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Abstract This work is to provide spectral and pseudo-spectral Jacobi-Galerkin approaches
for the second kind Volterra integral equation. The Gauss-Legendre quadrature formula is
used to approximate the integral operator and the inner product based on the Jacobi weight
is implemented in the weak formulation in the numerical implementation. For some spectral
and pseudo-spectral Jacobi-Galerkin methods, a rigorous error analysis in both the infinity
and weighted norms is given provided that both the kernel function and the source function
are sufficiently smooth. Numerical experiments validate the theoretical prediction.

Keywords The second kind Volterra integral equations · Spectral Galerkin ·
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1 Introduction

This paper is concerned with the second kind Volterra integral equation

u(x) +
∫ x

−1
k(x, s)u(s)ds = g(x), x ∈ I = [−1,1], (1.1)
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where the kernel function k(x, s) and the source function g(x) are given smooth functions,
u(x) is the unknown function. Actually any second kind Volterra integral equation can be
transformed into (1.1) by a simple linear transformation [11]. As a result, our approach can
be generalized to the second kind Volterra integral equation defined in any interval with a
smooth kernel. We will consider the case that the solutions of (1.1) are sufficiently smooth.
Consequently it is natural to implement very high-order numerical methods such as spectral
methods for the solutions of (1.1). It is known that there are many numerical approaches for
solving (1.1), such as collocation methods, product integration methods, see, e.g., [1] and
references therein. Nevertheless, few works touched the spectral approximations to (1.1).
In [5], Chebyshev spectral methods were proposed to solve nonlinear Volterra-Hammerstein
integral equations. Then Chebyshev spectral methods were investigated in [6] for the first
kind Fredholm integral equations under multiple-precision arithmetic. However, no theo-
retical results were provided to justify the high accuracy numerically obtained. Recently,
Tang and Xu [11] developed a novel spectral Legendre-collocation method to solve (1.1). It
seems the first spectral approach where the spectral accuracy is justified both theoretically
and numerically. Inspired by the work of [11], Chen and Tang [3] implemented the spectral
Jacobi-collocation method to solve the second kind Volterra integral equation with weakly
singular kernel (t − s)αk(t, s), where − 1

2 < α < 0 and k(t, s) is a smooth function. Then
they [4] extended the approach in [3] to the second kind Volterra integral equation with more
general weakly singular kernel (t − s)αk(t, s), where −1 < α < 0 and k(t, s) is a smooth
function, when the solution of the underlying equation has a weak singularity at t = 0. The
spectral accuracy of the approaches is verified both theoretically and numerically in [3, 4];
see also Chap. 5 of the recent book [10].

The purpose of this work is to provide numerical methods for the second kind Volterra in-
tegral equations based on spectral and pseudo-spectral Galerkin methods. For some spectral
and pseudo-spectral Jacobi-Galerkin approaches, a rigorous error analysis which theoreti-
cally justifies the spectral rate of convergence of our approaches is provided. Although [3, 4]
are concerned with more difficult kernels, i.e., the weakly singular kernel containing the fac-
tor (t − s)α , the main approach used there is the spectral-collocation method which is similar
to a finite-difference approach. Consequently, the corresponding error analysis is more te-
dious as it does not fit in a unified framework. However, with a finite-element type approach,
as will be performed in this work, it is natural to put the approximation scheme under the
general Jacobi-Galerkin type framework. As demonstrated in the recent book of Shen et
al. [10], there is a unified theory with Jacobi polynomials to approximate numerical solu-
tions for differential and integral equations. It is also rather straightforward to derive the
pseudo-spectral Jacobi-Galerkin method from the corresponding continuous version. The
relevant convergence theories under the unified framework, as will be seen from Sects. 4
and 5, are cleaner and more reasonable than those obtained in [3, 4].

This paper is organized as follows. In Sect. 2, we demonstrate the implementation of
the spectral and pseudo-spectral Galerkin approaches for the underlying equation. Some
lemmas useful for the convergence analysis will be provided in Sect. 3. The convergence
analysis for both spectral and pseudo-spectral Jacobi-Galerkin methods in L∞ and L2

ωα,β

norm, under some assumptions on the weight function ωα,β(x), will be given in Sect. 4 and
Sect. 5, respectively. Numerical experiments are carried out in Sect. 6, which will be used
to validate the theoretical results in Sect. 4 and Sect. 5. Some concluding remarks will be
given in Sect. 7.
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2 Spectral and Pseudo-Spectral Galerkin Methods

By introducing the integral operator S defined by

Su(x) =
∫ x

−1
k(x, s)u(s)ds,

(1.1) can be reformulated as

u(x) + Su(x) = g(x), x ∈ I = [−1,1]. (2.1)

We will adopt the spectral and pseudo-spectral Jacobi-Galerkin methods to solve this under-
lying problem.

Let us demonstrate the numerical implementation of the spectral Jacobi-Galerkin ap-
proach first. Denote PN a space consisting of polynomials defined on [−1,1] with de-
gree at most N , φj (x) is the j -th Jacobi polynomial corresponding to the weight function
ωα,β(x) = (1 − x)α(1 + x)β , with α,β > −1, j = 0,1, . . . ,N . As a result,

PN = span
{
φ0(x),φ1(x), . . . , φN(x)

}
.

Our aim is to find uN ∈ PN such that

(uN, vN)ωα,β + (SuN, vN)ωα,β = (g, vN)ωα,β , ∀vN ∈ PN, (2.2)

where (u, v)ωα,β = ∫ 1
−1 ωα,β(x)u(x)v(x)dx is the continuous inner product. Set uN(x) =∑N

j=0 ξjφj (x). Substituting it into (2.2) and taking vN = φi(x), we obtain

N∑
j=0

(φi, φj )ωα,β ξj +
N∑

j=0

(φi, Sφj )ωα,β ξj = (φi, g)ωα,β , (2.3)

which leads to an equation of the matrix form

(A + B)ξ = gN, (2.4)

where ξ = [ξ0, ξ1, . . . , ξN ]T ,A(i, j) = (φi, φj )ωα,β ,B(i, j) = (φi, Sφj )ωα,β , gN(i) =
(φi, g)ωα,β .

