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Abstract. In this paper, we discuss the blowup of Volterra integro-differential equations

(VIDEs) with a dissipative linear term. To overcome the fluctuation of solutions, we es-

tablish a Razumikhin-type theorem to verify the unboundedness of solutions. We also

introduce leaving-times and arriving-times for the estimation of the spending-times of

solutions to∞. Based on these two typical techniques, the blowup and global existence

of solutions to VIDEs with local and global integrable kernels are presented. As appli-

cations, the critical exponents of semi-linear Volterra diffusion equations (SLVDEs) on

bounded domains with constant kernel are generalized to SLVDEs on bounded domains

and RN with some local integrable kernels. Moreover, the critical exponents of SLVDEs

on both bounded domains and the unbounded domain RN are investigated for global

integrable kernels.
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1. Introduction

Volterra integral equations (VIEs) have a lot of applications in physics and experimental

sciences: problems in mechanics, scattering theory, spectroscopy, stereology, seismology,

elasticity theory, plasma physics (see in [25]). The blowup of solutions to VIEs rises in [25]

and a particular example is given in [27]. After that a sequence of blowup results for

some special VIEs are done by [22,26,32] (see also in the survey papers [17,33] and the

references in [6]).
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In [6], we present two features of blowup solutions : (i) the tendency to ∞, (ii) the

finite spending-time for tending to ∞. Based on some assumptions ensuring the strictly

monotone increasing of solutions to VIEs, the necessary and sufficient conditions for the

blowup of Hammerstein-type nonlinear VIEs are discovered. By transforming into the eq-

uivalent form of VIEs, we also present some blowup results of Volterra integro-differential

equations (VIDEs)

u′(t) = −λu(t) +

∫ t

0

k(t − s)up(s)ds, t > 0, (1.1a)

u(0) = u0 > 0. (1.1b)

While the condition λ ¶ 0 is imposed in our paper [6] for the strict monotonicity of solu-

tions. The blowup of solutions to non-homogeneous VIDEs is discussed in [21] under some

conditions on the non-homogeneous term such that the solution is also strictly increasing.

The blowup results of VIDEs with a dissipative linear term (i.e. λ > 0) and constant kernels

are discussed in [35], since the solutions are convex and eventually increasing. Up to now,

for (1.1) with λ > 0 and a general kernel, the blowup of fluctuation solutions is still open.

As important as VIDEs, semi-linear Volterra diffusion equations (SLVDEs)

ut =∆u+

∫ t

0

k(t − s)up(s, x)ds, t > 0, x ∈ Ω⊆ RN , (1.2a)

u(0, x) = u0(x)� 0, x ∈ Ω, (1.2b)

u(t, x) ≡ 0, x ∈ ∂Ω (1.2c)

are introduced to model the effects of the memory effects in a population dynamics in

[38, 39], and widely used in compression of poro-viscoelastic media in [11], the thermo-

dynamics of phase transition in [3], reaction-diffusion problems in [9], and the theory

of nuclear reactor kinetics in [15, 28–30]. The finite blowup analysis to (1.2) is begun

in [16] and a complete result is obtained in [35] that the critical exponent of SLVDEs on

bounded domains with constant kernels is p∗ =∞. That is to say, any positive solution to

(1.2) blows up in finite time. However, for any p > 1, there always exists a global positive

solution to

ut =∆u+ up(t, x), t > 0, x ∈ Ω, (1.3)

when Ω is a bounded domain (see in [18, 23, 24]). Hence the critical exponent p∗ =

1 of (1.3) is totally changed by the non-local time-integration with a constant kernel.

Note that the local problem (1.3) can be written as the form of (1.2) with a Dirac delta

function k(z) = δ(z) and the difference between constant kernels and delta functions is the

integration on the whole interval [0,∞). Therefore it is more interesting how the blowup

of SLVDEs on bounded domains is influenced by the global integrability of kernels. It is

also interesting whether the critical exponent of SLVDEs on RN is also influenced by the

kernels.

By Kaplan’s first eigenvalue and eigenfunction, the blowup results of SLVDEs on bound-

ed domains come from the ones of solutions to (1.1), but the linear coefficient λ corre-

sponding to the first eigenvalue of the Laplacian operator is positive. The blowup analysis
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of SLVDEs on RN is also related to (1.1) by Fujita’s approach. However, the coefficient λ

is not only positive but also couples with the initial condition. Hence for both two cases,

the corresponding solutions to (1.1) have the fluctuation although solutions are increasing

after a long time periodic.

For a strictly increasing global solution, the tendency is either ∞ or a fixed positive

finite number and the spending-time is estimated somehow by a "discrete" inverse formu-

la. These typical techniques in [6] are not available to a fluctuating solution. Therefore,

we introduce two techniques : a Razumikhin-type theorem for the unboundedness and an

introduction of the arriving-time and leaving-time at given level values (see the definitions

in Section 2). The Razumikhin-type technique has been used for the stability and bounded-

ness analysis for many kinds of delay differential equations and delay difference equations

(see in [12, 20]), while it is the first version for the unboundedness up to the best of our

knowledge. For an increasing solution, the arriving-time coincides with the leaving-time

and solutions in the periodic are bounded by the level values. Whereas for a fluctuation

solution, the upper bounds between two leaving-times may be extremely large. Indeed, a

part of estimation is followed from our previous work, but the rest estimation is our key

contribution for the fluctuation solutions.

Throughout this paper, the kernels in (1.1) and (1.2) are assumed to be the form

of k(z) = zβ−1k1(z) with β > 0 and a continuous function k1(z). Since the blowup of

solutions to (1.1) and (1.2) is strongly influenced by the global integrability of the kernel

in the whole interval [0,∞) (see [10,35]), we separate the kernels into two types:

Type I : 0< k∞e−z ≤ k1(z)≤ k∞e−z , i.e., k(z) is a global integrable kernel with

I(t) :=

∫ t

0

k(z)dz ≤ k∞Γ(β) for all t ≥ 0.

