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Abstract. Phase-field models provide a way to model fluid interfaces as having finite
thickness; the interface between two immiscible fluids is treated as a thin mixing layer
across which physical properties vary steeply but continuously. One of the main chal-
lenges of this approach is in resolving the sharp gradients at the interface. In this paper,
moving finite-element methods are used to simulate interfacial dynamics of two-phase
viscoelastic flows. The finite-element scheme can easily accommodates complex flow
geometry and the moving mesh strategy can cluster more grid points near the thin in-
terfacial areas where the solutions have large gradients. A diffused monitor function is
used to ensure high quality meshes near the interface. Several numerical experiments
are carried out to demonstrate the effectiveness of the moving mesh strategy.

AMS subject classifications: 65M05, 76M10, 76T10

Key words: Moving finite-element method, two-phase flow, viscoelastic flow, non-Newtonian
flow.

1 Introduction

Modeling and simulating two-phase viscoelastic flows have been challenging both math-
ematically and technically. There have been many computational techniques developed
to tackle the problem, including diffuse-interface methods [1], interface tracking meth-
ods [17], level-set methods [16, 20], finite-element methods with adaptive mesh refine-
ments [22] and spectral methods with adaptive mesh redistribution [7]. The governing
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equations require additional constitutive equations for stress tensor and numerical com-
putations require higher mesh resolution around fluid interfaces. Unlike the Newtonian
flow whose local stress is proportional to the local strain rate, for polymer fluids the local
stress usually depends on its deformation history due to the long chain molecular struc-
ture. Therefore an additional constitutive relation between the stress and the strain of
flow such as Upper Convected Maxwell (UCM) model by Oldroyd [13] should be cou-
pled into the flow system.

When comes to multi-phase flows, problems arise due to the sharp interface between
fluids. The classical jump conditions and surface tension are introduced into the Navier-
Stokes equations in which the interface has zero width. Different approaches such as
volume-of-fluid (VOF) and level-set method have been developed to handle this prob-
lem, see, e.g., [16, 20]. Compared to sharp interface methods, diffuse interface methods
are based on a different theoretical model where the interface is treated as a smooth tran-
sition region from one phase to another. The original idea can be found in [2, 3], and [1]
is a useful review of the diffuse interface model. In [12, 22], diffuse interface model is
applied for Newtonian and non-Newtonian flows.

The main challenge for simulating the phase-field evolution is that very fine meshes
are needed for resolving thin interfaces. In order to produce physically correct results one
needs a very thin interface and it is almost impossible to solve the problem practically
when using uniform meshes. In past years, many adaptive mesh techniques have been
proposed which can be classified as adaptive mesh refinement methods and adaptive
mesh redistribution methods, see [14]. In this work, we will simulate multi-phase flows
using a moving mesh method (i.e., adaptive mesh redistribution method in the sense of
[14]). In particular, we will use the moving mesh algorithms developed in Li et al. [10,11]
which redistribute mesh nodes based on harmonic mapping. The moving mesh method
based on harmonic mapping has been applied successfully to several complex problems
including incompressible flow [5,6], reaction-diffusion systems [15], and dentritic growth
[18, 19]. The goal of the moving mesh method is to reduce the computational cost and to
enhance the accuracy in resolving the diffuse interfaces.

In this work, the Oldroyd-B model for constitutive relation of viscoelastic fluids is
used. The following section will briefly review the Oldroyd-B model for viscoelastic
flow and the phase-field model for two-phase flows. Section 3 will describe the coupled
equations and the finite-element formulation used in our computations. The moving
mesh methods and the corresponding monitor function will be discussed in Section 4 and
several numerical tests will be given in Section 5. The last section draws the conclusion
with some discussions on the future works.

2 The Oldroyd-B model and the phase-field model

In this section, we will briefly review the governing equations for viscoelastic flows and
the phase-field model for multi-phase flows.
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2.1 The Oldroyd-B model for polymer fluids

The incompressible Navier-Stokes equations read

∇·u=0, (2.1a)

ρ

(

∂u

∂t
+u·∇u

)

=∇·(−pI+T)+ρg, (2.1b)

where u is velocity, ρ is density, p is pressure, g is gravity and T is extra-stress tensor. In
Newtonian fluids the extra-stress tensor is T=2µD, and D= 1

2

[

(∇u)T+∇u
]

is the strain
rate.