Now we turn to describe the pseudo-spectral Jacobi-Galerkin method. For this purpose,
set s = s(x, θ) = x−1

2 + x+1
2 θ, θ ∈ [−1,1]. It is clear that

Su(x) =
∫ x

−1
k(x, s)u(s)ds =

∫ 1

−1
k̃
(
x, s(x, θ)

)
u
(
s(x, θ)

)
dθ (2.5)

with k̃(x, s(x, θ)) = x+1
2 k(x, s(x, θ)). Using (N + 1)-point Gauss-Legendre quadrature for-

mula to approximate (2.5) yields

Su(x) ≈ SNu(x) :=
N∑

n=0

k̃
(
x, s(x, θn)

)
u
(
s(x, θn)

)
νn, (2.6)
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where {θn}N
n=0 are the (N + 1)-degree Legendre-Gauss points, and {νn}N

n=0 are the corre-
sponding Legendre weights. On the other hand, instead of the continuous inner product, the
discrete inner product will be implemented in (2.2) and (2.3), i.e.,

(u, v)ωα,β ≈ (u, v)ωα,β ,N =
N∑

m=0

u(xm)v(xm)ωα,β
m , (2.7)

where {xm}N
m=0 and {ωα,β

m }N
m=0 are the (N + 1)-degree Jacobi-Gauss points and their corre-

sponding Jacobi weights, respectively. As a result,

(u, v)ωα,β = (u, v)ωα,β ,N , if uv ∈ P2N .

Substitute (2.6) and (2.7) into (2.2). The pseudo-spectral Jacobi-Galerkin method is to
find

ūN (x) =
N∑

j=0

ξ̄j φj (x) ∈ PN, (2.8)

such that

(ūN , vN)ωα,β ,N + (SN ūN , vN)ωα,β ,N = (g, vN)ωα,β ,N , ∀vN ∈ PN, (2.9)

where {ξ̄j }N
j=0 are determined by

N∑
j=0

(φi, φj )ωα,β ,N ξ̄j +
N∑

j=0

(φi, SNφj )ωα,β ,N ξ̄j = (φi, g)ωα,β ,N . (2.10)

Denoting ξ̄ = [ξ̄0, ξ̄1, . . . , ξ̄N ]T , (2.10) yields an equation of the matrix form

(Ā + B̄)ξ̄ = ḡN , (2.11)

where Ā(i, j) = (φi, φj )ωα,β ,N , B̄(i, j) = (φi, SNφj )ωα,β ,N , ḡN (i) = (φi, g)ωα,β ,N .
It is worthwhile to point out that the known recurrence formula for Jacobi polynomials

can be used to calculate φi(x) in the two approaches mentioned above.

3 Some Useful Lemmas

In this section, we will give some useful lemmas which play a significant role in the con-
vergence analysis later. First we define the projection operator 	

α,β

N : L2
ωα,β → PN which

satisfies
(
	

α,β

N u, vN

)
ωα,β = (u, vN)ωα,β , ∀u ∈ L2

ωα,β , vN ∈ PN. (3.1)

Secondly, Iα,β

N denotes the interpolation operator of u based on (N +1)-degree Jacobi Gauss
points corresponding to the weight function ωα,β(x). Moreover, define a weighted space as

L2
ωα,β (I ) = {v : vis measurable and ‖v‖ωα,β < ∞},
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where

‖v‖ωα,β =
(∫

I

ωα,β(x)v2(x)dx

) 1
2

.

Further, define

Hm

ωα,β (I ) = {
v : Dkv ∈ L2

ωα,β (I ),0 ≤ k ≤ m
}
,

equipped with the norm

‖v‖Hm

ωα,β (I ) =
(

m∑
k=0

‖Dkv‖2
ωα,β

) 1
2

with Dkv = dkv

dxk . When ωα,β(x) = 1, L2
ωα,β (I ), Hm

ωα,β (I ) and ‖ · ‖ωα,β are denoted simply by
L2(I ), Hm(I) and ‖ · ‖, respectively.

In bounding the above approximation error, only some of the L2-norms appearing on
the right-hand side of above norm enter into play. Thus, it is convenient to introduce the
seminorms

|v|
H

m;N
ωα,β (I )

=
(

m∑
k=min(m,N+1)

‖Dkv‖2
ωα,β

) 1
2

.

Lemma 3.1 Suppose that v ∈ Hm

ωα,β (I ) and m ≥ 1.

(i) If α,β > −1, then

‖v − 	
α,β

N v‖ωα,β ≤ CN−m|v|
H

m;N
ωα,β (I )

, (3.2)

‖v − 	
α,β

N v‖Hl

ωα,β (I ) ≤ CN2l− 1
2 −m|v|

H
m;N
ωα,β (I )

, (3.3)

for any l such that 1 ≤ l ≤ m.
(ii) If −1 < α,β ≤ 0, then

‖v − 	
α,β

N v‖L∞(I ) ≤ CN
3
4 −m|v|

H
m;N
ωα,β (I )

. (3.4)

Proof The inequalities in (i) can be found in [2, 9]. We only prove (ii). It is straightforward
to have, for −1 < α,β ≤ 0,

‖w‖ ≤ C‖w‖ωα,β , ‖w‖H 1(I ) ≤ C‖w‖H 1
ωα,β (I ). (3.5)

Consequently, using (3.5) and the Sobolev inequality ([2], p. 490)

‖w‖L∞(I ) ≤ C‖w‖ 1
2 ‖w‖ 1

2
H 1(I )

(3.6)

gives, for −1 < α,β ≤ 0,

‖w‖L∞(I ) ≤ C‖w‖ 1
2
ωα,β ‖w‖ 1

2

H 1
ωα,β (I )

. (3.7)

This result, together with the estimates in (i), yields (3.4). �
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Lemma 3.2 Suppose that v ∈ Hm

ωα,β (I ) and m ≥ 1.

