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ADAPTIVE MESH REDISTRIBUTION METHOD BASED ON
GODUNOV’S SCHEME∗
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Abstract. In this work, a detailed description for an efficient adaptive mesh redistribution algo-
rithm based on the Godunov’s scheme is presented. After each mesh iteration a second-order finite-
volume flow solver is used to update the flow parameters at the new time level directly without using
interpolation. Numerical experiments are performed to demonstrate the efficiency and robustness of
the proposed adaptive mesh algorithm in one and two dimensions.
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1. Introduction
Several moving mesh techniques have been introduced in the past for solving the

problems governed by the hyperbolic conservation laws. Harten and Hyman [15] began
the earliest study in this direction by moving the grid at an adaptive speed in each
time step to improve the resolution of shocks and contact discontinuities. After their
work, many other moving mesh methods for hyperbolic problems have been proposed
in the literature, including Azarenok and Ivanenko [1, 19], Liu et al. [24], Mackenzie
et al. [29], and Tang [36]. However, it is noticed that some existing moving mesh
methods for hyperbolic problems are designed for one space dimension. In 1D, it is
generally possible to compute on a very fine grid and so the need for moving mesh
methods may not be clear. Multidimensional moving mesh methods are often difficult
to use in fluid dynamics problems since the grid will typically suffer large distortions
and possible tangling. It is therefore useful to design robust moving mesh algorithms
for hyperbolic problems in multidimensions.

Several adaptive grid methods have been proposed based on the harmonic map-
ping theory, see e.g., [33, 34]. Dvinsky [12] suggests the possibility that harmonic
function theory may provide a general framework for developing useful mesh gener-
ators. Meshes obtained by Dvinsky’s method have desirable properties, particularly
regularity or smoothness. Motivated by the work of Dvinsky, a moving mesh finite
element strategy based on harmonic mapping was proposed and studied by Li et al.
in [27, 28]. The numerical experiments show that their methods can accurately re-
solve detail features of singular problems in two- and three-space dimensions. Note
that adapted meshes (and nonadapted meshes as well) in the complex physical do-
mains, e.g. nonconvex, obtained by solving the discretized Euler equations, cannot be
guaranteed of folding. Another class of adaptive grid generation method based on the
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harmonic maps has been suggested by Ivanenko et al. [17, 8, 18]. Their method is to
minimize a finite-difference approximation to a Dirichlet’s (or harmonic) functional.
The discrete functional has an infinite barrier at the boundary of the set of grids with
all convex quadrilateral cells. The infinite barrier guarantees unfolded grid generation
in any simply and multiply connected 2D domains. The barrier property is also of
particular importance in the vicinity of shock waves where the cells may become very
narrow [3].

In this work, we will describe an adaptive mesh redistribution (AMR) method
based on minimizing a harmonic functional. The AMR method combines the use of
the Godunov-type solver and adaptive moving mesh. Some ideas were implemented
in [1, 19]. The main strategies of this approach are twofold. First, after each mesh
iteration, a second-order finite-volume flow solver, suggested by Azarenok [2], updates
the flow parameters at the new time level directly on the adaptive grid without using
interpolation. This is in contrast with the work of Tang et al. [36, 27, 28]. Second, we
will solve some optimization problem in order to obtain the mesh, which is in contrast
to the traditional method of solving the Euler-Lagrange equations directly [5, 6, 27].
Using an optimization approach to obtain the mesh has been also realized recently by
Li et al. [28] in their moving mesh finite element methods. The key principle of the
present approach is to minimize some discrete Dirichlet’s functional possessing the
infinite barrier property, as suggested by Charakhch’yan and Ivanenko [7]. It is noted
that the recent paper of Knupp et al. [20] used the same idea of [7].

An outline of the paper is as follows. In Section 2, we describe the flow solver to
calculate ideal gas flow on a moving mesh. In Section 3, we describe the problem for-
mulation of grid generation and in Section 4, the numerical algorithm for constructing
an adaptive mesh. In Section 5, numerical examples will be presented.

