choice of the collocation points {y}mi=1 is to generate random points according
to the Gaussian (gamma) measure. In both cases, we can obtain the corresponding
design matrices AG and AE , respectively.

We remark that for problems in bounded domains, e.g., the uniform random
parameters in [−1, 1], the relevant tests have been done by many researchers; see,
e.g., [22, 8, 7, 35]. For instance, for the uniform measure in [−1, 1], it is known that a
quadratic dependence of the number of random points, i.e., m = c(#Λ)2, is sufficient
to guarantee the stability of the least-squares approach. Moreover, if the Chebyshev
measure is considered, fewer points are needed to guarantee the stability [7].

What is the difference if the underlying domain is unbounded? The answer is quite
negative: the m = c(#Λ)2 quadratic random points cannot guarantee the stability.

We will demonstrate the above claim by testing the condition number of the
design matrices, i.e.,

cond(A) =
σmax(A)

σmin(A)
, A = AG or AE .(2.20)

Let us first consider the Hermite chaos expansion (2.17). In this case, the random
points are generated with respect to the Gaussian measure. Note that the design
matrix is a random matrix. Therefore, in the computations we will repeat the test
100 times, and the mean condition number will be reported. In Figure 1, the growth
of condition numbers with respect to the polynomial order is shown for the one-
dimensional case. It is noted that the condition number admits an exponential growth
with respect to the polynomial order, for both the linear dependence m = c(#Λ) (left)
and the quadratic dependence m = c(#Λ)2 (right) cases. In fact, similar tests with
the dependence m = c(#Λ)ν with 3 ≤ ν ≤ 5 produce results similar to those in
Figure 1.

We further consider the Laguerre chaos expansion, which is suitable for approx-
imating functions supported in Rd

+. Note that the corresponding random points are
generated by the gamma measure. The bottom of Figure 1 shows the results for one-
dimensional tests, which indicate that the condition number of the gamma case grows
faster than that in the Gaussian.

Figure 2 presents the two-dimensional tests for both the TP and TD constructions.
The left figure is for the Gaussian, while the right one is for the gamma. Again the
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Fig. 1. Condition numbers with respect to polynomial order in the one-dimensional case, with
left for m = c(#Λ) and right for m = c(#Λ)2. Top: Gaussian case; bottom: gamma case.
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Fig. 2. Condition numbers with respect to polynomial order in the two-dimensional case. Left:
Gaussian; right: gamma.

exponential growth of the condition number is observed, where it is seen that the TD
spaces work better than the TP spaces.

With the above observations, it seems hopeless to control the condition number in
the unbounded domain. In fact, to have a good control of the condition number, it is
observed in the Ph.D. thesis of Migliorati [21] that an unfeasible number of points with
m = (#Λ)c(#Λ) is needed. To improve this, we shall introduce the Hermite (Laguerre)
function approach to replace the Hermite (Laguerre) polynomial expansion.

Remark 2.3. We remark that we are not saying that the Hermite (Laguerre)
polynomial chaos expansions are unfeasible in the least-squares framework. In fact,
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we can still use such approaches with a small number of polynomial degrees. In this
case, fast convergence can still be expected. However, the convergence rate deterio-
rates when a large polynomial degree q is used due to the exponential growth of the
condition number. Some numerical tests are provided in [21].

3. The Hermite (Laguerre) function expansions. In this section, we pro-
pose to use the Hermite (Laguerre) function approximation instead of the traditional
Hermite (Laguerre) polynomial approximation. The one-dimensional Hermite func-
tions, also named modified Hermite polynomials, are defined by

H̃m(y) = e−
y2

2 Hm(y), m = 0, 1, . . . ,(3.1)

where {Hm(y)}m≥0 are normalized Hermite polynomials. Note that the Hermite func-
tions are orthogonal in the following sense,∫ +∞

−∞
H̃m(y)H̃n(y)dy = δmn.(3.2)

The corresponding multivariate Hermite functions H̃m(y) can be defined by tensoriz-
ing the one-dimensional Hermite functions.

The Laguerre functions are defined as

L̃m(y) = e−
y
2 Lm(y), m = 0, 1, . . . ,(3.3)

where {Lm(y)}m≥0 are Laguerre polynomials. The corresponding multivariate La-

guerre functions L̃m(y) can be defined in a similar way. Note that the Hermite/Laguerre
functions are no longer polynomials. Nevertheless, in what follows, whenever we use
polynomial order q it is referring to the qth Hermite/Laguerre function.