Type II : k1(z) ≥ k∞ > 0 for all z ≥ 0, i.e., k(z) is a local integrable kernel and

I(∞) = lim
t→∞

I(t) =∞.

This paper is organized as follows. In Section 2, we provide a comparison theorem and

establish a Razumikhin-type theorem for the unboundedness of global solutions. Moreover,

from the unboundedness of global solutions, the blowup of solutions to VIDEs is analyzed

by the estimations of leaving and arriving times. As an application, we consider the blowup

of SLVDEs on bounded spatial domains in Section 3. The critical exponent p∗ = 1 of

local parabolic problems are generalized to Type I kernels and the critical exponent p∗ =

∞ of SLVDEs with constant kernels is extended to some kernels of Type II. As another

application, the critical exponent of SLVDEs on RN is studied in Section 4. For Type I

kernels, the critical exponent p∗ is estimated by β . Furthermore, it is shown that for some

kernels of Type II all positive solutions to SLVDEs on RN blow up in finite time, i.e., the

critical exponent p∗ =∞ is same as the results of SLVDEs on bounded domains. This is a

beginning of blowup analysis for VIDEs and SLVDEs and some interesting and future works

are presented in Section 5.
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740 Z. W. Yang, T. Tang and J. W. Zhang

2. Volterra integro-differential equations

In this section, the blowup analysis of VIDEs is followed by the framework in [6], i.e,

(i) suppose that a solution exists globally and investigate the tendency to∞, then

(ii) the blowup result is yielded by estimating the spending-time of the solution from

finite to∞.

First of all, we introduce some notations, definitions that are used hereafter.

Definition 2.1. For a function w : R+→ R+, we define

a nondecreasing function w(t) := inf
s¾t

w(s),

a nonincreasing function w̄(t) := inf
s∈[0,t]

w(s).

Definition 2.2. Let w : R+ → R+ be a continuous function and d < D be two positive

numbers. Then

(i) the leaving-time td(w) is defined by td(w) = inf{t : w(t) > d};

(ii) the arriving-time tD
d
(w) after td(w) is defined by tD

d
(w) = inf{t ≥ td(w) : w(t) ≥ D}.

In the above definition, we have that the leaving-time and arriving-time of a empty set are

infinity, i.e., inf{;} =∞.

Remark 2.1. Let w : R+ → R+ be a continuous function. It is obvious that the following

statements are true.

(i) w(t) ≤ w(t) and w̄(t)≤ w(t) for all t ∈ R+.

(ii) lim
t→∞

w(t) = ∞ if and only if for any given d > 0, the leaving-time td(w) < ∞ is

well-defined.

(iii) w(t) is nondecreasing if and only if w(t) = w(t) for all t ∈ R+.

(iv) w(t) is nondecreasing if and only if the arriving-times coincide with the leaving-

times, i.e., tD
d
(w) = tD(w) for all d < D.

2.1. Comparison theorem

Before the detailed discussions, we present the comparison theorem of the supersolu-

tions and subsolutions of general VIDEs

u′(t) = −λu(t) +

∫ t

0

K(t, s)G(u(s))ds, t > 0, (2.1a)

u(0) = u0, (2.1b)
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where u0 > 0 and λ ≥ 0 are constants, G(u) is a C1-smoothing function and K(t, s) is a

locally integrable function with respect to s ∈ (0, t) for each t ≥ 0 and satisfies

∫ T

0

∫ t

0

|K(t, s)|dsdt <∞ for all T > 0.

Definition 2.3. A continuously differentiable function u∗(t) is called a supersolution to (2.1)

on the interval [t0, T ) for 0≤ t0 < T, if it holds for all t ∈ [t0, T )

d

dt
u∗(t) +λu∗(t)−

∫ t

0

K(t, s)G(u∗(s))ds ≥ 0.

A supersolution is said to exist globally if it is defined in the whole interval [t0,∞).

Definition 2.4. A continuously differentiable function u∗(t) is called a subsolution to (2.1)

on the interval [t0, T ) for 0≤ t0 < T, if it holds for all t ∈ [t0, T )

d

dt
u∗(t) +λu∗(t)−

∫ t

0

K(t, s)G(u∗(s))ds ≤ 0.

A subsolution is said to exist globally if it is defined in the whole interval [t0,∞).

Theorem 2.1. (Comparison theorem) Assume that K(t, s) ≥ 0 for all 0 < s < t <∞, that

G(u) is increasing and that u∗(t) and u∗(t) are supersolution and subsolution to (2.1) in the

interval [t0, T], respectively. Then u∗(t) ≤ u∗(t) for all t ∈ [0, T] whenever u∗(t) ≤ u∗(t) for

t ∈ [0, t0].

Proof. Since u∗(t) and u∗(t) are continuous functions on the closed interval [0, T],

there exists an M > 0 such that

max

�

max
t∈[0,T]

|u∗(t)|, max
t∈[0,T]

|u∗(t)|
�

≤ M ,

which implies by the C1-smoothing of G that for all t ∈ [0, T]

|G(u∗(t))− G(u∗(t))| ¶ L|u∗(t)− u∗(t)|,

where L = sup
|u|≤M

|G′(u)|. Suppose that

t1 = sup{t : u∗(s)≥ u∗(s) for s ∈ [0, t]} < T.

Then there exists a T1 ∈ (t1, T] such that

e−|λ|(T1−t1)

∫ T1

t1

∫ t

t1

K(t, s)dsdt <
1

2L
.
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Let t∗ ∈ [t1, T1] be such that

u∗(t∗)− u∗(t
∗) = min

t∈[t1,t∗]
(u∗(t)− u∗(t)).