(i) If α,β > −1, then

‖v − I
α,β

N v‖ωα,β ≤ CN−m|v|
H

m;N
ωα,β (I )

. (3.8)

(ii) If ωα,β is the Legendre weight, i.e., α = β = 0, then

‖v − I
α,β

N v‖Hl(I) ≤ CN2l− 1
2 −m|v|Hm;N (I), (3.9)

‖v − I
α,β

N v‖L∞(I ) ≤ CN
3
4 −m|v|Hm;N (I). (3.10)

If ωα,β is the Chebyshev weight, i.e., α = β = − 1
2 , then

‖v − I
α,β

N v‖L∞(I ) ≤ CN
1
2 −m|v|

H
m;N
ωα,β (I )

. (3.11)

Proof The conclusion in (i) is a classical one; see, e.g., [10]. The first estimate in (ii) can
be found in ([2], p. 289), which also leads to the second estimate in (ii) by using (i) and the
Sobolev inequality (3.6). The estimate in (3.11) can be seen in ([2], p. 297). �

Lemma 3.3 Suppose that v ∈ Hm

ωα,β (I ) with α,β > −1, m ≥ 1 and φ ∈ PN . Then we have

|(v,φ)ωα,β − (v,φ)ωα,β ,N | ≤ CN−m|v|
H

m;N
ωα,β (I )

‖φ‖ωα,β . (3.12)

Proof Note that the discrete inner product is based on the (N + 1)-degree Jacobi-Gauss
points corresponding to the weight function ωα,β(x). We have

(v,φ)ωα,β ,N = (
I

α,β

N v,φ
)
ωα,β . (3.13)

Consequently, we have

|(v,φ)ωα,β − (v,φ)ωα,β ,N | = ∣∣(v − I
α,β

N v,φ
)
ωα,β

∣∣ ≤ ‖v − I
α,β

N v‖ωα,β ‖φ‖ωα,β , (3.14)

which, together with Lemma 3.2, leads to the desired estimate (3.12). �

Lemma 3.4 For each bounded function v(x), there exists a constant C, independent of v,
such that

sup
N

‖Iα,β

N v‖ωα,β ≤ C‖v‖∞, (3.15)

where I
α,β

N v = ∑N

j=0 v(xj )hj (x) is the interpolation of v, with hj (x), j = 0,1, . . . ,N , the
Lagrange interpolation basis functions based on (N + 1)-degree Jacobi-Gauss points cor-
responding to the weight function ωα,β(x) with α,β > −1.
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Proof As the (N + 1)-point Jacobi-Gauss quadrature formulas are accurate for the polyno-
mials with degree no more than 2N , direct calculation shows that

‖Iα,β

N v‖2
ωα,β =

∫ 1

−1
ωα,β(x)

(
I

α,β

N v
)2

dx =
N∑

j=0

v2(xj )ω
α,β

j

≤ ‖v‖2
∞

N∑
j=0

ω
α,β

j = γ0‖v‖2
∞, (3.16)

where γ0 = (φ0, φ0)ωα,β . As a consequence,

sup
N

‖Iα,β

N v‖ωα,β ≤ C‖v‖∞,

with C = √
γ0. �

4 Convergence Analysis for Spectral Jacobi-Galerkin Method

According to (2.2) and the definition of the projection operator 	
α,β

N , the spectral Jacobi-
Galerkin solution uN satisfies

uN + 	
α,β

N SuN = 	
α,β

N g. (4.1)

Theorem 4.1 Suppose that uN is the spectral Jacobi-Galerkin solution determined by
(2.2) with α and β satisfying one of the following assumptions, i.e., (i) −1 < α,β < 1;
(ii) α = 0, β > −1; (iii) α > −1, β = 0; (iv) α > −1,−1 < β ≤ 0. If the solution u of (2.1)
satisfies u ∈ H

m;N
ωα,β (I ), then we have the following error estimate

‖u − uN‖ωα,β ≤ CN−m|u|
H

m;N
ωα,β (I )

.

Proof When g = 0, (4.1) can be written as

uN + 	
α,β

N SuN = 0.

In terms of the fact that

uN + 	
α,β

N SuN = uN + SuN − (
SuN − 	

α,β

N SuN

)
,

it is clear that

uN = −
∫ x

−1
k(x, s)uN(s)ds + (

SuN − 	
α,β

N SuN

)
,

which yields

|uN | ≤ M

∫ x

−1
|uN(s)|ds + |J |,

with J = SuN − 	
α,β

N SuN . This, together with the standard Gronwall inequality (see,
e.g., [3, 4]), gives

‖uN‖ωα,β ≤ C‖J‖ωα,β . (4.2)
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In virtue of Lemma 3.1,

‖J‖ωα,β ≤ CN−1

∥∥∥∥k(x, x)uN(x) +
∫ x

−1
kx(x, s)uN(s)ds

∥∥∥∥
ωα,β

≤ CN−1

(
‖uN‖ωα,β +

∥∥∥∥
∫ x

−1
|uN(s)|ds

∥∥∥∥
ωα,β

)

≤ CN−1‖uN‖ωα,β , (4.3)

in which, we have implemented the fact that

∥∥∥∥
∫ x

−1
u(s)ds

∥∥∥∥
2

ωα,β

≤ C‖u‖2
ωα,β (4.4)

when α and β satisfy one of the assumptions above. Actually, if α,β satisfy one of (i)–(iii),
(4.4) holds according to ([7], p. 239). On the other hand, if α,β satisfy (iv), then

∥∥∥∥
∫ x

−1
u(s)ds

∥∥∥∥
2

ωα,β

=
∫ 1

−1
ωα,β(x)

(∫ x

−1
u(s)ds

)2

dx

≤ C

∫ 1

−1
ωα,β(x)

∫ x

−1
u2(s)dsdx

= C

∫ 1

−1
u2(s)

∫ 1

s

(1 − x)α(1 + x)βdxds

≤ C

∫ 1

−1
u2(s)(1 + s)β

∫ 1

s

(1 − x)αdxds

≤ C

∫ 1

−1
(1 − s)α(1 + s)βu2(s)ds

= C‖u‖2
ωα,β .

