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Abstract. Convection-dominated problems are of practical applications and
in general may require extremely fine meshes over a small portion of the phys-
ical domain. In this work an efficient adaptive mesh redistribution (AMR)
algorithm will be developed for solving one- and two-dimensional convection-
dominated problems. Several test problems are computed by using the pro-
posed algorithm. The adaptive mesh results are compared with those obtained
with uniform meshes to demonstrate the effectiveness and robustness of the
proposed algorithm.

1. Introduction. Adaptive mesh redistribution (AMR) methods have important
applications in a variety of physical and engineering areas such as solid and fluid dy-
namics, combustion, heat transfer, material science etc. The physical phenomena in
these areas develop dynamically singular or nearly singular solutions in fairly local-
ized regions, such as shock waves, boundary layers, detonation waves etc. The nu-
merical investigation of these physical problems may require extremely fine meshes
over a small portion of the physical domain to resolve the large solution variations.
One class of such problems is the convection-dominated problems, including viscous
shocks and large Reynolds number incompressible flows [6, 8, 9]. In this work, we
will develop an efficient and robust AMR algorithm to solve convection-diffusion
problems with small viscosity.

It is a challenging problem to generate an efficient AMR algorithm for two or more
dimensional problems, especially when the underlying solution develops complicated
structures and becomes singular or nearly singular. The earliest work on adaptive
methods, based on moving finite element approach (MFEM) was done by Millers
[14]. There are many applications and extensions of Miller’s moving finite element
methods, see e.g. Baines [1], Cao et al. [3], and Moore and Flaherty [15]. On the
other hand, several moving mesh techniques have been introduced based on solving
elliptic PDEs first proposed by Winslow [20]. There are also many applications and
extensions of Winslow’s method, see e.g. Brackbill and Saltzman [2], Thompson et
al. [19], Ren and Wang [16], Ceniceros and Hou [5], and Ceniceros [4]. Winslow’s
formulation requires the solution of a nonlinear, Poisson-like equation to generate
a mapping from a regular domain in a parameter space to an irregularly shaped
domain in physical space. By connecting points in the physical space corresponding
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to discrete points in the parameter space, the physical domain can be covered with
a mesh suitable for the solution of finite difference/element equations. Typically,
the map transforms a uniform mesh in the logical domain to cluster grid points at
the regions of the physical domain where the solution has the largest gradients.

A class of efficient AMR methods are based on the so-called harmonic mappings.
Dvinsky [7] suggests the possibility that harmonic function theory may provide a
general framework for developing useful mesh generators. His method can be viewed
as a generalization and extension of Winslow’s method. However, unlike most other
generalizations which add terms or functional to the basic Winslow grid generator,
his approach uses a single functional to accomplish the adaptive mapping. Recently,
Li et al. [12] introduced a general AMR scheme based on the harmonic mapping.
The numerical algorithm contains two independent parts, namely a solution algo-
rithm and a mesh-redistribution algorithm. Using this framework, adaptive mesh
solutions for singular problems in two and three space dimensions have been ob-
tained successfully [13].

The main objective of this work is to develop an efficient adaptive mesh algo-
rithm for convection-diffusion equations with very small viscosity. Our numerical
method is based on an extension of a recent work of Tang and Tang [18], where an
adaptive mesh redistribution algorithm was developed for solving multi-dimensional
hyperbolic problems. Their algorithm is again formed by two independent parts:
a PDE evolution part and a mesh-redistribution part. The first part can be any
appropriate high resolution schemes, and the second part is to solve a nonlinear
elliptic equation by the Gauss-Seidel (GS) iterations. The key idea in [18] is to
employ a conservative-interpolation such that mass-conservation of the underlying
numerical solution is preserved at each re-distribution step. The difference between
the present problems and the one considered in [18] is that a diffusion term is now
involved, which (although with a small coefficient) creates some additional numer-
ical difficulty. This work is to provide simple but efficient AMR algorithms for
solving 1D and 2D convection dominated problems.

2. Adaptive mesh Algorithm in 1D. To begin with, let us consider a simple
one-dimensional convection-diffusion equation:

ut + f(u)x = ε(σ(u)ux)x (2.1)

where 0 < ε ¿ 1 is a (small) viscosity coefficient, σ > 0. Our AMR scheme
consists of two independent parts: a PDE evolution and a mesh-redistribution, and
a detailed solution flowchart was presented in [18]. An overview of the sequence of
computations is given in Table 1.