Then u∗(t∗)− u∗(t
∗) < 0. By the definitions 2.3 and 2.4, it follows from K(t, s) > 0 and

G(u∗(t))≥ G(u∗(t)) for t ∈ [0, t1] that for t ∈ [t1, t∗]

d

dt

�

eλt(u∗(t)− u∗(t))
�

= eλt

�

λ(u∗(t)− u∗(t)) +
d

dt
(u∗(t)− u∗(t))

�

≥eλt

∫ t

0

K(t, s)(G(u∗(s))− G(u∗(s))ds ≥ eλt

∫ t

t1

K(t, s)(G(u∗(s))− G(u∗(s)))ds

≥− Leλt

∫ t

t1

K(t, s)|u∗(s)− u∗(s)|ds ≥ −Leλt |u∗(t∗)− u∗(t
∗)|

∫ t

t1

K(t, s)ds,

which implies that

(u∗(t∗)− u∗(t
∗))≥ −L|u∗(t∗)− u∗(t

∗)|

∫ t∗

t1

e−λ(t
∗−t)

∫ t

t1

K(t, s)dsdt

≥− L|u∗(t∗)− u∗(t
∗)|e−|λ|(T1−t1)

∫ T1

t1

∫ t

t1

K(t, s)dsdt > −
1

2
|u∗(t∗)− u∗(t

∗)|.

This is a contradiction and the proof is complete. �

Corollary 2.1. Assume that K(t, s) ≥ 0 for all 0< s < t <∞ and that G(u) is an increasing

function with G(0) = 0.

(i) Any solution u(t) to (2.1) satisfies u(t) ≥ u0e−λt in the maximum interval of its exis-

tence.

(ii) If u∗(t) is a positive global supersolution to (2.1) in the interval [t0,∞), then any

positive solution to (2.1) with u(t) ≤ u∗(t) for t ∈ [0, t0] exists globally.

Proof. The proof is trivial from Theorem 2.1. �

2.2. Razumikhin-type theorem for VIDEs

We now focus on presenting some conditions by a Razumikhin technique to investigate

the tendency of global solutions to (1.1), namely,

(i) suppose that there exists a global solution u(t) to (1.1), and

(ii) establish the Razumikhin-type theorem to show u(t)→∞.
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Lemma 2.1. (Razumikhin-type theorem) Suppose that there exists a global solution u(t)

to (1.1), and assume that there exist a continuous function V (u), positive constants c1, c2,

ρ > 1, r > 0, and a continuous function ε(t) ¾ t such that :

(i) c1|u| ≤ V (u)≤ c2|u| for all u ∈ R;

(ii) the function V (u) along with the solution u(t) to (1.1) satisfies

inf
t≥0

V (u(t))> 0;

(iii) the derivative of the function V (u) along with the solution u(t) to (1.1) satisfies that

V ′(t1) =
dV (u(t))

dt

�

�

�

�

t=t1

=
∂

∂ u
V (u(t))

�

�

�

�

t=t1

u′(t1)≥ r,

whenever V (u(t1))≤ ρ inf
s≥t

V (u(s)) for t1 ≥ ε(t).

Then we have lim
t→∞

u(t) =∞.

Proof. Let W (t) = V (u(t)) and η(t) = ε(t)+
(2ρ−1)W (t)

r
. The Condition (ii) ensures that

W (0) > 0. By Remark 2.1, the tendency of W (t) to ∞ is resulted from the leaving-time

Tn := tρnW (0)(W ) of W (t) satisfying

Tn ≤ η(Tn−1) for n≥ 0, (2.2)

where T−1 = 0. It is obvious that (2.2) holds for n = 0. Suppose that (2.2) holds up to n

and let T n := inf{t ≥ ε(t) : W (t) > ρW (Tn)}. Then T n ≤ η(Tn).

Otherwise condition (iii) yields that dW (t)/dt ≥ r for all t ∈ [ε(Tn),η(Tn)]. Hence

the contradiction comes from

W (η(Tn))≥W (ε(Tn))+ r(η(Tn)− ε(Tn))

≥W (ε(Tn))+ r
(2ρ− 1)W (Tn)

r

≥W (Tn) + (2ρ− 1)W (Tn) = 2ρW (Tn).

Again, condition (iii) implies that

Tn+1 ≤ T n.

Otherwise t1 = inf{t ≥ T n : W (t) < ρW (Tn)} <∞ and
d

dt
W (t1) ≤ 0, which contradicts

to
d

dt
W (t1)≥ r > 0.

Therefore lim
t→∞

W (t) =∞ and the proof is completed by |u(t)| ≥
1

c2

W (t). �
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By Corollary 2.1, the Liapunov function is chosen by V (u) = |u|, which satisfies Condi-

tion (i) in Lemma 2.1 with c1 = c2 = 1. Moreover,

inf
t≥0

V (u(t)) = u(0),

and
dV (u(t))

dt
= u′(t).

In the following two lemmas, to verify Condition (ii) in Lemma 2.1, we discuss the

infimum of a solution u(t), i.e., u(0) > 0. From the proofs, it is seen that the positivity is

guaranteed not only by a sufficiently large initial value but also by the historical informa-

tion.

Lemma 2.2. Assume that λ > 0 and the integration I(t) of a kernel k(z) is positive for all

t > 0, and suppose that a solution u(t) to (1.1) exists globally, then we have u(0) ¾ M

whenever

M := e−λτu0 >

�

λ

I(τ)

�1/(p−1)

for some τ > 0. (2.3)

Proof. In view of u(0) = u0 > M , we suppose that u(t∗) = M and u(t) > M for

t ∈ [0, t∗). Then from Corollary 2.1 (i) and (2.3), we have t∗ ≥ τ and u′(t∗) ≤ 0. While,

on the other hand,

u′(t∗) =−λu(t∗) +

∫ t∗

0

k(t∗ − s)up(s)ds

>−λM +

∫ t∗

t∗−τ

k(t∗ − s)dsM p ≥ 0.