It is clear that the Hermite (Laguerre) function expansions are suitable for ap-
proximating functions decaying to zero when y goes to infinity. We claim that in
UQ applications, we can almost always consider approximating decay functions. To
see this, let f(y) (scalar case, for simplicity) be a function with Gaussian parameters
that might be the solution of certain stochastic ODEs/PDEs. In the UQ applica-
tions, one is interested in some statistical quantities of f(y), such as the kth moment∫
Γ
ρ(y)fk(y)dy. Let us consider a general expression of such QoI:

QoI =

∫
Γ

ρ(y)(g ◦ f)(y)dy,(3.4)

where g◦f is a general smooth functional of f(y). Even if g◦f is not a decay function,
ρ(y)(g ◦f) does, provided that g ◦f grows slower than Gaussian. Thus, we can in fact
consider the approximation for f̃(y) = ρ(y)(g ◦ f). As long as a good approximation
of f̃(y) is found, we can get a good approximation for the QoI in (3.4).

Without loss of generality, we can assume that f(y) decays exponentially. Con-
sider the expansion

fG(y) =

K−1∑
n=0

cnH̃n(y), fE(y) =

K−1∑
n=0

cnL̃n(y).(3.5)

We are now at the stage to find good collocation points in the least-squares framework.
As we have discussed before, the most natural way to find such points is to generate
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the samples with respect to the PDF of the random parameters. Moreover, if such
a PDF coincides with the weight function of the bases, the expectation of the design
matrix would be the identity matrix, and this feature would help in the rigorous
stability analysis [8]. In our setting, however, the Hermite (Laguerre) functions are
orthogonal with respect to the Lebesgue measure. It is known that it is impossible
to generate random points with respect to the Lebesgue measure (uniform measure)
in unbounded domains. To overcome this difficulty, we shall introduce the mapped
uniform samples, which transform the uniform random points {ξi}mi=1 in [−1, 1]d (or
[0, 1]d) to {yi}mi=1 in [−∞,+∞]d (or [0,+∞]d).

Although there exist many feasible mappings, we shall restrict ourselves to a
family of mappings defined by

y′(ξ) =
L

(1− ξ2)1+r/2
, r ≥ 0,(3.6)

where L > 0 is a constant, and r determines how fast the mapping y(ξ) goes to infinity
as ξ goes to ±1; see, e.g., [3, 26] for a thorough discussion on the pros and cons of
different mappings. It is easy to verify that

y(ξ) =

⎧⎪⎨
⎪⎩

L
2 log 1+ξ

1−ξ , r = 0,

Lξ√
1−ξ2

, r = 1,
ξ(y) =

⎧⎪⎨
⎪⎩
tanh

(
y
L

)
, r = 0,

y/L√
y2/L2+1

, r = 1.
(3.7)

For other positive integers r, we can always use algebraic computing software to derive
the explicit expression of the mapping y(ξ). The mapping with r = 0 is often referred
to the logarithmic mapping which makes the transformed points decay exponentially,
and the mapping with r > 0 is referred as algebraic mapping. In our setting, the
mapping with r = 0 will be used when the Gaussian measure is considered, while the
mapping with r = 1 will be adopted when the gamma measure is used.

We now summarize our least-squares approach by taking a one-dimensional func-
tion with Gaussian parameters as an example. Given the function f(y) to be approx-
imated, i.e., we are interested in the QoI of

∫
R
exp(−y2/2)f(y)dy.

• Step 1. Motivated by the discussion in the beginning of this section, we seek
the following Hermite function expansion for f̃(y) = exp(−y2/2)f(y):

f̃(y) =

K−1∑
k=0

ciH̃k(y).(3.8)

• Step 2. Let PK := span{H̃0, . . . , H̃k−1}. We will find the following least-
squares solution

fK = PK
m f = argmin

p∈PK

m∑
k=1

(
p(yk)− f̃(yk)

)2
,(3.9)

where the collocation points {yk}mk=1 are chosen as the transformed uniform
random points given by the mapping (3.6) with r = 0.

This procedure will lead to the desired QoI.