We first describe a PDE evolution algorithm based on a finite volume approach,
which will be used in Step 2 of Table 1. Assume we already have a partition of the
physical domain and denote

xi+ 1
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Table 1. Outline of the numerical algorithm

Initial variables
0. Determine the initial mesh based on the initial function.
1. Determine ∆t based on CFL-type condition so that tn+1 = tn + ∆t.
2. Advance the solution one time step based on an appropriate numerical
scheme.
3. Grid Restructuring

a. Solve the mesh redistributing equation (a generalized Laplace equation)
by one Gauss-Seidel iteration, to get x(k),n

b. Interpolating the approximate solutions on the new grid x(k),n

c. A weighted average of the locally calculated monitor at each computa-
tional cell and the surrounding monitor values.

d. The iteration procedure (a.)-(c.) on grid-motion and solution-
interpolation is continued until there is no significant change in calculated
new grids from one iteration to the next.

Start new time step (go to 1 above).

where ∆tn = tn+1 − tn , f̄i = f̄(u−i , u+
i ) is the numerical flux. In this paper, we

adopt the simple and inexpensive Lax-Friedrichs flux:

f̄(a, b) =
1
2
[f(a) + f(b)−max |fu| · (b− a)] (2.3)

where the maximum is taken between a and b. Godunov flux and Engquist-Osher
flux can also be applied here. In order to approximate the flux, we reconstruct a
linear approximation in each cell:
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We apply the following standard scheme to handle the diffusion term

ui ≈
(xi − xi− 1

2
)ui+ 1

2

xi+ 1
2
− xi− 1

2

+
(xi+ 1

2
− xi)ui− 1

2

xi+ 1
2
− xi− 1

2

, (ux)i ≈
ui+ 1

2
− ui− 1

2

xi+ 1
2
− xi− 1

2

. (2.5)

Remark 2.1. It is noted that the approximation formula for the first derivative,
(2.5), is of first order only. In the interior layer region, this approach is not accurate
enough. However, we found in our numerical experiments that this first-order ap-
proach is sufficient for 1D problems, although its extension to 2D is unsatisfactory.

The fully discretized numerical scheme (2.2)-(2.4) yields a semi-discretized differ-
ence equations (i.e. method of line) which will be solved by a 3-stage Runge-Kutta
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method proposed by Shu and Osher [17]. A two-dimensional 3-stage RK method
will be given in Section 4.

We further describe the mesh redistribution at each time step. The mesh gener-
ation equation, based on the standard equidistribution principle, is

(ωxξ)ξ = 0, ξ ∈ [0, 1], (2.6)

where the function ω is called monitor function which in general depends on the
underlying solution to be adapted and is an indicator of the degree of singularity.
The above equation is solved in the computational domain [0, 1] with an uniform
mesh.

The final part of this section is to discuss the solution-updating on the new
mesh, i.e. Step 3(b) in Table 1. After obtaining the new mesh {x̃j} from (2.6), we
need to update the numerical solution on the new points x̃j+ 1

2
= (x̃j + x̃j+1)/2. In

Tang and Tang [18], a second-order conservative interpolation formula is introduced.
This interpolation formula does not increase the total variation, and as a result the
resulting adaptive mesh solutions satisfy several fundamental properties for the
hyperbolic conservation laws. For the convection-dominated problems, we will use
the same conservative interpolation formula:

∆x̃j+ 1
2
ũj+ 1

2
= ∆xj+ 1

2
uj+ 1

2
− ((cu)j+1 − (cu)j) (2.7)

where ∆x̃j+ 1
2

= x̃j+1 − x̃j , cj = xj − x̃j . The information on the right hand-side,
i.e. x̃j+ 1

2
(new mesh), xj+ 1

2
(old mesh), and uj+ 1

2
(numerical solution on the old

mesh), are all available information. In the actual computation, the linear flux cu
is approximated by a up-winding scheme, see [18]:

(ĉu)j =
cj

2
(uj+ 1

2
+ uj− 1

2
)− |cj |

2
(uj+ 1

2
− uj− 1

2
). (2.8)

3. Numerical experiments in 1D. In this section, numerical experiments will
be carried out to demonstrate the effectiveness of the AMR algorithm proposed in
the last section. Some 1D convection-dominated problems will be considered. Most
test problems here are taken from Kurganov and Tadmor [11].