2. Flow Solver
In this section we describe the Godunov Linear Flux Correction (GLFC) scheme

for computing the 1D and 2D ideal gas flow on a moving mesh [2]. This scheme on
one hand utilizes the idea of the Godunov’s scheme on the deforming meshes [14] and
on the other hand is of second-order accuracy in both time and space. We begin with
2D case.

2.1. System of Equations. The governing system of the differential equations
relating to 2D gas flow is

∂σ

∂t
+

∂a

∂x
+

∂b

∂y
= c ,

where the vector-valued functions are defined by

σ=(ρ, ρu, ρv, E)>, a=(ρu, ρu2+p, ρuv, u(E+p))>,

b=(ρv, ρuv, ρv2+p, v(E+p))>, c=− νv

y
(ρ, ρu, ρv, E+p)>. (2.1)

u and v are the velocity components, p and ρ are the pressure and density, respec-
tively, ν=0, 1 represent the planar and axi-symmetric flow, respectively. The total
energy E=ρ[e+0.5(u2+v2)], e is the specific internal energy. The equation of state is
p=(γ−1)ρe, where γ is the ratio of the specific heats. We denote the vector-valued
function of flow parameters as f=(u, v, p, ρ)T .
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We perform calculations utilizing the integral conservation laws which can be
derived by integrating the above system of the differential equations and transforming
the volume integrals in space x−y−t to the surface integrals by virtue of Gauss’s
theorem
∫ ∫ ∫

V

[
∂σ

∂t
+

∂a

∂x
+

∂b

∂y
− c

]
dV =

∫∫

∂V

©σdxdy+adydt+bdtdx−
∫ ∫ ∫

V

cdxdydt = 0.

Here, V is an arbitrary control volume, homeomorphic sphere in space x−y−t, ∂V is
the boundary of V . Hence, the laws of conservation of mass, momentum, and total
energy can be written in the integral form, or generalized formulation, as follows [14]

∫∫

∂V

© σdxdy + adydt + bdtdx =
∫ ∫ ∫

V

cdxdydt, (2.2)

The conservation laws (2.2) hold for any parameters f , both smooth and discontinuous
and therefore govern a real gas flow.

2.2. Discretization of Equations. We introduce the curvilinear moving grid
in R3 space x-y-t, a hexahedral cell of which with number (i+2/2, j+1/2) is depicted
in Fig. 2.1. The bottom face of the cell (or control volume) is taken at time level n
and the top face at level n+1, while four lateral faces generally form ruled surfaces
rather than simple planes.
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Fig. 2.1. Hexahedral cell in the physical space (left) and the parametric space (right).

Integrating (2.2) over the oriented surface, i.e., the boundary ∂V of the computing
cell, gives a cell-centered finite-volume discretization of the governing equations

σn+1An+1 − σnAn + Q411′4′ + Q233′2′ + Q122′1′ + Q433′4′ = cn+1/2V, (2.3)

where σn+1 and σn are the average values at time tn+1 and tn in the center of the
top and bottom faces, respectively; An+1 and An are the areas of the corresponding
faces. Each of the four vector values Q411′4′ , Q233′2′ , Q122′1′ and Q344′3′ is an average
flux of mass, momentum, and energy through the corresponding intercell surface in
the direction of the outward normal vector. Unlike the original Godunov’s scheme [14]
where the fluxes in (2.3) are taken at time tn, in the present scheme those values are
computed at tn+1/2, which provides the second-order accuracy in time.

For example, at the face 122′1′, the value of Q122′1′ has the following structure:

Q122′1′ = σn+1/2Axy + an+1/2Ayt + bn+1/2Atx, (2.4)
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where σn+1/2,an+1/2, bn+1/2 are calculated using parameters fn+1/2 in the center
of the face, i.e., at the mid-point of edge 12 at time tn+1/2; Axy, Ayt, Atx are the
areas of projections of the face 122′1′ onto the coordinate planes x-y, y-t, and t-x,
respectively, given by

Axy =
∫ ∫

122′1′
dxdy = 0.5[(x2′ − x1)(y1′ − y2)− (x1′ − x2)(y2′ − y1)],

Ayt =
∫ ∫

122′1′
dydt = 0.5∆t(y2′ + y2 − y1 − y1′), (2.5)