3.1. Stability. In this section, we shall investigate the stability of the least-
squares approach by using the Hermite (Laguerre) functions, with mapped uniform
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Fig. 3. Condition numbers with respect to polynomial order. Left is for m = 6 ∗ (#Λ) and the
right is for m = 4 ∗ (#Λ)2. Top: one-dimensional Gaussian; bottom: two-dimensional Gaussian.

distributed random points. Again, we test the condition number of the corresponding
design matrices:

cond(A) =
σmax(A)

σmin(A)
, A = AG or AE .(3.10)

Here we still use A to avoid too many symbols although we should point out that
AG (AE) are evaluations of the Hermite (Laguerre) functions on the mapped ran-
dom points in Rd and Rd

+, respectively. As such matrices are random, their condition
numbers will be obtained by repeating the test 100 times so that the resulting mean
condition number can be obtained. The mean condition number will be used to rep-
resent the condition number of the random matrices, which will be reported in the
following figures.

In Figure 3, the condition numbers with respect to the bases of order q are given
for one-dimensional Hermite function bases. The left plot is devoted to the linear rule
with m = 6 ∗ (#Λ), while the right plot is for the quadratic rule with m = 4 ∗ (#Λ)2.
In both cases, we can see that using a relatively large transform parameter L, the
random matrices A are well conditioned. The two-dimensional cases are reported in
the bottom of Figure 3 for both the TP and the TD spaces. Again, the parameter
L = 8 results in a well-conditioned design matrix, for both the TP and TD spaces.
However, under the same parameter (say L = 2), the design matrix of the TD spaces
are much better conditioned than that for the TP spaces, which is one of the reasons
that the TD space is preferred for higher-dimensional approximation.

Similar numerical tests are carried out for the Laguerre bases and in this case the
mapping (3.7) with r = 1 is used. The one-dimensional result in the left of Figure 4
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Fig. 4. Condition numbers with respect to polynomial order. Left: one-dimensional gamma,
m = 30 ∗ (#Λ); right: two-dimensional gamma, m = 6 ∗ (#Λ)2.

suggests that the parameter L = 8 can no longer guarantee the stability, while a larger
parameter (say L = 64) will work. The two-dimensional plot is given in the right of
the figure. Again, the parameter L = 64 results in a better condition number for the
design matrices. We also note that more points and larger parameters L are needed
for higher-dimensional cases. Moreover, the TD space (◦ and ∗ plots) provide better
stability than that of the TP space (
 and � plots).

We conclude that the design matrix A can be well conditioned under a set of
transformed random points with some relatively large parameter L. As the decay rate
for the Gaussian is faster than that for the Laguerre, the transformation parameter
L for the Gaussian must be smaller than that for the Laguerre function.

In the following, a rigorous analysis for the stability will be provided. We will
only provide the proof for the one-dimensional Hermite functions case; the proof can
be extended to the Laguerre case in a straightforward manner.

We first give a lemma concerning the decay properties of the Hermite functions.
Lemma 3.1. For any integer K, we can find a constant τ(K) > 0 such that

|H̃k(y)| ≤ |y|− 5
2 ∀ 0 ≤ k ≤ K − 1,(3.11)

provided that |y| > τ(K).
Proof. Such a simple result is true because for any t > 0 we have

|H̃k(y)| · |y|t → 0 when |y| → ∞(3.12)

due to the involvement of the factor e−
y2

2 in the Hermite functions.
We are now ready to prove the stability. Such analysis requires an understanding

of how the scaled random matrix Â = LA deviates from its expectation E[Â] in
probability Pr{·}. Note that the matrix Â can be written as

Â = X1 +X2 + · · ·+Xm,

where the Xi are independently and identically distributed copies of the random
matrix

X =
L

m

(
H̃i(y)H̃j(y)

)
i,j=0,...,K−1

,(3.13)

where y is a transformed uniform random variable.
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We now state the stability result.
Theorem 3.2. The least-squares approach using the Hermite functions (3.1)

and the transformed uniform random points (3.7) is stable in the sense that the scaled
design matrix satisfies that ∀ r > 0

Pr

{
‖|Â− I‖| ≥ 5

8

}
≤ 2m−r,(3.14)

provided that

K ≤ κ
m

logm
with κ :=

c1/2

(1 + r)
, c 1

2
=

1

2
+

1

2
log

1

2
> 0,(3.15)

and the mapping parameter L in (3.7) satisfies

L > max{3τ(K), 5
√
K},(3.16)

where m is the number of the random points, K is the degree of the polynomial.
Proof. The analysis follows closely with [8] and uses the Chernoff bound [1, 28].