Example 3.1. (One-dimensional viscous Burgers’ equation) Our first problem is a
simple Burgers’ equation

ut +
(

u2

2

)

x

= εuxx x ∈ (−2, 2) (3.1)

with boundary conditions u(2, t) = 0, u(−2, t) = 1 and initial condition

u(x, 0) =

{
1 x ≤ 0
0 x > 0.

Adaptive solutions are obtained for the above Burgers’ problem with ε = 0.005
and 0.001, up to t = 2.5. The standard CFL constant is chosen as 0.4, and the
monitor function used is

√
1 + 80u2

ξ . In the solution domain [−2, 2], 25 grid points
are used, which in the uniform mesh case corresponds to quite large mesh size. In
Fig. 1, the mesh trajectory for 0 ≤ t ≤ 2.5 is plotted. As desired, considerable
portion of grid points has been moved to steep gradient regions, which increases
the resolution of the numerical solutions. In Fig. 2, numerical solutions are also
compared with the exact solution at t = 1.2, and very good agreement is observed.
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Figure 1. Example 3.1: adaptive mesh trajectory with 25 grid points.
Left for ε = 0.005 and right for ε = 0.001.
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Figure 2. Example 3.1: adaptive mesh solution (o) at t = 1.2 and the
exact solution (solid line). Left for ε = 0.005 and right for ε = 0.001.
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Figure 3. Same as Fig. 2, except for uniform mesh solution.
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For comparison, we also plot in Fig. 3 the uniform mesh results. The accuracy
improvement for the AMR algorithm can be clearly seen from these two figures.

Remark 3.1. It should be pointed out that the trajectory points in Fig. 1 refer
to as grid points xj , while the cell-average values plotted in Fig. 2 are at x̃j :=
(xj−1 +xj)/2, 1 ≤ j ≤ N . Same notations are used in other figures in the remaining
of this section.
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Figure 4. Example 3.2: adaptive mesh trajectory with N = 30 (left)
and 50 (right).

Example 3.2. (One-dimensional Buckley-Leverett equation) Consider a prototype
model for oil reservoir simulations (two-phase) flow:

ut + f(u)x = ε(σ(u)ux)x . (3.2)

Typically, σ(u) vanishes at some values of u, and (3.2) is a degenerate parabolic
equation. In our computation, we take ε to be 0.01, f(u) to have an s-shaped form

f(u) =
u2

u2 + (1− u)2
, (3.3)

and σ(u) vanishes at u = 0 and 1:

σ(u) = 4u(1− u). (3.4)

The initial function is

u(x, 0) =

{
1− 3x 0 ≤ x ≤ 1

3

0 1
3 < x ≤ 1,

and the boundary value of u(0, t) = 1 is kept fixed.

This problem was solved numerically with several numerical techniques, includ-
ing the central schemes of Kurganov and Tadmor [11] and the operator splitting
methods of Karlsen et al. [10]. In Fig. 4, the trajectories of the grid points up to
t = 0.5 are presented, obtained with N = 30 and 50. The monitor function used is√

1 + 50u2
ξ . The ability of the AMR method to capture and follow the moving large
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Figure 5. Example 3.2: adaptive solution (o) at t = 0.2 and the exact
solution (–). N = 30 (left) and 50 (right).
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Figure 6. Same as Fig. 5, except for uniform mesh solution.

gradients is clearly demonstrated in this figure. The numerical solutions at t = 0.2
with 30 and 50 grid points are shown in Fig. 5. It is seen from these results that this
stiff problem can be well resolved by using 30 grid points. For comparison, Fig. 6
presents the uniform mesh results, which again demonstrate the great improvement
in accuracy for the AMR method.

Example 3.3. (Gravitational Effects). Consider the Buckley-Leveret equation
(3.2), with the same ε and the diffusion coefficient as in Example 3.2. However,
the flux function now includes gravitational effects:

f(u) =
u2

u2 + (1− u)2
(1− 5(1− u)2). (3.5)
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Figure 7. Example 3.3 with gravitation: adaptive solution (left) and
the mesh trajectory (right) with N = 100. T = 0.2.
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Figure 8. Example 3.3 without gravitation: adaptive solution (left)
and the mesh trajectory (right) with N = 90. T = 0.2.

The initial condition is given by the Riemann data

u(x, 0) =

{
0, 0 ≤ x < 1− 1/

√
2 ,

1, 1− 1/
√

2 ≤ x ≤ 1.