Atx =
∫ ∫

122′1′
dtdx = −0.5∆t(x2′ + x2 − x1 − x1′),

where the time step ∆t=tn+1−tn. The equations (2.5) are obtained from the formula
for the quadrangle 1234

A1234 = A(x1, y1; x2, y2;x3, y3; x4, y4) = 0.5[(x3 − x1)(y4 − y2)− (x4 − x2)(y3 − y1)]

when running along its contour in an anticlock wise manner.
The vector-valued function cn+1/2 is defined in the center of the quadrilateral

cell at time tn+1/2 (i.e., in the center of the control volume), V is the volume of the
hexahedral cell. Formulas for the control volume V of a ruled/(hexahedral) cell were
derived in [11, 38]. For instance, V is computed by integrating over the control volume
surface ∂V by Dukowicz [11]. The contribution to the total volume V from the surface
1234, referred to as V1234, obtained by integrating over the bottom face 1234 is

V1234 = [r1 · (r4 × r3) + r2 · (r1 × r4) + r3 · (r2 × r1) + r4 · (r3 × r2)]/12
= (r1 + r2) · [(r1 + r4)× (r2 + r3)]/12, (2.6)

where ri=(x, y, t)i. Formulas for the contribution of the other five cell faces can be
obtained from (2.6) by cyclic permutation of indexes. In [38] it is proved that V equals
the mean of volumes of two dodecahedrons with planar faces which have the same
vertices as the hexahedral cell.

To determine cn+1/2 we need also the coordinate yc of the cell center which is ob-
tained from trilinear mapping forming the hexahedral cell, see Fig. 2.1. At ξ, η, ζ=0.5
it is given by

yc =
∑

i

yi/8, i = 1, · · · , 4, 1′, · · · , 4′.

The values fn+1 are updated by two stages using a time splitting technique
proposed in [31], which is of second-order accuracy in time. It is pointed out that
another scheme with second-order accuracy in time has been suggested in [4] where
the Riemann problem is solved based on piecewise linear distribution of the flow
parameters (generalized Riemann problem). At the first stage, predictor, via (2.3) we
compute the intermediate values at the n+1-th level f̄n+1. Here we apply the piecewise
linear interpolation along each curvilinear coordinate line ξ, passing through the center
of cells j+1/2=const.; and η, passing through the center of cells i+1/2=const., i.e.,
determine the derivatives f ξ and fη in every cell to get the fluxes via (2.4) on the
lateral faces with the second-order accuracy in space but still at tn. To suppress
spurious oscillations in the vicinity of discontinuities, a monotonicity algorithm will
be applied.
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2.3. Determination of Fluxes.
For clarity let us determine the fluxes in 1D case; in 2D case such an 1-D algorithm

is executed along each of the curvilinear coordinate, considered as a parameter of
length. Consider a cell of a 1D grid along the curvilinear coordinate ξ as shown in
Fig. 2.2. Assume the function f to be linear within the zone (i, i+1). For simplicity
we omit the superscript n: If the superscript is not specified, then all the values are
taken at tn. The values f1,i+1/2 and f2,i+1/2, specified at the left and right zone ends
are defined by

f1,i+1/2 = f i+1/2−0.5δf i+1/2hi+1/2 , f2,i+1/2 = f i+1/2 +0.5δf i+1/2hi+1/2. (2.7)

Here, the spacing along the ξ coordinate line at fixed index j is given by

hi+1/2 = 0.5
√

(xi+1,j + xi+1,j+1 − xi,j − xi,j+1)2 + (yi+1,j + yi+1,j+1 − yi,j − yi,j+1)2.

6
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n+1/2

n
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q
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Fig. 2.2. Computing cell of 1D grid along the curvilinear coordinate ξ.