Let X1, . . . ,Xn be independent K × K random self-adjoint and positive matrices
satisfying λmax(Xi) = ‖|Xi‖| ≤ R almost surely, and let

μmin := λmin

(
m∑
i=1

E [Xi]

)
, μmax := λmax

(
m∑
i=1

E [Xi]

)
.

Then, one has for 0 < δ < 1

Pr

{
λmin

(
m∑
i=1

Xi

)
< (1− δ)μmin

}
≤ K

(
e−δ

(1− δ)1−δ

)μmin/R

,(3.17)

Pr

{
λmax

(
m∑
i=1

Xi

)
> (1 + δ)μmax

}
≤ K

(
eδ

(1 + δ)1+δ

)μmax/R

.(3.18)

Note that a rank 1 symmetric matrix abT = (bjak)j,k=1,...,m has its spectral norm
equal to the product of the Euclidean norms of the vectors a and b, and therefore we
have

‖|Xi‖| ≤ 1

m
sup
y∈R

K−1∑
i=0

H̃2
i =

M(K)

m
:= R with M(K) = sup

y∈R

K−1∑
i=0

H̃2
i (y).(3.19)

We are now at the stage to find μmin and μmax. Let

Ā = E[Â] =

m∑
i=1

E [Xi] .

Using the definition of the expectation and (3.6), we know that the elements of Ā
satisfy

ai,j =

∫ 1

−1

LH̃i

(
y(ξ)

)
H̃j

(
y(ξ)

)
dξ =

∫
R

(
1− tanh2

( y
L

))
H̃i(y)H̃j(y)dy.
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Let V := span
{
H̃0, . . . , H̃K−1

}
, and

a(u, v) =

∫
R

(
1− tanh2 (y/L)

)
uvdy.

The eigenvalues of Ā are extrema of a(v, v) subject to ‖v‖ = 1, where the norm on
v is defined as

∑
c2k. It is easy to verify that μmax ≤ 1. We now estimate μmin. By

letting v =
∑

ckH̃k with ‖v‖ = 1, we have

a(v, v) ≥ (1− tanh2(1/3)
) ∫ L

3

−L
3

v2dy =
(
1− tanh2(1/3)

)(∫
R

v2dy − 2ε

)
,(3.20)

where

ε = max{ε+, ε−}, ε± =

∫ ±∞

±L
3

v2dy.(3.21)

Straightforward calculations yield

ε+ =

∫ ∞

L
3

v2dy ≤ K2max
i

{c2i }
∫ ∞

L
3

y−5dy ≤ 34K2

4L4
,(3.22)

where we have used Lemma 3.1 with L ≥ 3τ(K). If L > max{3τ(K), 5
√
K}, then by

noting that ε− has the same bound as ε+ gives

μmin ≥ (1− tanh2(1/3)
)(

1− 34K2

2L4

)
≥ 3

4
.(3.23)

Now, we use the Chernoff bound (with δ = 1/2) to obtain

Pr

{
‖|Â− I‖| > 5

8

}
≤ Pr

{
λmax(Â) ≥ 13/8

}
+ Pr

{
λmin(Â) ≤ 3/8

}(3.24)

≤ Pr
{
λmaxÂ) ≥ (1 + 1/2) · 1}+ Pr

{
λmin(Â) ≤ (1− 1/2) · 3

4

}
≤ Pr

{
λmaxÂ) ≥ (1 + 1/2) · μmax

}
+Pr

{
λmin(Â) ≤ (1− 1/2) · μmin

}
≤ K

(
e1/2

(3/2)3/2

)μmax/R

+K

(
e−1/2

(1/2)1/2

)μmin/R

≤ 2K

(
e−1/2

(1/2)1/2

)1/R

.

Consequently, if we let

M(K) ≤ κ
m

logm
(3.25)

with κ given in (3.15), then the desired result (3.14) can be obtained. By noting that
H̃2

k(y) < 1, we can obtain from (3.19) that M(K) ≤ K. Hence, choosing M(K) = K
in (3.25) completes the proof of the theorem.
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Note that the requirement (3.16) for L may not be optimal. In fact, inspired by
the above proof, we need to choose a large parameter L so that the integral (3.22) is
sufficiently small. On the other hand, it is known that the largest root of H̃K behaves
like

√
2K, so the requirement L >

√
5K asymptotically coincides with that L should

be bigger than the largest root of H̃K . We also point out that the proof above can
be extended to the Laguerre case. However, as the Laguerre functions decay much
slower than the Hermite functions, a larger parameter L (approximately the square
of the Hermite case) should be used. This can also be estimated by noting that the
largest root of L̃K behaves like cK.