As pointed in [11], this problem is more complicated than the previous one since
we have to handle the flux (3.5) where f ′(u) changes sign. Indeed, it is found
that more grid points are required to resolve this problem. Figs. 7 and 8 present
numerical solutions for this problem with (i.e. flux (3.5)) and without (i.e. flux
(3.3)) the gravitational effects, respectively, at t = 0.2. The corresponding mesh
trajectories are also plotted for time up to t = 0.5. The solid lines are numerical
solutions with a uniform mesh of 800 grid points. The monitor function used is√

1 + u2
ξ for this example.
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4. AMR method in 2D. Without loss of generality, we consider in this section
the following 2D convection dominated equation

ut + f(u)x + g(u)y = ε∆u (x, y) ∈ Ωp (4.1)

where 0 < ε ¿ 1 is the (small) viscosity coefficient, ∆ is the standard Laplacian
operator, Ωp is the physical domain. The AMR method in 2D also follows the same
procedure as given in Table 1. As mentioned in Remark 2.1, it is difficult to provide
a second-order approximation for the first order derivatives in a compact stencil
setting so we will use a transformed equation for 2D. In contrast to the hyperbolic
system of conservation laws, the solutions for the PDE (4.1) are smooth so this
approach seems reasonable. Using the following transformation formulas:

ux =
1
J

[(yηu)ξ − (yξu)η] ,

uy =
1
J

[−(xηu)ξ + (xξu)η] ,

uxx =
1
J

[
(J−1y2

ηuξ)ξ − (J−1yξyηuη)ξ − (J−1yξyηuξ)η + (J−1y2
ξuη)η

]
,

uxy =
1
J

[−(J−1xηyηuξ)ξ + (J−1xξyηuη)ξ + (J−1xηyξuξ)η − (J−1xξyξuη)η

]
,

uyy =
1
J

[
(J−1x2

ηuξ)ξ − (J−1xξxηuη)ξ − (J−1xξxηuξ)η + (J−1x2
ξuη)η

]

where J = xξyη −xηyξ is the Jacobian of the coordinate transformation. Using the
above formulas, the underlying equation (4.1) becomes:

ut +
1
J

(
yηf(u)− xηg(u)

)
ξ
+

1
J

(
xξg(u)− yξf(u)

)
η

(4.2)

=
ε

J

[(
J−1(y2

ηuξ + x2
ηuξ − yξyηuη − xξxηuη)

)
ξ

+
(
J−1(y2

ξuη + x2
ξuη − yξyηuξ − xξxηuξ)

)
η

]
(ξ, η) ∈ Ωc

where Ωc is the computational domain with fixed (uniform) mesh (ξj , ηk). For
convenience, we write the above equation in a simpler form:

ut +
1
J

F (u)ξ +
1
J

G(u)η =
ε

J
[Rξ + Sη] (4.3)

We will solve the above equation again by a finite-volume approach. Denote the
control cell [ξj , ξj+1]× [ηk , ηk+1] by Aj+ 1

2 ,k+ 1
2

and the cell average value by

ūn
j+ 1

2 ,k+ 1
2

=
1

∆ξ∆η

∫

A
j+ 1

2 ,k+ 1
2

u(ξ, η, tn)dξdη .

We use a cell-center finite volume method to discretize (4.3), and the following trick
will be used to obtain a simple finite volume scheme:

1
∆ξ∆η

∫ ξj+1
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wξdξdη
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1
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2
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2

∆ξ

)
+O(∆ξ2)
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where a mid-point rule is used in the first step. Similar approach can treat terms
involving J−1wη. Integrating equation (4.3) over the cell [tn, tn+1] × Aj+ 1

2 ,k+ 1
2

in
the computational domain leads to

ūn+1
j+ 1

2 ,k+ 1
2

= ūn
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− ∆tn
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)
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The one-dimensional Lax-Friedrichs numerical flux will be applied to F̄ , Ḡ in ξ-,
η-direction, respectively:

F̄j,k+ 1
2

= F̄ (u−
j,k+ 1
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The 1D Lax-Friedrichs flux for F̄ and Ḡ is the same as (2.3). In (4.5), we use
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= ūj− 1

2 ,k+ 1
2

+
∆ξ

2
sj− 1

2 ,k+ 1
2

, u+
j,k+ 1

2
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ūj+ 1

2 ,k+ 1
2
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For R and S terms in (4.3), the coordinate derivatives are also involved. We use the
standard central differencing to discretize them, such as

(xξ)j,k+ 1
2
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.