To study viscoelastic fluids, the Upper Convected Maxwell (UCM) model is a simple
one to begin with. In this model the relation between extra-stress tensor and strain rate
is given by

T+λT∇=2µD,

where λ is the relaxation time of stress, µ is the total viscosity and

T∇=
∂T

∂t
+u·∇T−(∇u)T ·T−T·(∇u)

is the upper-convected derivative of stress tensor.

In Oldroyd-B model the extra-stress tensor is divided into polymeric and Newtonian
parts,

T=τ+2µsD,

where µs is the Newtonian viscosity. The constitutive relation between polymeric stress
and strain rate is given by

τ+λτ∇=2µpD,

where µp = µ−µs is the polymeric viscosity. Now the conservation of mass, momentum
with constitutive equations can be written as

∇·u=0, (2.2a)

ρ(
∂u

∂t
+u·∇u)=∇·(−pI+τ+2µs D)+ρg, (2.2b)

τ+λτ∇ =2µpD. (2.2c)

2.2 Phase-field model for interfacial dynamics

In phase-field model, the fluid phase is represented by a phase function φ. Let φ =±1
denote two stable phases and the interface is a smooth transition region where −1<φ<

1. In order to model the interfacial dynamics, we need to define a free energy of the
interface.
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The Cahn-Hilliard type free energy of a phase-field is a function of the phase param-
eter φ defined as

f (φ)=
α

2
|∇φ|2+βg(φ), (2.3)

where
√

αβ produces the surface tension and
√

α/β controls the interfacial width. The
first term on the right hand side of (2.3) is the gradient energy and the second one is the
bulk energy which has two minima corresponding to two stable phases. The chemical
potential is the rate of change of the free energy with respect to φ

c=
δ
∫

Ω
f (φ)dΩ

δφ
=−α∇2φ+βg′(φ). (2.4)

Finally the phase parameter φ is evolved by the Cahn-Hilliard equation:

∂φ

∂t
=γ∇2c=γ∇2

[

−α∇2φ+βg′(φ)
]

, (2.5)

where γ is the mobility. The interfacial width is of order

ǫ∼

√

α/β. (2.6)

If the phase is convected by fluid velocity and if we let

α= kǫ2, β= k, g(φ)=
1

4
(φ2−1)2,

then
∂φ

∂t
+u·∇φ=γ∇2[k(φ3−φ−ǫ2∇2φ)], (2.7)

which has an equilibrium profile

φ(x)= tanh(
x√
2ǫ

).

As ǫ→0, the ratio α/ǫ produces the interfacial tension σ in the classical sense [9]:

σ=
2
√

2

3
kǫ. (2.8)

The original fluid momentum equation (2.1b) coupled with surface tension becomes

ρ(φ)

(

∂u

∂t
+u·∇u

)

=∇·(−pI+T(φ))+c∇φ+ρ(φ)g, (2.9)

where the density ρ and the stress tensor T depend on the phase parameter φ.
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3 The coupled system

For two-phase non-Newtonian and Newtonian mixture, the incompressible Navier-Stokes
equations with the Oldroyd-B model are

∇·u=0, (3.1a)

ρ(φ)(
∂u

∂t
+u·∇u)=∇·(−pI+T(φ))+c∇φ+ρ(φ)g, (3.1b)

τ+λ

[

∂τ

∂t
+u·∇τ−(∇u)T ·τ−τ ·(∇u)

]

=2µpD, (3.1c)

∂φ

∂t
+u·∇φ=γ∇2[k(φ3−φ−ǫ2∇2φ)], (3.1d)

where c= k(φ3−φ−ǫ2∇2φ) is the chemical potential, k is a constant determined by (2.8)
and γ is the mobility of c. In (3.1a), the density and stress tensors, which depend on the
phase function φ are given by

ρ(φ)=
1+φ

2
ρ1+

1−φ

2
ρ2, (3.2a)

T(φ)=
1+φ

2
(τ+2µs1D)+

1−φ

2
(2µs2D). (3.2b)

If both components are non-Newtonian, the formulations are similar. Moreover, appro-
priate boundary conditions should be chosen for specifically given problems.