3.2. Convergence and the scaling factor: Motivation. In this subsection,
we shall investigate the convergence issue. By the discussions in the last section, we
know that we can use the transformation parameter L to obtain a stable approach.
Furthermore, inspired by the proof in [8, 7], one can expect the following convergence
property of the least-squares approach:

Pr
{
‖f − fm‖ρ ≥ Cmin

v∈V
‖f − v‖L∞(R)

}
≤ 2m−r,(3.26)

with a suitable norm ‖ · ‖ρ associated with the transformation ρ(y) = 1 − tanh2( y
L ),

where fm is the least-squares solution. As the proof follows directly the framework
of [7], it is thus omitted here. Although the above results imply the error estimate
in the finite space V , from the convergence point of view the rate of convergence
(minv∈V ‖f−v‖), may depend strongly on properties of the underlying function, such
as the regularity and the decay rate.

To this end, we first demonstrate some numerical results for approximating the
function f(y) = 2−py2

with a Gaussian parameter y and a constant p. In the fol-
lowing experiments, we will report the error in the L∞ norm. More precisely, we
compute the maximum error on 4000 random grids in R. The approximation error
using the Hermite functions against the polynomial order is given in Figure 5. In the
computations, the parameter L = 8 is used to guarantee the stability. It can be seen
from Figure 5 that both the linear rule m = c(#Λ) (right) and the quadratic rule
m = c(#Λ)2 (left) produce a very stable approach up to degree q = 38.

Another simple observation is that although the function f is sufficiently smooth
for any values of p, the convergence rate differs dramatically for p. For p = 0.6 (◦
plot), the convergence is very fast, while for p = 0.2 or p = 4, the convergence is
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very slow (yet still stable). This is due to the use of the Hermite functions which

behave approximately like e−y2/2 at infinity. It is noted that when the approximated
function f(y) matches such a decay property (e.g., p = 0.6 which is close to 0.5), the
convergence is fast, while the convergence is very slow when the approximated function
decays much faster or much slower than the Gaussian function (e.g., p = 0.2 or 4).
A remedy to fix the above problem is the use of the so-called scaling factor [25, 27].
In spectral methods, the scaling factor is often used to speed up the convergence
for approximating functions that decay fast at infinity. Such an idea was successfully
applied to the studies of different problems [20, 19, 4].

We now introduce the basic idea of the scaling factor. To this end, let f(y) be a
function that decay exponentially, namely,

|f(y)| < ε ∀ |y| > M,(3.27)

where 0 < ε � 1 and M > 0 are some constants. The idea of using the scaling factor
is to expand f as

f(y) =

K−1∑
n=0

cnH̃n(αy) ⇔ f
( y
α

)
=

K−1∑
n=0

cnH̃n(y),(3.28)

where α > 0 is a scaling factor. The key issue of using α is to scale the points {yi} so
that yi/α are well within the effective support of f .

To see the effect of the scaling, let us carry out some numerical tests. We first
consider a fast decay function f(y) = 2−6y2

. In the top of Figure 6, the maximum
approximation error with respect to polynomial order is shown for the one-dimensional
case. In the left of the figure, we fix the parameter L = 8 to ensure stability. It is
noticed that the convergence for the original Hermite function approach (α = 1, ◦
plot) is very slow (although stable), while the use of a scaling factor α indeed can
significantly improve the convergence rate. In this example, the optimal scaling factor
seems to be around α = 2.8 (∗ plot). The right of the figure presents the convergence
properties using the scaling α = 2.8 but with variate parameters L. It is noticed that,
under small parameters (L = 0.5 or 1), the convergence rate deteriorates when a large
polynomial order is used. This is due to the instability when small parameters L are
used. In contrast, the parameter L = 8 (� plot) results in a very stable approach.

Let us now consider a slowly decaying function f̃(y) = 2−0.2y2

. The corresponding
convergence results are shown in the bottom of Figure 6. The bottom left uses the
fixed parameter L = 8 and several values of α. It is noticed that the optimal scaling
factor in this case is about α = 0.82 (∗ plot) in terms of rate of convergence, although
the results for all α are stable. The bottom right shows the error curves using the
optimal scaling α = 0.82 but with various parameters L. It is noticed that with small
parameters (L = 1 or 2, ∗ and ◦ plots) the convergence rate deteriorates when large
polynomial order is used. In contrast, the parameter L = 8 (� plot) results in a very
stable approach.