For the diffusion terms in the right hand side of (4.3), central differencing is also
used, for example:

(uξ)j,k+ 1
2

=
ūj+ 1

2 ,k+ 1
2
− ūj− 1

2 ,k+ 1
2

∆ξ

(uη)j,k+ 1
2

=
1
2

[ ūj+ 1
2 ,k+ 3

2
− ūj+ 1

2 ,k− 1
2

2∆η
+

ūj− 1
2 ,k+ 3

2
− ūj− 1

2 ,k− 1
2

2∆η

]
.

The fully discretized numerical scheme (4.4) yields a semi-discretized difference
equations (i.e. method of line) which will be solved by a 3-stage Runge-Kutta
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method proposed by Shu and Osher [17]. For the ODE system u′(t) = L(u), we use

u
(1)
jk = un

jk + ∆tL(un
jk)

u
(2)
jk =

3
4
un

jk +
1
4

[
u

(1)
jk + ∆tL(u(1)

jk )
]

un+1
jk =

1
3
un

jk +
2
3

[
u

(2)
jk + ∆tL(u(2)

jk )
]
.

We now describe the mesh redistribution in two space dimension. It is assumed
that a fixed (square uniform) mesh is given on the computational domain. The
mesh generation equation is of the form

∂ξ(G1∂ξx) + ∂η(G1∂ηx) = 0,

∂ξ(G2∂ξy) + ∂η(G2∂ηy) = 0.

where G1, G2 are monitor functions. In our computations, we choose very simple
monitor functions so that the mesh generation equation becomes

∇̃ · (ω∇̃x) = 0, ∇̃ · (ω∇̃y) = 0 (4.6)

where ∇̃ = (∂ξ, ∂η)T . In our 2D computations, we again use the conservative
interpolation proposed by Tang and Tang [18]

|Ãj+ 1
2 ,k+ 1

2
|ũj+ 1

2 ,k+ 1
2

= |Aj+ 1
2 ,k+ 1

2
|uj+ 1

2 ,k+ 1
2

(4.7)

−
[
(cxu)j+1,k+ 1

2
− (cxu)j,k+ 1

2

]
−

[
(cyu)j+ 1

2 ,k+1 − (cyu)j+ 1
2 ,k

]

where cx
j,k = xj,k − x̃j,k, cy

j,k = yj,k − ỹj,k .

5. Numerical experiments in 2D. In this section, numerical experiments in 2D
will be carried out to demonstrate the effectiveness of the AMR algorithm proposed
in this work. Throughout this section, the time step used satisfies

∆t = λmin
j,k

(
xj+1,k − xj,k

|f ′(uj+ 1
2 ,k+ 1

2
)| ,

yj,k+1 − yj,k

|g′(uj+ 1
2 ,k+ 1

2
)|

)
, (5.1)

where λ is called a CFL constant.

Example 5.1. (Two-dimensional Burgers’ equations). Our first 2D problem is
concerned with the two-dimensional Burgers’ equation in the unit square:

ut + uux + uuy = ε∆u 0 ≤ x, y ≤ 1. (5.2)

Initial and boundary conditions are chosen so that the exact solution is given by

u(x, y; t) =
(
1 + e(x+y−t)/2ε

)−1

.

It should be pointed out that (5.2) is just a special case of Burgers’ equation.
The standard Burgers’ equations in 2D are a system of two PDEs for the velocity
components derived from the Navier-Stokes equations. In our computation the vis-
cosity coefficient is chosen as ε = 0.005. In this problem, large gradient solutions
are developed to the boundaries for t > 0. As a consequence, boundary point redis-
tribution should be made in order to improve the quality of the adaptive mesh. A
simple redistribution strategy is described as follows. The basic idea is to move the
boundary points by solving 1-D moving mesh equations. Without loss of general-
ity, we consider a simple boundary [a, b] in the x-direction. Solving the two-point
boundary value problem for (ωxξ)ξ = 0, ω(0) = a and ω(1) = b, with uniform mesh
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Figure 9. Example 5.1 at t = 1. Left: pointwise error and adaptive
mesh with 402 grid points; right: those with 802.
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Figure 10. Example 5.1 at t = 1: pointwise errors for uniform mesh
solution with 402 (left) and 802 (right) grid points.
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Figure 11. Example 5.1: the number of Gauss-Seidel cycles against
time. 402 grid points are used.
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Figure 12. Example 5.1: time step against time. The solid line is
the time step for the uniform mesh and the broken line is that for the
adaptive mesh. 402 grid points are used.

in ξ will lead to a new boundary redistribution. Here the monitor function is re-
stricted in the boundary [a, b]. This approach of the boundary point redistribution
has been used in [3, 12, 18].