The combination of (4.2) and (4.3) leads to

‖uN‖ωα,β ≤ CN−1‖uN‖ωα,β ,

which implies, when N is large enough, uN = 0. Hence, the spectral Galerkin solution uN

is existent and unique as PN is finite-dimensional.
Subtracting (4.1) from (2.1), yields

u − uN + Su − 	
α,β

N SuN = g − 	
α,β

N g. (4.5)

Set e = u − uN . Direct computation shows that

Su − 	
α,β

N SuN

= Su − 	
α,β

N Su + 	
α,β

N S(u − uN)

= Su − 	
α,β

N Su + S(u − uN) − [
S(u − uN) − 	

α,β

N S(u − uN)
]
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= (g − u) − 	
α,β

N (g − u) + S(u − uN) − [
S(u − uN) − 	

α,β

N S(u − uN)
]

= g − 	
α,β

N g − u + 	
α,β

N u + Se − (
Se − 	

α,β

N Se
)
. (4.6)

The insertion of (4.6) into (4.5) yields

e(x) = −
∫ x

−1
k(x, s)e(s)ds + u − 	

α,β

N u + (
Se − 	

α,β

N Se
)
,

which implies that

|e(x)| ≤ M

∫ x

−1
|e(s)|ds + |J1| + |J2|, (4.7)

where

J1 = u − 	
α,β

N u, J2 = Se − 	
α,β

N Se.

By (4.7) and the standard Gronwall inequality (see, e.g., [10]), we have

‖e‖ωα,β ≤ C(‖J1‖ωα,β + ‖J2‖ωα,β ). (4.8)

By Lemma 3.1,

‖J1‖ωα,β ≤ CN−m|u|
H

m;N
ωα,β (I )

, (4.9)

‖J2‖ωα,β ≤ CN−1

∥∥∥∥k(x, x)e(x) +
∫ x

−1
kx(x, s)e(s)ds

∥∥∥∥
ωα,β

≤ CN−1

(
‖e‖ωα,β +

∥∥∥∥
∫ x

−1
|e(s)|ds

∥∥∥∥
ωα,β

)

≤ CN−1‖e‖ωα,β , (4.10)

in which (4.4) is used under the assumptions on α and β above. Combing (4.8), (4.9), and
(4.10), we obtain, when N is large enough,

‖u − uN‖ωα,β = ‖e‖ωα,β ≤ CN−m|u|
H

m;N
ωα,β (I )

. �

Now we investigate the L∞-error estimate.

Theorem 4.2 Suppose that uN is the spectral Jacobi-Galerkin solution satisfying (2.2) with
−1 < α,β ≤ 0. If the solution u of (2.1) satisfies u ∈ H

m;N
ωα,β (I ) ∩ L∞(I ), then we have the

following error estimate

‖u − uN‖L∞(I ) ≤ CN
3
4 −m|u|

H
m;N
ωα,β (I )

.

Proof It follows from (4.7) and the standard Gronwall inequality (see, e.g., [10]) that

‖e‖L∞(I ) ≤ C(‖J1‖L∞(I ) + ‖J2‖L∞(I )). (4.11)

As −1 < α,β ≤ 0, by Lemma 3.1, we have

‖J1‖L∞(I ) ≤ CN
3
4 −m|u|

H
m;N
ωα,β (I )

, (4.12)
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‖J2‖L∞(I ) ≤ CN− 1
4

∥∥∥∥k(x, x)e(x) +
∫ x

−1
kx(x, s)e(s)ds

∥∥∥∥
ωα,β

≤ CN− 1
4 ‖e‖L∞(I ). (4.13)

Substituting (4.12) and (4.13) into (4.11), when N is large enough, we obtain

‖u − uN‖L∞(I ) = ‖e‖L∞(I ) ≤ CN
3
4 −m|u|

H
m;N
ωα,β (I )

. �

5 Convergence for Pseudo-spectral Jacobi-Galerkin Method

As I
α,β

N is the interpolation operator which is based on the (N + 1)-degree Jacobi-Gauss
points, in terms of (2.9), the pseudo-spectral Galerkin solution ūN satisfies

(ūN , vN)ωα,β + (
I

α,β

N SN ūN , vN

)
ωα,β = (

I
α,β

N g, vN

)
ωα,β , (5.1)

where

SNūN = SūN − (SūN − SN ūN) = SūN − Q(x), (5.2)

with

Q(x) = SūN − SNūN

=
∫ 1

−1
k̃
(
x, s(x, θ)

)
ūN

(
s(x, θ)

)
dθ −

N∑
j=0

k̃
(
x, s(x, θj )

)
ūN

(
s(x, θj )

)
νj

= (̃
k
(
x, s(x, ·)), ūN

(
s(x, ·))) − (̃

k
(
x, s(x, ·)), ūN

(
s(x, ·)))

N
, (5.3)

in which (·, ·) represents the continuous inner product with respect to θ , and (·, ·)N is the
corresponding discrete inner product defined by the Gauss-Legendre quadrature formula.
The combination of (5.1) and (5.2), yields

(ūN , vN)ωα,β + (
I

α,β

N SūN − I
α,β

N Q(x), vN

)
ωα,β = (

I
α,β

N g, vN

)
ωα,β ,

which gives rise to

ūN + I
α,β

N SūN − I
α,β

N Q(x) = I
α,β

N g. (5.4)

By the discussion above, (2.9), (5.1) and (5.4) are equivalent.
We first consider an auxiliary problem, i.e., we want to find ûN ∈ PN , such that

(ûN , vN)ωα,β ,N + (SûN , vN)ωα,β ,N = (g, vN)ωα,β ,N , ∀vN ∈ PN, (5.5)

where S is the integral operator defined in Sect. 2, and (·, ·)ωα,β ,N is still the discrete inner
product based on the (N + 1)-degree Jacobi-Gauss points. In terms of the definition of I

α,β

N ,
(5.5) can be written as

(ûN , vN)ωα,β + (
I

α,β

N SûN , vN

)
ωα,β = (

I
α,β

N g, vN

)
ωα,β , ∀vN ∈ PN, (5.6)

which is equivalent to

ûN + I
α,β

N SûN = I
α,β

N g. (5.7)
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Denote

LN(α,β) = max
x∈I

N∑
j=0

∣∣hj (x)
∣∣,

the well-known Lebesgue constant corresponding to the Jacobi polynomial φN(x) =
P

(α,β)

N (x), where hj (x), j = 0,1, . . . ,N are the Lagrange interpolation basis functions as-
sociated with the (N + 1)-degree Jacobi-Gauss points.