Although there are many ways to discretize the governing equations above, we seek
for ones that are easy to implement. One thing in mind is to make the resulting matrices
symmetric positive definite so that we can make use of the Gauss-Seidel-iteration based
algebraic multi-grid solver whose average time complexity is O(N). Let û, p̂, τ̂ and φ̂
be the test functions corresponding to u, p, τ and φ, respectively. For the momentum
equations we adopt a simple pressure correction projection scheme to satisfy the incom-
pressibility condition (3.1a). The time discretization form reads

∫

Ω

{[

ρ(φn+1)

(

ũ−un

△t
+un+1 ·∇un+1−g

)

−cn+1∇φn+1

]

·û

+Tn+1(φn+1) :∇û
}

dΩ=0, (3.3)
∫

Ω
(∇2 p̃) p̂dΩ=

∫

Ω
(∇·ũ) p̂dΩ, (3.4)

∫

Ω
un+1 ·ûdΩ=

∫

Ω
(ũ−∇ p̃)·ûdΩ. (3.5)

In (3.3), the inner product between two vectors A and B is denoted by A : B, and is given
by

A : B= trace(BT ·A).
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In (3.5), ũ is the intermediate velocity which is not divergence free. We compute

p̃=
△t

ρ(φn+1)
p

instead of p to avoid extra errors due to the varying time step △t and different density
values. A detailed overview of projection schemes and their error estimates can be found
in [8]. For constitutive equations we use the following weak formulation

∫

Ω

{

τ+λτ∇−2µpD
}

: (τ̂+αu·∇τ̂)dΩ=0. (3.6)

Note that we choose a different test space to improve the computation; which is as same
as [22]. The Cahn-Hilliard equation is solved in two steps because C0 elements are used
in our computation. The time discretization reads

∫

Ω

{

φn+1−φn

△t
+un+1 ·∇φn+1−γ∇2cn+1

}

φ̂dΩ=0, (3.7)

∫

Ω
cn+1φ̂dΩ=

∫

Ω
k(φ3

n+1−φn+1−ǫ2∇2φn+1)φ̂dΩ. (3.8)

Finally, the whole system can be written in the following general form

Un+1−Un

∆t
+F(Un+1)=0, (3.9)

where Un and Un+1 are the solution vector at step n and step n+1 levels respectively.

Using standard iteration procedure, we let U
(0)
n+1 =Un and solve

U
(k+1)
n+1 −Un

∆t
+F

(

U
(k)
n+1

)

=0, (3.10)

repeatedly. In each iteration step, we pass the temporary solution U
(k)
n+1 to F in Eq. (3.10)

and obtain the updated solution U
(k+1)
n+1 . These sub-steps are explicit except that all the

terms involving the Laplacian operators are treated implicitly. Note that the whole sys-
tem is implicit; so the block Gauss-Seidel iterations are used instead of solving a large
linear system directly. The system is divided into six sub-systems and the algebraic multi-
grid solver is applied to each of the sub-matrix blocks. In our computations, five to eight
block-iterations are needed for each time step, which makes the iteration errors drop to
below 10−10.

4 Space and time adaptation

4.1 Moving mesh method for capturing interface

Solving the Cahn-Hilliard equation requires high mesh resolution around sharp interface,
usually we need two or more elements within the interfacial region. But using a uniform
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fine mesh will slow down the computation significantly. In addition, if we increase the
mesh resolution globally without using local refinements, it is likely to cause instability.
One way to handle this is to use coarse meshes with local refinement which can reduce
computational costs [22]. Because of mesh structure modification, this method needs
storage reallocation which is a fairly complex process. An alternative simpler approach
is to use moving mesh methods which can concentrate the mesh nodes on sharp interface
without changing mesh structure and the mesh size changes smoothly near the interfacial
regions. In our computations, a moving mesh strategy based on the framework of Li et
al. [11] is adopted. In [11], a mesh generation technique using harmonic mappings was
developed. Apart from clustering more grid points near the interfaces, another benefit we
wish to gain from using the moving mesh technique is the anisotropic mesh adaptation.
It is hoped that more mesh nodes should be placed along the interface normal than that
on the interface tangent.