3.3. Scaling factor: Application to least-squares approach. The above
tests suggest that proper scaling factors should be employed to speed up the rate
of convergence. We now discuss how to find a feasible scaling in our least-squares
approach. Note that the numerical solution (the expansion coefficients c) satisfies

Ac = f(3.29)
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Fig. 6. Convergence with respect to polynomial order (one-dimensional Gaussian with m =

2 ∗ (#Λ)2). Top: f(y) = 2−6y2
. Left uses different scaling α with transformation parameter L = 8,

and right uses the optimal scaling α = 2.8 with different parameter L. Bottom: f(y) = 2−0.2y2
. Left

uses different scaling α with transformation parameter L = 8, and right uses the optimal scaling
α = 0.82 with different parameter L.

with A being the design matrix, where

A =
(〈H̃i, H̃j〉m

)N
i,j=1

, f =
(〈f, H̃j〉m

)N
j=1

.(3.30)

For ease of discussion, we assume that the points {yi}mi=1 are in absolute increase
order, i.e.,

|y1| ≤ |y2| ≤ · · · ≤ |ym|.
Note that

fk = 〈f,Hk〉m =

m∑
i=1

f
(yi
α

)
Hk(yi), k = 1, . . . , N.(3.31)

Clearly, in order to compute {ck}Nk=1, we need to use information of f from the
interval [−M,M ] out of which the contribution of f is 0 in the sense of the floating
number. This observation suggests that

max
1≤j≤m

{|yj|}/α ≤ M ⇒ α = max
1≤j≤m

{|yj|}/M.(3.32)

This idea is similar to the proposal given in [27] in the context of pseudospectral
methods. However, in our least-squares approach the points {yi}mi=1 are generated
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Fig. 7. Error against polynomial order (f(y) = 2−py2
, one-dimensional Gaussian, m = 6 ∗

(#Λ)2). Left: p = 6 with different scaling α; right: p = 0.2 with different scaling α.

randomly. The scaling α in (3.32) may not be efficient from the probability point of
view: there is the possibility that only a few points (maybe only 2 or 3) are extremely
large (we refer to such points as bad points), which means that the scaling (3.32) may
overscale the points. This motivates us to drop such bad points. More precisely, we
choose

α̃ = max
1≤j≤m̃

{|yj|}/M, m̃ = �μm�,(3.33)

where μ is a parameter close to 1. That is, we drop m − �μm� possible bad points,
and require �μm� points to contribute to the computation of {ck}Nk=1. In practice, it
is found that we can just set μ ∼ 98%, meaning that the probability of generating
bad points is 2%.

We now repeat the numerical test in Figure 6 (the left ones), with particular
attention to the use of the scalings (3.32) and (3.33). The numerical results are given
in Figure 7, where scaling free stands for the results without using a scaling, maximum
scaling denotes the scaling computed by (3.32), while scaling with μ = s% means that
the scaling is computed by (3.33). The left of Figure 7 shows the convergence for

approximating f̃(y) = 2−6y2

. In this case, we simply set M = 3, i.e., the effective
support of f(y) is chosen as [−3, 3]. It can be seen that the numerical error with
scaling factor (3.33) decays very quickly (∗ and ◦ plots) as compared to the scaling-
free case (� plot), while the results with maximum scaling (� plot) behave almost the

same as the scaling-free case. The right plot is for f̃(y) = 2−0.2y2

, and we set M = 16
for this test. A similar phenomenon is observed.

For high-dimensional cases, a reasonable scaling should be chosen in each direc-
tion. A two-dimensional test is provided in Figure 8. The function to be approximated
is f̃(y) = e−4(y2

1+y2
2)sin(y1+ y2), and the approximating space is the TD space. In the

left plot, we have used the linear rule m = 10 ∗ (#Λ), while the quadratic rule with
m = 2 ∗ (#Λ)2 is used in the right plot. The scaling factors are computed by (3.33)
with M = 2.5. It is shown that the convergence is stable, and the scaling works very
well. Furthermore, it is noticed that the convergence rate of the quadratic rule (right)
is better than the linear rule. This might be due to that the linear rule uses fewer
points than the quadratic rule.