This is a contradiction implies that u(0)≥ M and the proof is complete. �

To indicate the influence of history information, we introduce a function

I∗(τ) := inf
t¾τ

∫ τ

0

k(t − s)ds for τ > 0. (2.4)

It is obvious that I∗(τ) > 0 for Type II kernels with β ≥ 1, i.e., the historical information

always influences the future behavior of solutions. Thus u(0)> 0 holds for all u0 > 0.

Lemma 2.3. Assume that λ > 0 and k(z) is of Type II with β ¾ 1, then we have u(0)> 0 for

any global solution to (1.1) with u0 > 0.

Proof. By Corollary 2.1 (i), we have u(t) > 0 for all t > 0, which implies that ū(1) > 0

and u(0)≥ 0. Hence u(0) = 0 yields that there exists a t∗ > 1 such that

u(t∗) = ū(t∗)<
I∗(1)ū(1)

p

λ
and u′(t∗)≤ 0.

But this contradicts to
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u′(t∗)≥ −λu(t∗) +

∫ t∗

0

k(t∗ − s)u(t)pds

≥ −λu(t∗) + ū(1)p
∫ 1

0

k(t∗ − s)ds

≥ −λu(t∗) + I∗(1)ū(1)
p > 0.

The proof is complete. �

In the remainder, we will prove the tendency of a global solution to (1.1) is ∞ by

Condition (iii) in Lemma 2.1.

Theorem 2.2. Assume that λ > 0 and suppose that a solution to (1.1) with u0 > 0 exists

globally, then we have

(i) for Type I, lim
t→∞

u(t) =∞ when the initial value u0 satisfies (2.3);

(ii) for Type II with β ≥ 1, it always holds that lim
t→∞

u(t) =∞; and

(iii) for Type II with 0< β < 1, lim
t→∞

u(t) =∞ when the initial value u0 satisfies (2.3).

Proof. In the proof, we choose V (u) = |u|, c1 = c2 = 1. From Lemmas 2.2 and 2.3, we

only need consider Condition (iii) in Lemma 2.1.

(i) By Lemma 2.2, u(0) ≥ M = e−λτu0, which together with (2.3) implies that there

exist ρ > 1 and r > 0 such that for all u≥ u(0) and

I(τ)up −ρλu≥ r.

Therefore, Condition (iii) in Lemma 2.1 holds since

u′(t1) = −λu(t1) +

∫ t1

0

k(t1 − s)up(s)ds

≥ −λρu(t) +

∫ t1

t

k(t1 − s)up(s)ds

≥ −λρu(t) + I(τ)u(t)p ¾ r,

whenever u(t1)≤ ρu(t) for t > 0 and t1 ≥ t +τ.

(ii)For any given ρ > 1 and r > 0, let ε(t)¾ t be such that

I(ε(t)) ≥
λρu(t) + r

u(0)p
,

then Condition (iii) in Lemma 2.1 holds since

u′(t1)≥ −λρu(t1) +

∫ t1

0

k(t1 − s)up(s)ds

≥ −λρu(t) + I(t1)u(0)
p

≥ −λρu(t) + I(ε(t))u(0)p ≥ r,

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2016.0001
Downloaded from https://www.cambridge.org/core. Hong Kong Baptist University, on 16 Oct 2017 at 03:00:06, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2016.0001
https://www.cambridge.org/core


746 Z. W. Yang, T. Tang and J. W. Zhang

whenever u(t1)≤ ρu(t) for some t1 ≥ ε(t).
The proof of (iii) is similar to (i) and the proof is complete. �

Remark 2.2. We remark that for a constant kernel k(z) = 1, all solutions to (1.1) are

convex and hence they are strictly increasing after some while. Therefore, the Razumikhin-

type theorem is not in need for the investigation of the tendency of global solutions to

(1.1). While, for variable kernels such as k(z) = 2+ sin(ωz) for large ω, a similar result is

obtained by the Razumikhin technique.

Remark 2.3. We investigate the tendency of a global solution as t →∞ by a Razumikhin

technique. Indeed, the tendency is strongly dependent on the global integrability of the

kernels and the historical information of solutions. Indeed, from the discussion in the next

subsection, there always exists a bounded global solution to (1.1) for Type I kernels and

there exist no global positive solutions to (1.1) for Type II kernels with β ≥ 1. But the

existence of global solutions to (1.1) for Type II kernels with 0 < β < 1 is still open, since

the historical influence decays as t →∞, i.e., I∗(τ)≡ 0 for all τ > 0.

2.3. Blowup and global existence for VIDEs

Following our framework in [6], we have presented some conditions such that global

solutions to (1.1) tend to ∞ and u(0) > 0. Then according to Definition 2.2, the leaving-

times

tn = tρnu(0)(u), n= 0,1, · · ·

are well-defined for any given ρ > 1 and the blowup results come from the summability

of the spending-times
∑∞

n=0(tn+1 − tn). Again the fluctuation of solutions to (1.1) yields

that the maximum value of solutions in [tn, tn+1] is extremely large. Hence we separate

the periodic into [tn, sn] and [sn, tn+1] by the arriving-times

sn = t
ρn+1u(0)

ρnu(0)
(u), n= 0,1, · · · .

Remark 2.4. For an increasing solution, the arriving-times coincide with the leaving-times

and the blowup analysis goes back to our previous work [6]. Even for a fluctuation solu-

tion, the analysis in the interval [tn, sn] is also similar as our previous work. Hence the

main contribution in this subsection is the analysis in the interval [sn, tn+1]. Anyways, it is

clear that

(i) tn < sn ≤ tn+1;

(ii) the solution u(t) in [tn, sn] is bounded by ρnu(0) and ρn+1u(0);

(iii) the solution u(t) in [sn, tn+1] is bounded from below by ρnu(0);

(iv) u(sn) = u(tn+1) = ρ
n+1u(0).
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Blowup of VIDEs and Applications 747

Different from the tendency of global solutions, the blowup behavior is only related to

the local information of the kernel. Precisely, in the following lemmas, we show that any

unbounded solution to (1.1) blows up in finite time by the two steps:

(i) the spending-times satisfy lim
n→∞
(tn+1 − tn) = 0;

(ii) the spending-times are summable.