The basic idea is to redistribute mesh nodes according to the regularity of solutions,
which can be achieved by using harmonic mapping. Let x and ξ be physical and logical
mesh coordinates, respectively. The following Euler-Lagrange equation

∂

∂xi

(

Gij ∂ξk

∂xj

)

=0 (4.1)

gives a continuous and one-to-one mapping which is differentiable and has a non-zero
Jacobian, where the inverse of G = (Gij) is called monitor function which is in general
dependent on the underlying solutions. The corresponding mesh energy is

E(ξ)=∑
k

∫

Ω
Gij ∂ξk

∂xi

∂ξk

∂xj
. (4.2)

To make the moving mesh simulations effective, the key is to develop an efficient mesh
redistribution procedure so that this part will cost as little as possible comparing with the
solution evolution part. This issue was discussed in a recent paper of Di et al. [4].

In order to increase mesh resolution at interface we use the following function to
realize the transition zone of the phase function:

g(x)= |∇φ(x)|2 . (4.3)

Consequently, the corresponding monitor function is

m(x)=
√

1+α1gs(x), (4.4)

where gs is a smoothed version of g and α1 is a scaling parameter. It is pointed out that the
smoothed function gs is still of compact support, which is non-zero only within or near
the interface because the phase function is constant away from the interface. This will
make the mesh near the interface badly stretched. An example is shown in Fig. 1 which
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comes from our first numerical example in Section 5. However, we still need regular
elements with enough resolution for correctly computing the velocity and viscoelastic
stress field away from the interface. One remedy is to smooth the function several times
but this approach may be too costly. Instead, we solve a heat equation implicitly to diffuse
the monitor function which is a much faster process due to the use of the algebraic multi-
grid solvers. Let gd(x)= g(x,1), where g(x,t) satisfies

∂g

∂t
=ν∇2g. (4.5)

We define the new monitor function as

m(x)=
√

1+α1gs(x)+α2gd(x), (4.6)

where α2 > 0 is a blend factor. This monitor function contains both gs and gd. On the
one hand, we need the original high frequency monitor to control the local element size
at the interface. On the other hand, using only gd we may not have sufficiently small
elements at the interface since gd is very smooth. A similar idea was also used in [18].
The diffused monitor function with a few smooth steps produces more reasonable mesh
distribution as demonstrated in Fig. 1. It is seen from Fig. 1 that the monitor (4.6) yields
smaller ratio between the large and small element sizes which is found important for
solving the multi-phase flow problems.

4.2 Adaptive time step

In moving mesh implementation, another important consideration is about adaptive time
step due to the varying element size and velocity field. Time step must be determined
based on physical and artificial parameters to avoid inaccuracy or instability so that we
do not need to set time step manually. From the coupled equations described in Section
3, we consider the terms involving spatial derivatives. Roughly speaking, the following
condition should be considered

△t<min

{

△tmax,C1
h

|u| ,C2
h4

γσǫ

}

, (4.7)

where C1 and C2 are constants, h is the local element size and u is the local velocity norm.
It is obvious that the time step is constrained by the CFL condition and the Cahn-Hilliard
equation. For correct phase-field computation, h<ǫ should be satisfied around interfacial
regions and increasing ǫ/hmin may produce more accurate results while slow down the
overall computation. So we keep ǫ/hmin being some constant to balance the accuracy and
efficiency. A more detailed analysis of ǫ and h can be found in [9].

In our numerical computations, we choose △tmax=0.01 in (4.7) in all of our numerical
experiments.
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(a)

(b)

Figure 1: Sample moving meshes for the example in Section 5.1 obtained by using (a): the monitor function
(4.4) and (b): the monitor function (4.6). The right gives the zoomed structure that is boxed on the left figure.

5 Numerical results

5.1 Vibrating of square bubbles

In our first experiment we consider the surface tension effects of a bubble by measuring
its shape deformation history. A similar test of Newtonian flow is investigated in [12]
without quantitative measurement of the bubble shape. At first a square bubble is placed
in the center of domain shown as in Fig. 1 and the bubble begins to vibrate and its shape
finally becomes round. The domain size is 1×1 and the bubble size is 0.2×0.2. Both fluid
component are non-Newtonian and the physical parameters are ǫ = 0.01,0.005,0.0025,
µs1 =µp1 =µs2 =µp2 =0.1, λ=0.1, γ=10−4 and k=0.1.