Lemma 5.1 Suppose ûN is determined by (5.5).

(i) If α and β satisfy one of the following assumptions, i.e., −1 < α,β < 1, or α = 0,
β > −1, or α > −1, β = 0, or α > −1,−1 < β ≤ 0, we have

‖u − ûN‖ωα,β ≤ CN−m|u|
H

m;N
ωα,β (I )

. (5.8)

(ii) If ωα,β(x) is the Legendre weight, i.e., α = β = 0, then we have

‖u − ûN‖L∞(I ) ≤ CN
3
4 −m|u|Hm;N (I). (5.9)

If ωα,β(x) is the Chebyshev weight, i.e., α = β = − 1
2 , then we have

‖u − ûN‖L∞(I ) ≤ CN
1
2 −m|u|

H
m;N
ωα,β (I )

. (5.10)

(iii) If ωα,β(x) is the Jacobi weight with −1 < α,β < − 1
2 , then

‖u − ûN‖L∞(I ) ≤ CN
1
2 −m logN |u|

H
m;N
ωα,β (I )

. (5.11)

If ωα,β(x) is the Jacobi weight with − 1
2 < α,β < 0 and set γ = max(α,β), then

‖u − ûN‖L∞(I ) ≤ CNγ+1−m|u|
H

m;N
ω−1/2,−1/2 (I )

. (5.12)

Proof (i) The existence and uniqueness of ûN and the L2
ωα,β error estimate of u − ûN can

be established in a similar way as those for the spectral Jacobi Galerkin solution uN in the
proof of Theorem 4.1, with 	

α,β

N replaced by I
α,β

N . For simplicity, we omit it here.
(ii) Subtracting (5.7) from (2.1) yields

u − ûN + Su − I
α,β

N SûN = g − I
α,β

N g. (5.13)

Set ε = u − ûN . Direct computation shows that

Su − I
α,β

N SûN

= Su − I
α,β

N Su + I
α,β

N S(u − ûN )

= Su − I
α,β

N Su + S(u − ûN ) − [
S(u − ûN ) − I

α,β

N S(u − ûN )
]

= (g − u) − I
α,β

N (g − u) + S(u − ûN ) − [
S(u − ûN ) − I

α,β

N S(u − ûN )
]

= g − I
α,β

N g − u + I
α,β

N u + Sε − (
Sε − I

α,β

N Sε
)
. (5.14)
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The insertion of (5.14) into (5.13) yields

ε(x) = −
∫ x

−1
k(x, s)ε(s)ds + u − I

α,β

N u + (
Sε − I

α,β

N Sε
)
,

which implies that

|ε(x)| ≤ M

∫ x

−1
|ε(s)|ds + |J3| + |J4|, (5.15)

where

J3 = u − I
α,β

N u, J4 = Sε − I
α,β

N Sε.

Using the standard Gronwall inequality (see, e.g., [3, 4]) gives

‖ε‖L∞(I ) ≤ C(‖J3‖L∞(I ) + ‖J4‖L∞(I )). (5.16)

Actually, by Lemma 3.2,

‖J3‖L∞(I ) ≤ CNθ−m|u|
H

m;N
ωα,β (I )

, (5.17)

where θ = 3
4 when ωα,β(x) is the Legendre weight, and θ = 1

2 when ωα,β(x) is the Cheby-
shev weight. On the other hand, using Lemma 3.2 again gives

‖J4‖L∞(I ) ≤ CN−η

∥∥∥∥k(x, x)ε(x) +
∫ x

−1
kx(x, s)ε(s)ds

∥∥∥∥
ωα,β

≤ CN−η‖ε‖L∞(I ), (5.18)

where η = 1
4 when ωα,β(x) is the Legendre weight, and η = 1

2 when ωα,β(x) is the Cheby-
shev weight. Substituting (5.17) and (5.18) into (5.16) gives, as N is sufficiently large,

‖ε‖L∞(I ) ≤ CNθ−m|u|
H

m;N
ωα,β (I )

,

where θ = 3
4 for the Legendre weight, and θ = 1

2 for the Chebyshev weight.
(iii) According to [8] and Lemma 3.2,

‖J3‖L∞(I ) ≤ (
1 + LN(α,β)

)‖u − u∗
N‖L∞(I )

≤ CLN(α,β)
∥∥u − I

−1/2,−1/2
N u

∥∥
L∞(I )

≤ CLN(α,β)N
1
2 −m|u|

H
m;N
ω−1/2,−1/2

, (5.19)

where u∗
N is the best approximation of u(x) among the polynomials of degree no more than

N . In a similar way,

‖J4‖L∞(I ) ≤ CLN(α,β)‖Sε − I
−1/2,−1/2
N Sε‖L∞(I )

≤ CLN(α,β)N− 1
2

∥∥∥∥k(x, x)ε(x) +
∫ x

−1
kx(x, s)ε(s)ds

∥∥∥∥
ω−1/2,−1/2

≤ CLN(α,β)N− 1
2 ‖ε‖L∞(I ). (5.20)
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According to ([12], p. 335), if −1 < α,β ≤ − 1
2 , LN(α,β) = O(logN); otherwise

LN(α,β) = Nγ+ 1
2 with γ = max(α,β). As a consequence, the combination of (5.11), (5.19)

and (5.20) implies that, if −1 < α,β < − 1
2 ,

‖ε‖L∞(I ) ≤ CN
1
2 −m logN |u|

H
m;N
ω−1/2,−1/2

≤ CN
1
2 −m logN |u|

H
m;N
ωα,β

, (5.21)

which is the desired (5.11); similarly, if − 1
2 < α,β < 0, then we have (5.12). In obtain-

ing the last step of (5.21), we used the fact that the conditions −1 < α,β < − 1
2 imply