Lemma 2.4. Assume that the integral I(t) of the kernel is an increasing function and that

a global solution u(t) tends to ∞ and u(0) > 0, then for any given ρ > 1, the leaving-times

tn = tρnu(0)(u) (n= 0,1, · · · ) satisfy

lim
n→∞
(tn+1 − tn) = 0.

Proof. By Remark 2.1, the leaving-time tn and arriving-time sn of the solution are well-

defined and the limitation is established by (i) and (ii).

(i) lim
n→∞
(sn− tn) = 0 is simple, since the solution is bounded by ρnu(0) and ρn+1u(0).

Suppose that there exists a time subsequence (also denoted by tn, sn) such that sn−tn ≥

h> 0. Then for sufficiently large n and tn +
1

2
h≤ t ≤ sn, we have

u′(t) ¾−λu(t) +

∫ t

t− 1

2
h

k(t − s)up(s)ds

¾−λρρnu(0)+ρpnu(0)p
∫ t

t− 1

2
h

k(t − s)ds

¾ρpn

�

−λρ1+(1−p)nu(0)+ I

�

1

2
h

�

u(0)p
�

¾
1

2
I

�

1

2
h

�

u(0)pρpn.

On the other hand by the mean-value theorem, there exists a ξ ∈
�

tn +
1

2
h, sn

�

such that

sn −
�

tn +
1

2
h

�

=
u(sn)− u
�

tn +
1

2
h
�

u′(ξ)
,

which yields a contradiction, given by

1

2
h≤

(ρ− 1)ρn

1

2
I
�

1

2
h
�

ρpnu(0)p−1
→ 0 as n→∞.

(ii) To derive lim
n→∞
(tn+1 − sn) = 0, we need the following representation of solutions to

(1.1), i.e., for t ≥ sn

u(t) = e−λ(t−sn)u(sn) +

∫ t

sn

∫ s

0

e−λ(t−s)k(s− r)up(r)drds.
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748 Z. W. Yang, T. Tang and J. W. Zhang

Moreover, let

J(t) :=

∫ t

0

I(z)dz.

Then J(t) is positive for all t > 0, since I(t) > 0 for all t > 0.

We suppose that there exists a time subsequence (also denoted by tn, sn) such that

tn+1 − sn ¾ h̄> 0. Then there exists an integer N > 0 such that for all n≥ N ,

ρ1−(p−1)n ≤ e−
1

2
λh̄J

�

1

2
h̄

�

u(0)p−1.

Thus for t ≥ sn +
3

4
h̄,

u(t) = e−λ(t−sn)ρn+1u(0)+

∫ t

sn

∫ s

0

e−λ(t−s)k(s− r)up(r)drds

≥ ρpnu(0)p
∫ t

sn

∫ s

sn

e−λ(t−s)k(s− r)drds

≥ ρpnu(0)p
∫ t

t− 1

2
h̄

∫ s

t− 1

2
h̄

e−λ(t−s)k(s− r)drds

≥ ρpnu(0)pe−
1

2
λh̄

∫ t

t− 1

2
h̄

∫ s

t− 1

2
h̄

k(s− r)drds

≥ ρpnu(0)pe−
1

2
λh̄J

�

1

2
h̄

�

≥ ρn+1u(0).

This is contradiction by the definition of the leaving-time tn+1. The proof is complete. �

Lemma 2.5. Assume that the positive kernel satisfies k(z) ≥ k∗z
β−1 in a neighborhood of

z = 0 for some k∗ > 0 and β > 0, u(0) > 0 and that the leaving-times tn = tρnu(0)(u),

n = 0,1, · · · , are well-defined for some ρ > 1. Then the spending-times are summable, i.e.,
∞
∑

n=0

(tn+1 − tn)<∞.

Proof. It follows from the proof of Lemma 2.4 that the leaving-times tn = tρnu(0)(u)

(n= 0,1, · · · ) satisfy lim
n→∞
(tn+1 − tn) = 0, which implies that for sufficiently large n¾ n0

e−λ(s−r) ≥
1

2
and k(s− r)≥ k∗(s− r)β−1 for all tn ≤ r < s ≤ tn+1. (2.5)

Therefore, the summability is established by
∞
∑

n=0

(sn − tn) < ∞ and
∞
∑

n=0

(tn+1 − sn) < ∞,

respectively.

(i)
∞
∑

n=0

(sn − tn)<∞ is similar to our previous analysis.
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Blowup of VIDEs and Applications 749

Continuing from the proof of Lemma 2.4, one obtains from (2.5) that

u(sn) = e−λ(sn−tn)ρnu(0)+

∫ sn

tn

∫ s

0

e−λ(sn−s)k(s− r)up(r)drds

≥ ρnpu(0)p
∫ sn

tn

∫ s

tn

e−λ(sn−s)k(s− r)drds

≥
u(0)p

2β(β + 1)
ρnpk∗(sn − tn)

β+1,

which together with u(sn) = ρ
n+1u(0) implies that for n¾ n0,

sn − tn ≤

�

2β(β + 1)

k∗ u(0)p−1

�1/(β+1)�
ρn+1

ρnp

�1/(β+1)

=

�

2β(β + 1)

k∗u(0)
p−1

�1/(β+1)
ρ1/(β+1)

ρ1/(β+1) − 1

ρn/(β+1) −ρ(n−1)/(β+1)

ρnp/(β+1)
.

Hence

∞
∑

n=n0

(sn− tn)≤

�

2β(β + 1)

k∗u(0)
p−1

�1/(β+1)
ρ1/(β+1)

ρ1/(β+1) − 1

∫ ∞

ρ(n0−1)/(β+1)

1

x p
dx <∞.

(ii) The representation is also needed for
∞
∑

n=0

(tn+1 − sn)<∞.