We use both moving mesh and uniform mesh to validate the convergence. The shape
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Figure 2: Example 5.1: transient deformation of bubble evolutions due to the surface tension effects. Both
uniform and moving grids are used.
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Figure 3: Example 5.1: bubble area change using different interfacial width.

deformation history

D=
L−S

L+S
(5.1)

is plotted in Fig. 2, where L and S are the largest and smallest distance from bubble center
to the interface. It is observed from Fig. 2 that the 32×32 and 50×50 moving mesh results
and the 100×100 uniform mesh results are in good agreement, while 50×50 and 64×64
uniform meshes produce poor results. A performance statistics for this example is given



Y. Zhang, H. Wang and T. Tang / Commun. Comput. Phys., 7 (2010), pp. 333-349 343

Table 1: Example 5.1: performance statistics.

Grid Size Mesh nodes Adaptive CPU (sec.)
32×32 1259 Yes 7614
40×40 1932 Yes 11765
50×50 3009 Yes 18394
50×50 3009 No 12073
64×64 4880 No 20132
80×80 7579 No 32840

100×100 11833 No 51552

Table 2: Example 5.3: test results of rising bubbles.

Case σ µ1 Newtonian matrix U
A 0.1 0.562 Yes 0.090
B 0.1 0.562 No 0.086
C 0.1 0.0562 Yes 0.554
D 0.01 0.187 Yes 0.252
E 0.01 0.562 No 0.086

in Table 1, from which it is observed that a considerable CPU time is saved.

To reduce the area change ratio, defined by (Area(t)−Area(0))/Area(0), smaller ǫ
may be chosen. Fig. 3 compares the area change ratio with different interfacial widths. It
is observed from the figure that smaller interfacial widths preserves the area better.

5.2 Deformation of bubbles in shear flow

5.2.1 Deformation of Newtonian bubble

The deformation of a bubble in shear flow is also studied to validate our algorithm. The
first test is Newtonian bubble in Newtonian matrix which is the same as that in [22]
except the Reynolds number Re=1 is used in our computation because the inertia in our
computation is not ignored. The capillary number Ca = µaκ/σ = 0.1 is used, where a is
drop radius and κ is shear rate. We set µ = µs1 = µs2, γ = 10−4 and ǫ = 0.01. The domain
size is 16a×8a where the bubble is placed in the center of domain.

Again the shape deformation D = (L−S)/(L+S) is considered, which is plotted in
Fig. 4 where L and S are the longest and shortest distance from bubble center to interface,
respectively. The deformation is also reported in [22] at t = 4 with several small values
of ǫ (ǫ = 0.01,0.005 and 0.0025 vs. our value ǫ = 0.01). It is shown that our results using
moving mesh methods is in good agreement with those given in [22]. At t=4 we obtained
D = 0.1081 which is close to the values of D = 0.1067,0.1085,0.1087 (corresponds to ǫ =
0.01,0.005 and 0.0025 respectively) given in [22].

Fig. 5 plots the time-step history. When velocity is small, the time-step is almost
constant since solving the Cahn-Hilliard equation requires small time-steps.
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Figure 4: Example 5.2.1: Newtonian bubble deformation in Newtonian matrix (5960 mesh nodes are used with
ǫ=0.01).
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Figure 5: Example 5.2.1: adaptive time step history.

5.2.2 Deformation of viscoelastic bubble

The next test is a non-Newtonian bubble in a Newtonian matrix. We set γ = 0.0016 and
ǫ = 0.04 as in [21]. In this test we compared the shape deformation using different Deb-
orah numbers De = λκ. Fig. 6 plots the deformation D =(L−S)/(L+S) for De =0.5,1,2.
It is observed that the non-Newtonian bubbles overshoot in D. The overshooting phe-
nomenon agrees with the observations in [21] except that the curves of non-Newtonian
bubbles are all above the Newtonian curve. This may be caused by the inertia of the bub-
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Figure 6: Example 5.2.2: deformation of viscoelastic bubbles in Newtonian matrix with different Deborah
numbers (3841 mesh nodes are used with ǫ=0.04)

ble which is not ignored in our computations. The non-Newtonian bubbles have smaller
viscosity and move faster than the Newtonian bubble at the beginning; and the polymeric
stress is damped due to the use of the coarse meshes.