1
2 > − 1

2 − α > 0 and 1
2 > − 1

2 − β > 0; consequently,

|u|
H

m;N
ω−1/2,−1/2

=
m∑

k=min(m,N+1)

∫ 1

−1

(
u(k)

)2
(1 − t)− 1

2 (1 + t)− 1
2 dt

=
m∑

k=min(m,N+1)

∫ 1

−1

(
u(k)

)2
ωα,β(1 − t)− 1

2 −α(1 + t)− 1
2 −βdt

≤ 2
m∑

k=min(m,N+1)

∫ 1

−1

(
u(k)

)2
ωα,βdt = 2|u|

H
m;N
ωα,β

. (5.22)

This completes the proof of the lemma. �

Now subtracting (5.4) from (5.7) leads to

ûN − ūN + I
α,β

N S(ûN − ūN ) + I
α,β

N Q(x) = 0,

which can be simplified as, by setting E = ûN − ūN ,

E + I
α,β

N SE + I
α,β

N Q(x) = 0. (5.23)

Theorem 5.1 Suppose that the solution of (2.1) is sufficiently smooth. For the pseudo-
spectral Jacobi-Galerkin solution ūN , such that (2.9) holds,

(i) if −1 < α,β ≤ 0, we have

‖u − ūN‖ωα,β ≤ CN−m|u|
H

m;N
ωα,β (I )

+ CMmN−m‖u‖; (5.24)

(ii) if 0 < α = β < 1, we have

‖u − ūN‖ωα,β ≤ CN−m|u|
H

m;N
ωα,β (I )

+ CMmN−m+α‖u‖ωα,β , (5.25)

where

Mm = max
x∈I

√
1 + x

2

∣∣k(
x, s(x, ·))∣∣

Hm;N (I)
. (5.26)

Proof We first prove the existence and uniqueness of the pseudo-spectral Jacobi-Galerkin
solution ūN . As the dimension of PN is finite and (2.9) and (5.4) are equivalent, we only
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need to prove that the solution of (5.4) is ūN = 0 when g = 0. For this purpose, we consider
the equation

ūN + I
α,β

N SūN − I
α,β

N Q(x) = 0. (5.27)

Obviously (5.27) can be written as

ūN + SūN = SūN − I
α,β

N SūN + I
α,β

N Q(x) = J5 + J6,

i.e.,

ūN = −
∫ x

−1
k(x, s)ūN (s)ds + J5 + J6,

which yields

|ūN | ≤ M

∫ x

−1
|ūN (s)|ds + |J5| + |J6|,

with J5 = SūN − I
α,β

N SūN , J6 = I
α,β

N Q(x). Using the standard Gronwall inequality (see,
e.g., [3, 4]) yields

‖ūN‖ωα,β ≤ C(‖J5‖ωα,β + ‖J6‖ωα,β ). (5.28)

The implementation of Lemma 3.2 implies

‖J5‖ωα,β = ‖SūN − I
α,β

N SūN‖ωα,β

≤ CN−1

∥∥∥∥k(x, x)ūN(x) +
∫ x

−1
kx(x, s)ūN(s)ds

∥∥∥∥
ωα,β

≤ CN−1

(
‖ūN‖ωα,β +

∥∥∥∥
∫ x

−1
|ūN (s)|ds

∥∥∥∥
ωα,β

)

≤ CN−1‖ūN‖ωα,β , (5.29)

here in the last inequality, (4.4) is used in terms of the assumption on α and β . On the other
hand, according to Lemma 3.4,

‖J6‖ωα,β = ‖Iα,β

N Q(x)‖ωα,β ≤ C‖Q(x)‖L∞(I ). (5.30)

By the expression of Q(x) in (5.3) and Lemma 3.3, we have

|Q(x)| ≤ CN−m
∣∣̃k(

x, s(x, ·))∣∣
Hm;N (I)

∥∥ūN

(
s(x, ·))∥∥

≤ CN−m

√
1 + x

2

∣∣k(
x, s(x, ·))∣∣

Hm;N (I)
‖ūN‖.

Combining the above result and the definition (5.26) for Mm yields

‖Q(x)‖L∞(I ) ≤ CMmN−m‖ūN‖, (5.31)

which, together with (5.30), gives

‖J6‖ωα,β ≤ CMmN−m‖ūN‖. (5.32)
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If −1 < α,β ≤ 0, obviously we have

‖ūN‖ ≤ C‖ūN‖ωα,β ;

consequently,

‖J6‖ωα,β ≤ CMmN−m‖ūN‖ωα,β . (5.33)

This, together with (5.28) and (5.29), leads to

‖ūN‖ωα,β ≤ C
(
N−1 + MmN−m

)‖ūN‖ωα,β . (5.34)

On the other hand, according to ([2], p. 282),

‖φ‖ ≤ CNα‖φ‖ωα,α ,∀φ ∈ PN, (5.35)

where ωα,α(x) = (1 − x2)α , with α ≥ 0 and C is a positive constant independent of N .
Hence, when 0 < α = β < 1, (5.32) implies

‖J6‖ωα,β ≤ CMmN−m+α‖ūN‖ωα,β . (5.36)

The combination of (5.36), (5.28) and (5.29) yields

‖ūN‖ωα,β ≤ C
(
N−1 + MmN−m+α

)‖ūN‖ωα,β . (5.37)

Based on (5.34) and (5.37), when −1 < α,β ≤ 0 or 0 < α = β < 1 and N is large
enough, ūN = 0. As a result, the existence and uniqueness of the pseudo-spectral Jacobi-
Galerkin solution ūN is proved.