From (2.5), we have the following estimation

u(tn+1) = e−λ(tn+1−sn)ρn+1u(0) +

∫ tn+1

sn

∫ s

0

e−λ(tn+1−s)k(s− r)up(r)drds

≥ e−λ(tn+1−sn)ρn+1u(0) +ρnpu(0)p
∫ tn+1

sn

∫ s

sn

e−λ(tn+1−s)k(s− r)drds

≥ e−λ(tn+1−sn)ρn+1u(0) +ρnpu(0)pk∗
1

2β(β + 1)
(tn+1 − sn)

β+1,

which together with u(tn+1) = ρ
n+1u(0) and λ(tn+1 − sn)> 1− e−λ(tn+1−sn) implies that

λ(tn+1 − sn)ρ
n+1 ≥

1

2β(β + 1)
ρnpu(0)p−1k∗(tn+1 − sn)

β+1.

Therefore

∞
∑

n=n0

(tn+1 − sn)≤

�

2β(β + 1)λ

u(0)p−1k∗

�1/β
ρ1/β

ρ1/β − 1

∫ ∞

ρ(n0−1)/β

1

x p
dx <∞.

As a result of (i) and (ii), the proof is complete. �

It is ready to formulate our main results on the blowup and global existence of solutions

to (1.1).
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750 Z. W. Yang, T. Tang and J. W. Zhang

Theorem 2.3. Let λ > 0 and k(z) be of Type I. Then

(i) u(t) to (1.1) blows up in finite time for sufficiently large u0;

(ii) a global solution u(t) to (1.1) exists for 0< u0 <

�

λ

k∞ Γ(β)

�1/(p−1)

.

Proof. (i) Suppose that a solution u(t) with

u(0)>

�

λeβ

k∞

�1/(p−1)

eλ

exists globally. Then it follows from Theorem 2.2 (i) that lim
t→∞

u(t) =∞, since

I(1) =

∫ 1

0

zβ−1k1(z)exp(−z)dz ¾
k∞

eβ
.

Thus for any ρ > 1, its leaving-times tn = tρnu(0)(u) (n = 0,1, · · · ) satisfy lim
n→∞

tn =∞ and

lim
n→∞
(tn+1 − tn) = 0 by Lemma 2.4. By Lemma 2.5, this contradicts to the summability of

the spending-times.

(ii). It is easy to see that

u∗(t)≡ u∗ =

�

λ

k∞ Γ(β)

�1/(p−1)

is a supersolution to (1.1) on the interval [0,∞), since for all t ¾ 0

du∗

dt
(t) +λu∗(t)−

∫ t

0

k(t − s)u∗(s)pds

=λu∗ −

∫ t

0

k(t − s)(u∗)pds ≥ u∗λ

�

1−
I(t)

k∞ Γ(β)

�

≥ 0.

Hence Corollary 2.1 (ii) implies that solutions to (1.1) exist globally whenever 0< u0 < u∗

and the proof is complete. �

Theorem 2.4. Let λ > 0 and k(z) be of Type II. Then

(i) for β ≥ 1, any positive solution u(t) to (1.1) blows up in finite time for all u0 > 0;

(ii) for 0< β < 1, positive solutions to (1.1) blow up in finite time when u0 is large enough.

Proof. The blowup results directly come from Theorem 2.2 (ii) and (iii), Lemmas 2.4

and 2.5. Hence the proof is complete. �
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Blowup of VIDEs and Applications 751

Remark 2.5. (i) The blowup result in Theorem 2.3 is a generalization of ordinary dif-

ferential equations (the corresponding kernel k(z) = δ(z) is globally integrable).

While the blowup result in Theorem 2.4 (i) is a generalization of constant kernels.

(ii) It is seen from Lemmas 2.4 and 2.5 that the blowup is only determined by the local

behavior of the kernels.

(iii) Solutions blow up in finite time if they are strictly increasing after some while.

(iv) For Type II kernels, global solutions either tend to zero or fluctuate in the whole

interval [0,∞).

3. Applications to SLVDEs on bounded domains

In this section, we deal with the blowup and global existence of solutions to

ut =∆u+

∫ t

0

k(t − s)up(s, x)ds, t > 0, x ∈ Ω, (3.1a)

u(0, x) = u0(x)� 0, x ∈ Ω, (3.1b)

u(t, x) ≡ 0, x ∈ ∂Ω, (3.1c)

where Ω ⊆ RN is a bounded domain with a C1-smooth boundary and the kernel is of

Type I or Type II. By Kaplan’s method, the blowup and global existence are related to the

corresponding results of (1.1), where the linear coefficient λ > 0 is the first eigenvalue of

the Laplacian operator. Hence as applications of Theorems 2.3 and 2.4, the blowup and

global existence of solutions to SLVDEs on bounded domains are drawn in this section.

3.1. Kaplan’s method

Let Ω be a bounded domain with C1-boundary. Then there exists a unique continuous

positive solution φ to the eigenvalue problem

∆φ = −λ1φ, x ∈ Ω⊆ RN , (3.2a)

φ(x)≡ 0, x ∈ ∂Ω, (3.2b)
∫

Ω

φ(x)dx = 1, (3.2c)

where λ1 > 0 is Kaplan’s first eigenvalue only dependent on the domain. Let Φ(t) :=
∫

Ω
u(t, x)φ(x)dx . Then the solution u(t, x) to (3.1) blows up in finite time if and only if

so does Φ(t). It follows from (3.1) that

Φ′(t) = −λ1Φ(t) +

∫ t

0

k(t − s)

∫

Ω

up(s, x)φ(x)dxds. (3.3)
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752 Z. W. Yang, T. Tang and J. W. Zhang

Applying Jensen’s inequality to (3.3) produces

Φ′(t)≥ −λ1Φ(t) +

∫ t

0

k(t − s)Φp(s)ds, t > 0, (3.4a)

Φ(0) =

∫

Ω

φ(x)u0(x)dx > 0. (3.4b)

Therefore, Φ(t) is a supersolution to the VIDEs

v′(t) = −λ1v(t) +

∫ t

0

k(t − s)vp(s)ds, t > 0, (3.5a)

v(0) = Φ(0). (3.5b)

Thus the finite blowup of Φ(t) is resulted from the conclusions of Theorems 2.3 and 2.4.