5.3 Rising of bubbles

We also compute the rising of Newtonian bubbles in Newtonian and non-Newtonian
fluids. The configuration is same as that in [22]: a bubble with diameter d=1 is placed at
(0,2) in a 4×15 domain and we use a mesh with 6134 nodes for half of the domain. The
fixed parameters are ρ1=0.5, ρ2=1, g=2 and the viscosity ratio µ1/µ2=1. If the matrix is
non-Newtonian, we also set µp = µs =0.5µ2. We measured the steady state velocity U of
the rising bubbles and the results are listed in Table 2 where the parameters for 5 different
cases are also listed.

Fig. 7 presents the corresponding bubble shapes for the tests (a)-(e) listed in Table 2,
which correspond to t =89.7s, 98.2s, 16.6s, 34.7s and 101.3s, respectively. It is observed
that our moving mesh results are in good agreement with the cases a/b/d and the non-
Newtonian case in [22]. The slight difference may be caused by the element size since the
moving mesh method cannot control the smallest element size precisely.

It is noticed that both Cases (b) and (d) are non-Newtonian with the same µ1, but
the surface tension is different: the surface in Case (e) is 10 times smaller that in Case
(b). Consequently, Consequently, it is observed that the trailing edge dragged by the
viscoelastic stress at the bottom of bubble is much longer in Case (e).

Finally, we show the mesh distribution around the interface in Fig. 8. It is noticed that
the element sizes away from the interface are not too small. This is in fact quite impor-
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(a) (b)

(c) (d)
(e)

Figure 7: Example 5.3: final shape of the rising
bubble: (a) in Newtonian and Newtonian fluids
with the surface tension σ=0.1 and viscosity µ1 =
0.562; (b) in Newtonian and non-Newtonian fluids,
with the surface tension σ=0.1 and viscosity µ1 =
0.562; (c) in Newtonian and Newtonian fluids with
the surface tension σ=0.1 and viscosity µ1=0.0562;
(d) in Newtonian and Newtonian fluids with the
surface tension σ = 0.01 and viscosity µ1 = 0.187;
and (e) in Newtonian and non-Newtonian fluids,
with the surface tension σ=0.01 and viscosity µ1=
0.562.
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Figure 8: Example 5.3: mesh distribution around the interface of bubble.

tant in obtaining accurate numerical approximations. In fact, we are not only interested
in resolving the phase function and its interface, but also in obtaining accurate flow fields
which are governed by the nonlinear system (3.1a). As the moving mesh methods cor-
respond to a continuous process, a reasonable resolution for the flow parameters in the
whole solution domain is required. In our numerical computations, it is found that if the
element sizes are too big even quite far away from the interface then the rising velocity
and viscoelastic stress will be under estimated. In other words, if the flow fields are not
well resolved then some physical details may be missing, which may have direct effect
on the fluid velocity and the bubble shape.

6 Conclusion

In this work, we successfully applied the moving finite-element method for two-phase
viscoelastic flow simulations. Since the mesh redistribution procedure normally requires
to solve large size matrix equations, we decoupled the matrix equations to a much sim-
pler block-tridiagonal type which can be efficiently solved by a particularly designed
multi-grid method which is described in [10]. It is found that the moving mesh approach
can lead to considerable savings in grid numbers and also the CPU time.

In our computations, it is observed that the balance between the largest and smallest
element sizes should be given. In other words, we need to diffuse the monitor functions
so that a certain portion of mesh nodes are distributed away from the interfaces. This
will produce reasonably accurate velocity fields that in turn gives more accurate approx-
imation to the phase functions.

In future works, we will study how the moving mesh interpolation affects the solution
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of velocity field for unsteady problems. We will also extend the present 2D algorithms to
3D simulations.
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