Adaptive meshes and the corresponding solution errors at t = 1 are presented in
Fig. 9. In these computations, 40 and 80 grid points are used, respectively. It is
seen that quite large portion of the grid points have been moved to the regions with
large solution variations. The CFL constant in (5.1) used is 0.18, and the monitor
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function used is
√

1 + |∇̃u|2, where ∇̃ = (∂ξ, ∂η). For comparison, Fig. 13 shows
the solution errors with uniform meshes, showing clearly the advantage of moving
mesh algorithm for the convection-dominated problem in 2D.

It is seen from Table 1 that at each time level, several cycles of the Gauss-
Seidel iterations have to be performed. The iteration procedure on grid-motion and
solution-interpolation is continued until there is no significant change in calculated
new grids from one iteration to the next. It is essential that the (average) number
of iteration cycles should not be large, otherwise the efficiency gained by the AMR
methods will be seriously affected. In Fig. 11, the variation of the iteration numbers
against time is plotted. It is seen that for this 2D problem the average number of
iterations used at each time level is about 2.

It is observed that the AMR algorithm has to use smaller time steps than those
for the uniform mesh computation. In Fig. 12 the time steps used for both adaptive
mesh and uniform mesh with 402 grid points are plotted. It is seen that the time
step for the AMR algorithm is 5 times smaller, which is acceptable by considering
significant improvement for the accuracy. In fact, to achieve the same L1-error of
the 402-adaptive results, more than 1202-uniform mesh grids are required, which
indicate about 10 times saving in the spatial grids. This is particularly useful when
dealing with 3D computations – much smaller storage is required if an adaptive
algorithm is employed.

Example 5.2. (Two-Dimensional Buckley-Leverett Equation). Consider

ut + f(u)x + g(u)y = ε∆u , (5.3)

with ε = 0.01. The flux functions are of the form

f(u) =
u2

u2 + (1− u2)
,

g(u) = f(u)(1− 5(1− u2))

and the initial data is

u(x, y, 0) =
{

1 x2 + y2 < 0.5
0 otherwise

Note that the above model includes gravitational effects in the y-direction. This
example is taken from Karlsen et al. [10], whose exact solution is unknown. Fig. 13
shows the numerical solutions with uniform and adaptive mesh solutions, computed
in the square domain [−1.5, 1.5]2 with 502 and 802 grid points. It is seen that the
adaptive mesh solutions are more accurate than the uniform mesh ones. The effects
of the mesh adaptation are also demonstrated in Fig. 14. For this example, the

CFL constant in (5.1) used is 0.4, and the monitor function used is
√

1 + |∇̃u|2,
where ∇̃ = (∂ξ, ∂η).

6. Concluding remarks. In this work, an 1D adaptive mesh redistribution method,
based on solving PDEs in the physical domain and obtaining the moving meshes in
the computational domain, is developed. In the 1D approach, a first-order approx-
imation is used to approximate the first order derivative associated with the small
viscosity terms. In general, this is a first-order method, but the adaptation effects
are clearly observed from the numerical experiments. However, this approach seems
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Figure 13. Example 5.2 at t = 0.5: uniform mesh solutions (top) and
adaptive mesh solutions (bottom). 502 (left) and 802 (right) grid points.
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Figure 14. Example 5.2 at t = 0.5: adaptive meshes with 502 (left)
and 802 (right) grid points.
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inappropriate when being extended to 2D problems, i.e. if a first-order approxima-
tion is used to handle the diffusion term (although the viscosity coefficient is very
small) then the power of the adaptation can not be seen clearly. In the 2D case,
the given PDEs are transformed into the computational domain, so that both the
PDEs and the mesh generation equations are solved in the computational domain.
A formal second-order accuracy for the AMR algorithms can be easily obtained, by
using a mid-point integration rule and a central-differencing approach to handle the
first-order derivatives. In fact, with the midpoint rule, all the integrals (associated
with the finite-volume methods) in the computational domain can be handled essen-
tially in the same way as to those in the physical domain. Numerical computations
indicate that the 2D adaptive mesh redistribution algorithm proposed in this work
is efficient.
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