For the global existence, we seek a supersolution in such a form u(t, x) = v(t)φ(x) to

(3.1) with an initial value u(0, x) = v0φ(x)	 0. Using the relationship

(∂t −∆)u= (v
′(t) +λ1v(t))φ(x),

(v(s)φ(x))p = ‖φ‖p∞

�

φ(x)

‖φ‖∞

�p

vp(s)≤ ‖φ‖p−1
∞ vp(s)φ(x),

u(t, x) is a supersolution to (3.1) when v(t) is a positive solution to

v′(t) = −λ1v(t) + ‖φ‖p−1
∞

∫ t

0

k(t − s)vp(s)ds, t > 0, (3.6a)

v(0) = v0 > 0. (3.6b)

Thus, for Type I kernels, Theorem 2.3 (ii) provides a global solution v(t) to (3.6), which

produces the existence of a global solution u(t, x) to (3.1) when u0(x) ≤ v0φ(x), by the

comparison theorem for SLVDEs yielded by Lemma 3.2 in [13] (see also [8, 19, 42] in

detail).

3.2. Blowup and critical exponents

Theorem 3.1. Assume that Ω is a bounded domain with C1-boundary.

(i) Let k(z) be of Type I. Then for all β > 0,

solutions to (3.1) blow up in finite time when u0(x)� 0 is large enough; a global

solution exists when u0(x)� 0 is small.

The property implies that the critical exponent is p∗ = 1 for all β > 0.

(ii) Let k(z) be of Type II. Then
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Blowup of VIDEs and Applications 753

(a) for β ≥ 1, solutions to (3.1) blow up in finite time for all u0(x)� 0;

(b) for 0 < β < 1, solutions to (3.1) blow up in finite time when u0(x) � 0 is large

enough.

The property (a) implies that the critical exponent is p∗ =∞ for all β ≥ 1.

Proof. From Kaplan’s method in Section 3.1, we let φ be the unique solution to (3.2).

Then Φ(t) =
∫

Ω
u(t, x)φ(x)dx is a supersolution to (3.5). Therefore, the blowup results

are proved by Theorems 2.3 and 2.4.

From Theorem 2.3 (ii), the solution v(t) to (3.6) exists globally when v0 > 0 is suffi-

ciently small, which implies that any solution to (3.1) exists globally whenever v0 ≤ v0φ.

The proof is complete. �

Remark 3.1. The result in Theorem 3.1 (i) is a generalization of the local parabolic prob-

lem (1.3) on bounded domains and the results for Type II in (ii) show that the critical

exponent is strongly dependent on the global integrability of the kernel. While the exis-

tence of a global solution for Type II kernels with 0< β < 1 is still open.

4. Applications to SLVDEs on RN

As another application, we analyze the blowup and global existence of solutions to

SLVDEs on RN of the form

ut =∆u+

∫ t

0

k(t − s)up(s, x)ds, t > 0, x ∈ RN , (4.1a)

u(0, x) = u0(x)� 0, x ∈ RN , (4.1b)

u(t,∞) ≡ 0. (4.1c)

By Fujita’s approach in [10], the blowup and global existence are also related to the results

of (1.1). However, the linear coefficient has a coupled relationship with the initial value.

4.1. Fujita’s approach

Let

G(σ, x) := (4πσ)−
N

2 exp

�

−
|x |2

4σ

�

, σ > 0, x ∈ RN ,

and

Φσ(t) :=

∫

RN

G(σ, x)u(t, x)dx .

In view of

∆G(σ, x) =
|x |2− 2Nσ

4σ2
G(σ, x)
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and
∫

RN

[G(σ, x)∆u(t, x)− u(t, x)∆G(σ, x)]dx = 0,

from (4.1) and Jensen’s inequality, one obtains that

Φ′σ(t) =

∫

RN

∆u(t, x)G(σ, x)dx +

∫ t

0

k(t − s)

∫

RN

up(s, x)G(σ, x)dxds

≥−
N

2v
Φσ(t) +

∫ t

0

k(t − s)Φp
σ(s)ds.

By [14], the initial value Φσ(0) =
∫

RN

G(σ, x)u0(x)dx satisfies

Φσ(0)≥ Cσ−N/2,

where the constant C > 0 is dependent on the initial function u0. Therefore, Φσ(t) is a

supersolution to

v′(t) = −
N

2σ
v(t) +

∫ t

0

k(t − s)vp(s)ds, t > 0, (4.2a)

v(0) = Φσ(0) (4.2b)

and the blowup results still come from Theorems 2.3 and 2.4.

For the global existence, we consider a supersolution to (4.1) in a form of u(t, x) =

δ(t + 1)ηG(t + 1, x) with an initial value u(0, x) = δG(1, x). A direct calculation yields

that

(∂t −∆)u= δη(t + 1)η−1G(t + 1, x) = δη(4π)−
N

2 (t + 1)η−1− N

2 exp

�

−
|x |2

4(t + 1)

�

,

and for all 0≤ s ≤ t and x ∈ RN

up(s, x) =δp(s+ 1)pη(4π(s+ 1))−
pN

2 exp

�

−
p|x |2

4(s+ 1)

�

≤δp(4π)−
pN

2 (s+ 1)pη−
pN

2 exp

�

−
|x |2

4(t + 1)

�

.

Hence the global existence will be yielded by the inequality

η ¾ δp−1(t + 1)1+
N

2
−η

∫ t

0

k(t − s)(s+ 1)pη−
pN

2 ds (4.3)

for sufficiently small δ > 0, η > 0 and all t ≥ 0.
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4.2. Blowup and critical exponents

Theorem 4.1. Assume that Ω = RN is an unbounded domain.