Remark 3.3. In practice, finding the optimal parameter M is not straightforward
due to the limit information of the function f . Nevertheless, we can always find a
reasonable M if the information for f is reasonably sufficient. It remains a research
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Fig. 8. Numerical error against polynomial order (f̃(y) = e−4(y2
1+y2

2)sin(y1 + y2), M = 2.5,
TD space.) Left: the linear rule with m = 10 ∗ (#Λ) Right: the quadratic rule with m = 2 ∗ (#Λ)2.

issue on how to find an acceptable M if only a few evaluations of f are available; we
will leave this problem for future studies.

4. Parametric UQ: Illustrative examples. In this section, we discuss the
application of the least-squares Hermite (Laguerre) approximations to parametric
uncertainty analysis; precisely, we shall use the least-squares approach based on the
Hermite (Laguerre) functions to compute the QoI of UQ problems.

4.1. A simple random ODE. We first consider a simple random ODE problem
with gamma random input:

df

dt
= −k(y)f, f(0) = 1,(4.1)

where k(y) is a function with respect to a random gamma parameter y. Note that
for such problems with gamma random input, the Laguerre functions will be used as
the bases. To illustrate the idea, we set k(y) = βy. We are interested in the second
moment of the solution, i.e.,

QoI =

∫
R+

e−yf2(t, y)dy.

Note that in the least-squares approach, for each random point yi, one has to solve
the ODE to get the information f(t, yi). The random points that are located in (0,∞)
and used here are the transformed uniform random points. We will use the mapping
(3.6) with parameters r = 1 and L = 64 to guarantee the stability. The numerical
convergence results are shown (t = 1) in Figure 9. The left plots are for β = 1.5.
Note that we are in fact approximating the function f̃ = e−yf2(t, y) = e−4yt. It is
noticed from Figure 9 that the convergence is very slow without using a scaling, and
this is again due to the fast decay of f compared to the gamma measure. In this
test, both the maximum scaling and the scaling with μ = s% work well, which is
different from the observations for the Gaussian measure. It is likely due to the slow
decay of the gamma measure, which results in a very large effective support (outside
of the effective support f̃ is 0 with machine accuracy), and thus, the probability of
overscale is not so large as in the Gaussian case. The right plot is for β = −0.65.
Again, all scaling values work well, although the scaling computed by (3.33) behaves
more stable.
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Fig. 9. Problem (4.1): convergence with respect to polynomial order with m = 5 ∗ (#Λ)2. Left:
β = 2, with different scaling α; right: β = −0.65, with different scaling α.

It is seen from the above example that for problems with gamma random param-
eters the maximum scaling can be used. Moreover, if the partial maximum scaling
associated with parameter μ is used, then larger μ (say μ = 0.995) should be used.
This is quite different from the Gaussian case.

4.2. Elliptic problems with lognormal random input. We now take the
following elliptic problems with lognormal random input as an example:

−∇ · (a(x, ω)∇u) = f, x ∈ D, ω ∈ Ω,(4.2)

u(x, ω)|∂D = 0.

The coefficient a(x, ω) : �D × Ω → R is a lognormal random field, i.e.,

a(x, ω) = eγ(x,ω), γ(x, ω) ∼ N(μ, σ2) ∀x ∈ D,(4.3)

where N(η, σ2) denotes a Gaussian probability distribution with expected value η and
variance σ2, and γ(x, ω) : D × Ω → R is such that for x, x′ ∈ D the covariance func-
tion Cγ(x, x

′) = Cov[γ(x, ·)γ(x′, ·)] depends only on the distance ‖x − x′‖ (isotropic
property). The lognormal problem (4.2) has been widely investigated in [2, 5, 14].

Here, we consider the least-squares approach to obtain the QoI of problem (4.2)
with a finite parameter random coefficient:

aN (x, ω) ≈ ā(x) +
N∑
i=1

√
λiyi(ω)ai(x).(4.4)

Let us first have a close observation at the following simple case:

−∇ · (ecy∇u) = sin(πx),(4.5)

where y is a Gaussian random variable and p is a constant. The exact solution is
u = e−cysin(πx)/π2. In our least-squares framework, we wish to expand the function

ũ = e−
y2

2 u = e−
(y+c)2

2 e
c2

2
sin(πx)

π2
,

which admits similar decay property to the density function e−y2/2. Consequently,
a scaling is not needed and the standard Hermite function approximation without
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Fig. 10. Problem (4.2) with random coefficient (4.6): convergence with respect to polynomial
order with the linear rule m = c ∗ (#Λ). Left: x0 = 0.25; right: x0 = 0.85.

scaling should work. In fact, it follows from the maximum principle that the solutions
of (4.5) or (4.4)) are bounded. Therefore, a Hermite function approach without scaling
should work well.