Now we turn to the L2
ωα,β error estimate of u − ūN . Actually (5.23) can be transformed

into

E = −
∫ x

−1
k(x, s)E(s)ds + SE − I

α,β

N SE − I
α,β

N Q(x),

which yields

|E| ≤ M

∫ x

−1
|E(s)|ds + |J6| + |J7|, (5.38)

with J6 = I
α,β

N Q(x), J7 = SE − I
α,β

N SE. It follows from (5.38) and the standard Gronwall
inequality that

‖E‖ωα,β ≤ C(‖J6‖ωα,β + ‖J7‖ωα,β ). (5.39)

Similar to the estimate of ‖J2‖ωα,β , we obtain

‖J7‖ωα,β ≤ CN−1

∥∥∥∥k(x, x)E(x) +
∫ x

−1
kx(x, s)E(s)ds

∥∥∥∥
ωα,β

≤ CN−1

(
‖E‖ωα,β +

∥∥∥∥
∫ x

−1
|E(s)|ds

∥∥∥∥
ωα,β

)

≤ CN−1‖E‖ωα,β , (5.40)
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where (4.4) is used in the last inequality under the assumptions on α and β . In terms of
(5.32), (5.39) and (5.40), when −1 < α,β ≤ 0, we have

‖E‖ωα,β ≤ CMmN−m‖ūN‖ ≤ CMmN−m(‖u − ūN‖ωα,β + ‖u‖). (5.41)

When 0 < α = β < 1, in terms of (5.36), (5.39) and (5.40), we have

‖E‖ωα,β ≤ CMmN−m+α‖ūN‖ωα,β ≤ CMmN−m+α(‖u − ūN‖ωα,β + ‖u‖ωα,β ). (5.42)

By the triangular inequality,

‖u − ūN‖ωα,β ≤ ‖u − ûN‖ωα,β + ‖ûN − ūN‖ωα,β , (5.43)

as well as Lemma 5.1, (5.41), and (5.42), we can obtain the desired estimated (5.24)–(5.25)
provided N is sufficiently large. �

Theorem 5.2 Suppose that the solution of (2.1) is sufficiently smooth. For the pseudo-
spectral Jacobi-Galerkin solution defined in (2.9), we have the following estimates

(i) If ωα,β(x) is the Legendre weight, then

‖u − ūN‖L∞(I ) ≤ CN
3
4 −m|u|

H
m;N
ωα,β (I )

+ CMmN
1
2 −m‖u‖. (5.44)

If ωα,β(x) is the Chebyshev weight, then

‖u − ūN‖L∞(I ) ≤ CN
1
2 −m|u|

H
m;N
ωα,β (I )

+ CMmN−m logN‖u‖. (5.45)

(ii) If ωα,β(x) is the Jacobi weight with −1 < α,β < − 1
2 , then

‖u − ūN‖L∞(I ) ≤ C logN
(
N

1
2 −m|u|

H
m;N
ωα,β

+ MmN−m‖u‖). (5.46)

If ωα,β(x) is the Jacobi weight with − 1
2 < α,β < 0, then

‖u − ūN‖L∞(I ) ≤ CN1+γ−m|u|
H

m;N
ω−1/2,−1/2

+ CMmN
1
2 +γ−m‖u‖. (5.47)

Proof Using (5.38) and the standard Gronwall inequality gives

‖E‖L∞(I ) ≤ C(‖J6‖L∞(I ) + ‖J7‖L∞(I )). (5.48)

It follows from Lemma 3.2 that

‖J7‖L∞(I ) ≤ CN−η

∥∥∥∥k(x, x)E(x) +
∫ x

−1
kx(x, s)E(s)ds

∥∥∥∥
ωα,β

≤ CN−η‖E‖L∞(I ), (5.49)

with η = 1
4 when ωα,β(x) is the Legendre weight, and η = 1

2 when ωα,β(x) is the Chebyshev
weight. On the other hand, similar to (5.20), we have

‖J7‖L∞(I ) = ‖SE − I
α,β

N SE‖L∞(I )

≤ CLN(α,β)N− 1
2 ‖E‖L∞(I ).
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If −1 < α,β < − 1
2 , then

‖J7‖L∞(I ) ≤ CN− 1
2 logN‖E‖L∞(I ); (5.50)

and if − 1
2 < α,β < 0, then

‖J7‖L∞(I ) ≤ CNγ ‖E‖L∞(I ), (5.51)

with γ = max(α,β) < 0. Furthermore,

‖J6‖L∞(I ) = ‖Iα,β

N Q(x)‖L∞(I )

≤ max
0≤j≤N

|Q(xj )|max
I

N∑
j=0

|hj (x)|

≤ CMmN−mLN(α,β)‖ūN‖, (5.52)

where (5.31) is used. Combining (5.48)–(5.52) yields

‖E‖L∞(I ) ≤ CMmN−mLN(α,β)‖ūN‖
≤ CMmN−mLN(α,β)(‖u‖ + ‖u − ūN‖L∞(I )). (5.53)

It follows from triangular inequality and (5.53) that

‖u − ūN‖L∞(I )

≤ ‖u − ûN‖L∞(I ) + ‖ûN − ūN‖L∞(I )

≤ ‖u − ûN‖L∞(I ) + CMmN−mLN(α,β)(‖u‖ + ‖u − ūN‖L∞(I )). (5.54)

By Lemma 5.1 and (5.54), we obtain the desired estimated (5.44)–(5.47). �

We close this section by pointing out that the equivalence of the pseudo-spectral Jacobi-
Galerkin and the spectral Jacobi-collocation methods can be verified by following a standard
process if the uniqueness of the pseudo-spectral Jacobi-Galerkin approach can be obtained.
Consequently, the convergence analysis for the pseudo-spectral Jacobi-Galerkin approach in
this section also holds for the spectral Jacobi-collocation methods. Actually it is an extension
of L2 and L∞ error estimates for the spectral Legendre-collocation method in [11].

6 Numerical Experiments

The efficiency of spectral or pseudo-spectral Legendre-Galerkin methods and Chebyshev-
Galerkin methods will be demonstrated in the following as two special cases of the spectral
or pseudo-spectral Jacobi-Galerkin approaches.

We consider the second kind Volterra integral equation (1.1) with

k(x, s) = exs, g(x) = e2x + ex(x+2) − e−(x+2)

x + 2
.