(i) Let k(z) be of Type I. Then the critical exponent of (4.1) satisfies

p∗ ∈
�

1+
2

N
, 1+

2+ 4β

N

�

.

Namely,

(a) if 1< p < 1+
2

N
, solutions to (4.1) blow up in finite time for all u0(x)� 0;

(b) if p > 1+
2+ 4β

N
, solutions to (4.1) blow up in finite time for sufficiently larger

u0(x) and a global solution exists when u0 is small.

(ii) Let k(z) be of Type II. Then

(a) for β ≥ 1, solutions to (4.1) blow up in finite time for all u0(x)� 0;

(b) for 0 < β < 1, solutions to (4.1) blow up in finite time when u0(x) � 0 is large

enough.

The property (a) implies that the critical exponent is p∗ =∞ for all β ≥ 1.

Proof. We only consider the results in (i).

(a) Suppose that there exists a global solution to (4.1) with a given initial value u0 � 0.

Then for any fixed positive σ > 0, Φσ(t) is a global supersolution to (4.2), which implies

that a solution v(t) with v0 = Φσ(0) to (4.2) exists globally.

On the other hand, it follows from 1< p < 1+2/N that there exists a sufficiently large

σ > 0 such that

Cσ
− N

2
+ 1

p−1 > e−
N

2

�

N

k∞ Γ(β)

�1/(p−1)

and

I(σ) ≥
1

2
k∞ Γ(β).

Hence (2.3) holds for τ = σ and Theorem 2.2 (i) ensures that the global solution v(t)

to (4.2) with v0 = Φσ(0) tends to ∞ as t → ∞. By Lemmas 2.4 and 2.5, one obtains a

contradiction that v(t) blows up in finite time.

(b) The blowup result is trivial. In the following, let p > 1 +
2+ 4β

N
and η be a

sufficiently small such that

η <
N

2
and β + 1−

(p− 1)N

2
+ (p− 1)η < 0 (4.4)
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and a continuous function h(t) be defined by

h(t) =
1

t + 1

∫ t

0

�

1−
s+ 1

t + 1

�β−1

exp(−(t − s))

�

s+ 1

t + 1

�pη− pN

2

ds.

It follows from the facts that h(0) = 0,

1

t + 1

∫ t

1

2
t

�

1−
s+ 1

t + 1

�β−1

exp(−(t − s))

�

s+ 1

t + 1

�pη− pN

2

ds

≤2−pη+
pN

2

∫ t

1

2
t

�

1−
s+ 1

t + 1

�β−1

d
s+ 1

t + 1

≤2−pη+
pN

2

∫ 1

t+2

2t+2

(1− r)β−1 dr

=2−pη+
pN

2

1

β

�

t

2t + 2

�β

¶ 2−pη+
pN

2
−β 1

β

and

1

t + 1

∫
1

2
t

0

�

1−
s+ 1

t + 1

�β−1

exp(−(t − s))

�

s+ 1

t + 1

�pη− pN

2

ds

≤exp

�

−
1

2
t

�
∫

1

2
t

0

�

1−
s+ 1

t + 1

�β−1� s+ 1

t + 1

�pη− pN

2

d
s+ 1

t + 1

=exp

�

−
1

2
t

�
∫

t+2

2t+2

1

t+1

(1− r)β−1 r pη− pN

2 dr

≤exp

�

−
1

2
t

�

(t + 1)−pη+
pN

2

∫
t+2

2t+2

0

(1− r)β−1 dr

≤exp

�

−
1

2
t

�

(t + 1)−pη+
pN

2

1

β

�

t

2t + 2

�β

,

that h(t) is bounded in the whole interval [0,∞), which together with (4.4) implies that

(t + 1)1+
N

2
−η

∫ t

0

k(t − s)(s+ 1)pη−
pN

2 ds ≤ k∞ (t + 1)β+1− (p−1)N

2
+(p−1)ηh(t)

is bounded in the whole interval [0,∞). Therefore there exists a sufficiently small δ > 0

such that (4.3) and the proof is complete. �

Remark 4.1. For a global integrable kernel, the critical exponents of VIDEs and SLVDEs on

bounded domains are same as the local problems. But the critical exponent of SLVDEs on
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RN is more complex, since the linear coefficient of corresponding VIDEs couples with the

initial condition. For the local problem, the critical exponent is p∗ = 1+2/N (see [1,10]),

but for the non-local problems, in Theorem 4.1 (i) we only present the upper and below

bounds of the critical exponent and the existence of global solutions to (4.1) for

1+
2

N
≤ p ≤ 1+

2+ 2β

N

is still open. For Type II kernels, the critical exponent is p∗ = ∞ for β ¾ 1, but the

formulation of the critical exponent for 0< β < 1 is unknown.

5. Conclusions and future work

In this paper, the blowup and global existence of the solutions to VIDEs with a linear

dissipative term are considered for local and global integrable kernels. It is shown that the

blowup behavior depends not only on the global integrability of the kernels but also on

the historical effect. For a global integrable kernel, i.e., Type I, the blowup results of VIDEs

and SLVDEs on bounded domains are similar to the local problems. For Type II kernels

with β ≥ 1, the blowup results of VIDEs, SLVDEs on bounded domains and RN are totally

different from the local problems since the historical information always effects the future

behavior. However, there are still two open problems to be solved, given by

(i) the existence of global solutions to (1.1) for Type II kernel with 0< β < 1;

(ii) the exact value of the critical exponent of SLVDEs (4.1) on RN for Type I kernels.

In the future, we not only focus on the theoretical analysis for the two problems above, but

also construct the efficient numerical scheme for numerical study of blowup in finite time,

see [4,5,7,31,34,40,41]. In fact, it is very important to investigate the blowup behaviors

of solutions in a numerical viewpoint.
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