We now consider problem (4.2) with the following random coefficient

aN (x, ω) = y0 +
1

2

(
y1 cos(πx) + y2 sin(πx)

)
, x ∈ [0, 1],(4.6)

with yi ∼ N(0, 1), i = 0, 1, 2. That is, three Gaussian parameters are used. We believe
that the exact solution of this problem has a Gaussian decay profile similar to the
above simple illustration, and we will use the least-squares approximation with the
nonscaling Hermite function approach. Suppose we are interested in the QoI

QoI =

∫
Γ

e−
y2

2 u2(x0,y)dy.(4.7)

In the computations, the elliptic equations are solved by a standard finite element
method. As the exact solution is not available, we use a high level sparse grid col-
location method to obtain the reference solution. The numerical error using the
least-squares approximation with respect to the bases order is shown in Figure 10.
The linear rule m = c ∗ (#Λ) is used, and different x0 are considered. As discussed
above, the Hermite function approach without scaling indeed works well; even the
linear rule gives a very good convergence rate.

We close this section by pointing out that only two illustrative examples are
provided to demonstrate the performance of the least-squares approximation with
Hermite (Laguerre) functions for solving the UQ problems. In fact, practical problems
in UQ can be very complicated, and we may need to solve problems with very high
dimensional parameters. An alternative way to handle high dimensional problems
is to use the �1-minimization framework [34] instead of the least-squares approach.
However, such a framework relies on the assumption that the solution admits a certain
sparse structure, and this will be part of our future studies.

5. Conclusions. In this paper, we investigate the problem of approximating
multivariate functions in unbounded domains by using discrete least-squares projec-
tion with random points evaluations. We first demonstrate that the traditional Her-
mite (Laguerre) polynomials chaos expansion suffers from the numerical instability in
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the sense that an unpractical number of points, i.e., (#Λ)c#Λ, is needed to guaran-
tee the stability in the least-squares framework. To improve this, we propose to use
the Hermite (Laguerre) functions approach. Then the mapped uniformly distributed
random points are used to control the condition number of the design matrices. It
is demonstrated that with the Hermite (Laguerre) functions approach the stability
can be much improved, even if the number of design points scales linearly with the
dimension of the approximation space. On the other hand, for problems involving
exponential decay the convergence may be very slow due to the poor convergence
property of the Hermite (Laguerre) polynomial/function approach. To improve this,
scaling factors are investigated to accelerate the convergence rate. This is particu-
larly useful if the underlying function to be approximated decay much faster or much
slower than that of the Gaussian (Gamma) measure. A principle for choosing the
quasi-optimal scaling factor is provided. Applications to parametric UQ problems are
illustrated.

We emphasize that for approximating multivariate functions in unbounded do-
mains by using discrete least-squares projection two parameters are involved: one
is the transformation parameter L in (3.6), and another is the scaling factor α in
(3.28). The transformation parameter L is used to control the stability while the
scaling factor α is used to control the rate of convergence. In this work, as the sample
points in the least square approach are generated randomly, an idea of dropping bad
points is used, which lead to a useful formula (3.33). There are, however, a number
of important issues deserving further attention, which are listed below.

• Optimal scaling. The scaling factor α given in section 3.2 is determined by
the size of the effective support, i.e., M . If the data information is sufficiently
large then M can be easily obtained. In the UQ problems large data informa-
tion means a significant amount of computational time for solving differential
equations. One possible remedy is to use less accurate but fast (even parallel)
solvers, as a roughM should serve the purpose. This remains to be examined.

• High dimensions. If the underlying solution admits certain sparsity struc-
ture, we may use the �1-minimization framework instead of the least-squares
approach to further enhance the computational efficiency. This topic with
suitable transformation and scaling should be studied.

We finally remark that the use of Hermite functions in the approximation is somehow
equivalent to introducing a pre-conditioner in the algebraic formulation (2.13), and
we will discuss this topic further in our future work.
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