The corresponding exact solution is given by u(x) = e2x .
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Table 1 The errors of spectral Legendre-Galerkin method

N 4 6 8 10 12 14

L∞-error 5.243e−02 1.262e−03 1.753e−05 1.572e−07 9.779e−10 4.618e−12

L2-error 2.413e−03 3.942e−05 4.144e−07 3.028e−09 1.622e−11 6.631e−14

Fig. 1 L2 and L∞ errors of
spectral Legendre-Galerkin
method versus N

First we implement the numerical scheme (2.3) based on the spectral Legendre-Galerkin
and Chebyshev-Galerkin methods to solve this example. Table 1 illustrates the L∞ and L2

errors of the spectral Legendre-Galerkin method which are also shown in Fig. 1. Next the
L∞ and L2

ωα,β errors of the spectral Chebyshev-Galerkin method are demonstrated in Table 2
and Fig. 2. Clearly the desired spectral accuracy is obtained in these approaches.

Next we turn to the numerical scheme (2.10) based on the pseudo-spectral Legendre-
Galerkin and Chebyshev-Galerkin methods to solve the example above. Table 3 illustrates
the L∞ and L2 errors of the pseudo-spectral Legendre-Galerkin method which are also
shown in Fig. 3. Next the L∞ and L2

ωα,β errors of the pseudo-spectral Chebyshev-Galerkin
method are demonstrated in Table 4 and Fig. 4. Once again the desired spectral accuracy is
obtained.

7 Conclusions

This paper proposes spectral and pseudo-spectral Jacobi-Galerkin methods for the second
kind Volterra integral equations with smooth kernel. The discretization schemes for the gen-
eral spectral and pseudo-spectral Jacobi-Galerkin approaches are provided. The spectral ac-
curacy associated with L∞ and L2

ωα,β error estimates are demonstrated theoretically for some
spectral and pseudo-spectral Jacobi-Galerkin methods. These results are confirmed by some
numerical experiments.

It is a natural question that the simple Legendre-Galerkin method rather than the com-
plicated Jacobi-Galerkin method should be used to approximate the numerical solutions of
(1.1) as the kernel and the solutions are both smooth. In fact, the main purpose of this pa-
per is to solve the underlying problem in a general framework. Therefore, we adopt both
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Table 2 The errors of spectral Chebyshev-Galerkin method

N 4 6 8 10 12 14

L∞-error 2.915e−02 5.696e−04 7.276e−06 5.751e−08 3.950e−10 1.737e−12

L2
ωα,β -error 4.864e−03 7.116e−05 7.051e−07 4.968e−09 2.596e−11 1.054e−13

Fig. 2 L2
ωα,β and L∞ errors of

spectral Chebyshev-Galerkin
method versus N

Table 3 The errors of pseudo-spectral Legendre-Galerkin method

N 4 6 8 10 12 14

L∞-error 6.007e−03 9.386e−05 8.710e−07 6.378e−09 3.322e−11 1.323e−13

L2-error 4.443e−03 7.409e−05 7.874e−07 5.797e−09 3.123e−11 1.289e−13

Fig. 3 L2 and L∞ errors of
pseudo-spectral
Legendre-Galerkin method
versus N
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Table 4 The errors of pseudo-spectral Chebyshev-Galerkin method

N 4 6 8 10 12 14

L∞-error 7.113e−03 1.003e−04 9.958e−07 6.995e−09 3.638e−11 1.492e−13

L2
ωα,β -error 8.050e−03 1.203e−04 1.224e−06 8.814e−09 4.685e−11 1.909e−13

Fig. 4 L2
ωα,β and L∞ errors of

pseudo-spectral
Chebyshev-Galerkin method
versus N

the spectral and pseudo-spectral Jacobi-Galerkin methods, which also include the spectral
and pseudo-spectral Legendre-Galerkin methods and the Chebyshev-Galerkin methods. On
the other hand, for pseudo-spectral Jacobi-Galerkin methods with some specially chosen
α and β , say −1 < α,β < − 1

2 , our theoretical analysis shows that the convergence rate in
L∞ norm is better than the pseudo-spectral Legendre-Galerkin approach, as shown in The-
orem 5.2. Further, it is expected that our approaches in this work can provide inspiration for
our future work on the second kind Volterra integral equations with weakly singular kernels.

Acknowledgements The first author is supported by the National Science Foundation of China (11171104,
10871066) and the Science and Technology Grant of Guizhou Province (LKS[2010]05). The second and third
authors are supported by the FRG Grant of Hong Kong Baptist University and the RGC Grants provided by
Research Grant Council of Hong Kong.

References

1. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations Methods. Cam-
bridge University Press, Cambridge (2004)

2. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods Fundamentals in Single Do-
mains. Springer, Berlin (2006)

3. Chen, Y.-P., Tang, T.: Spectral methods for weakly singular Volterra integral equations with smooth
solutions. J. Comput. Appl. Math. 233, 938–950 (2009)

4. Chen, Y.-P., Tang, T.: Convergence analysis of the Jacobi spectral-collocation methods for Volterra inte-
gral equations with a weakly singular kernel. Math. Comput. 79(269), 147–167 (2010)

5. Elnagar, G.N., Kazemi, M.: Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral
equations. J. Comput. Appl. Math. 76, 147–158 (1996)

6. Fujiwara, H.: High-accurate numerical method for integral equations of the first kind under multiple-
precision arithmetic. Preprint, RIMS, Kyoto University (2006)



434 J Sci Comput (2012) 53:414–434

7. Guo, B.Y., Wang, L.L.: Jacobi interpolation approximations and their applications to singular differential
equations. Adv. Comput. Math. 14, 227–276 (2001)

8. Hestheven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge
University Press, Cambridge (2007)

9. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)
10. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications. Springer

Series in Computational Mathematics. Springer, New York (2011)
11. Tang, T., Xu, X., Chen, J.: On spectral methods for Volterra type integral equations and the convergence

analysis. J. Comput. Math. 26(6), 825–837 (2008)
12. Szegö, G.: Orthogonal Polynomials. Am. Math. Society, Providence (1939)


	Convergence Analysis of Spectral Galerkin Methods for Volterra Type Integral Equations
	Abstract
	Introduction
	Spectral and Pseudo-Spectral Galerkin Methods
	Some Useful Lemmas
	Convergence Analysis for Spectral Jacobi-Galerkin Method
	Convergence for Pseudo-spectral Jacobi-Galerkin Method
	Numerical Experiments
	Conclusions
	Acknowledgements
	References