The “effective” derivative δf i+1/2 is defined via the auxiliary values f̃1,i+1/2 and
f̃2,i+1/2 at the right and left zone ends

δf i+1/2 = (f̃2,i+1/2 −f̃1,i+1/2)/hi+1/2. (2.8)

The auxiliary values at the left zone end f̃1,i+1/2 and the right zone end f̃2,i+1/2 are
obtained by using the Taylor expansion about the points ξi and ξi+1, respectively,

f i+1/2 = f i +
1
2
hi+1/2f

(1)
i +

1
8
h2

i+1/2f
(2)
i +O(h3

i+1/2),

f i+1/2 = f i+1 −
1
2
hi+1/2f

(1)
i+1 +

1
8
h2

i+1/2f
(2)
i+1 −O(h3

i+1/2).

By neglecting the higher-order terms, we obtain from the above two expressions that

f̃1,i+1/2 = f i = f i+1/2 −
1
2
hi+1/2f

(1)
i − 1

8
h2

i+1/2f
(2)
i ,

(2.9)

f̃2,i+1/2 = f i+1 = f i+1/2 +
1
2
hi+1/2f

(1)
i+1 −

1
8
h2

i+1/2f
(2)
i+1.

The first and second derivatives are given by the relations

f
(1)
i =

2
hi+1/2 + hi−1/2

(
f i+1/2 − f i−1/2

)
,

(2.10)

f
(2)
i =

2
hi+1/2 + hi−1/2

(
f

(1)
i+1/2 − f

(2)
i−1/2

)
.
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Substituting them into (2.9) gives

f̃1,i+1/2 = f i+1/2 −
hi+1/2

hi+1/2+hi−1/2

(
f i+1/2 − f i−1/2

)

−
h2

i+1/2

4(hi+1/2+hi−1/2)

(
f

(1)
i+1/2 − f

(1)
i−1/2

)
,

(2.11)

f̃2,i+1/2 = f i+1/2 +
hi+1/2

hi+3/2+hi+1/2

(
f i+3/2 − f i+1/2

)

−
h2

i+1/2

4(hi+3/2+hi+1/2)

(
f

(1)
i+3/2 − f

(1)
i+1/2

)
.

2.4. Monotonicity algorithm. In (2.11) every component of the derivative
f (1) is defined by the Kolgan’s principle of minimal derivatives [21]. For example, to
the velocity u it reads

u
(1)
i+1/2 =

{
u

(1)
i , if |u(1)

i | ≤ |u(1)
i+1|

u
(1)
i+1 , otherwise,

where the derivative is given by the first relation of (2.10). Afterwards we apply the
Collela-Woodward’s monotonicity algorithm [9] to reset the auxiliary values f̃1,i+1/2

and f̃2,i+1/2. We construct an interpolating parabola within the zone for every com-
ponent of the vector f . For example, to u we have

U(ζ) = a0 + a1ζ + a2ζ
2 , ζ = (ξ − ξi+1/2)/hi+1/2 , ξi ≤ ξ ≤ ξi+1 , −0.5 ≤ ζ ≤ 0.5.

The parabola satisfies the following requirements:

U(−0.5)=u1,i+1/2, U(0.5)=u2,i+1/2, ui+1/2 =
∫ 0.5

−0.5

U(ξ)dξ,

where ui+1/2 is the zone average. It can be shown that the coefficients a1 and a2 are

a1=ũ2,i+1/2−ũ1,i+1/2, a2=3(ũ1,i+1/2+ũ2,i+1/2)−6ui+1/2 .

The coefficient a0 is not needed in our computation.
A condition to be imposed is that the interpolating parabola shall not achieve

its maximum or minimum within the zone. Otherwise the values ũ1,i+1/2 , ũ2,i+1/2

have to be corrected in order to ensure that the parabola is monotone. There are two
possible cases when it takes place:

a) ui+1/2 does not lie inside the interval from ũ1,i+1/2 to ũ2,i+1/2. In such a case
the interpolating function is set to be a constant; i.e,

ũ1,i+1/2 = ũ2,i+1/2 = ui+1/2 , if (ũ2,i+1/2 − ui+1/2)(ui+1/2 − ũ1,i+1/2) ≤ 0;

b) ui+1/2 lies inside the above interval, but sufficiently close to one of the end
points. Then we reset ũ1,i+1/2 or ũ2,i+1/2 (which is farther from ui+1/2) so that the
interpolating parabola becomes monotone as follows:

{
ũ1,i+1/2 = ui+1/2 + 2(ui+1/2 − ũ2,i+1/2) , if a2

1 < −a1a2,

ũ2,i+1/2 = ui+1/2 + 2(ui+1/2 − ũ1,i+1/2) , if a2
1 < a1a2.
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Next, from (2.8) we get δf i+1/2 and from (2.7) the zone end values f1,i+1/2 and
f2,i+1/2 used to calculate the fluxes Q411′4′ and Q233′2′ via formulas being similar
to (2.4). In the same manner we evaluate f1,j+1/2 and f2,j+1/2 used to calculate the
fluxes Q122′1′ and Q433′4′ . Further, from (2.3) we obtain the intermediate value σ̄n+1

at time tn+1.
At the second stage, corrector, we first get the prewave values f at the center of

the intercell faces at time tn+1/2. For it we set the effective derivative at tn+1 equal
to the one at tn, i.e. δf̄

n+1
i+1/2=δfn

i+1/2. Then the zone end values to the intermediate

function f̄
n+1
i+1/2 are obtained from (2.7). Taking the mean of edge values at tn and

tn+1 we get the prewave states at the faces 411’4’ and 233’2’ at time tn+1/2 as follows:

f
n+1/2
1,i+1/2 = 0.5

[
fn

i+1/2 +f̄
n+1
i+1/2 − 0.5δfn

i+1/2(h
n
i+1/2 + hn+1

i+1/2)
]
,

(2.12)
f

n+1/2
2,i+1/2 = 0.5

[
fn

i+1/2 +f̄
n+1
i+1/2 + 0.5δfn

i+1/2(h
n
i+1/2 + hn+1

i+1/2)
]
.

Similarly we calculate f
n+1/2
1,j+1/2, f

n+1/2
2,j+1/2, the prewave states at the faces 122’1’ and

433’4’.

2.5. Riemann Problem on the Moving Mesh. In this subsection, we solve
the Riemann problem to each of four intercell faces, taking into account the velocity
of the intercell face and using the Riemann solver suggested in [14] (for description
of this Riemann solver see also [22]). Numerical calculations have shown that for
2D problems with intensive shocks using this Riemann solver based on the exact
solution of the nonlinear PDE’s system gives loss in computing time by only ≈5% in
comparison with the time when the Riemann solver based on the linearized system
(cf. [13]) is employed. The idea of taking into account the velocity of the intercell
face is to be demonstrated for the 1D case. Consider the intercell boundary of the
cell within the time interval (tn+1/2, tn+1). Assume that after solving the Riemann
problem at point (i, n+1/2) we have the wave pattern depicted in Fig. 2.3. There are
5 cases of location of the intercell boundary [(i, n+1/2)(i, n+1)] in the wave pattern
depending on velocity of the i-th node wi. As the postwave values f

n+1/2
i we use:

1. f
n+1/2
i = f

n+1/2
2,i−1/2 if wi < ush, where ush is the speed of the left shock.

2. f
n+1/2
i = f2 if ush < wi < ucont, where the vector f2 defines the flow

parameters after the shock, ucont is the speed of the contact discontinuity.

3. f
n+1/2
i = f3 if ucont < wi < ulft

rar, where the vector f3 defines parameters in
the domain between the contact discontinuity and left characteristic of the rarefaction
wave expanding with the speed ulft

rar.

4. f
n+1/2
i = φ(x/t) if ulft

rar < wi < urght
rar ; i.e., we calculate the flow parameters

in the rarefaction wave using the variable x/t. Here, urght
rar is the speed of the right

characteristic in the rarefaction fan.
5. f

n+1/2
i = f

n+1/2
1,i+1/2 if wi > urght

rar .

In the 2D case, we by analogy consider the Riemann problem on the moving mesh.
To get the postwave states fn+1/2 in the center of face 122′1′; i.e., at the mid-point
of the segment 1

′′
2
′′
, (see Fig. 2.1), we solve the Riemann problem with the prewave

states (r, p, ρ)n+1/2 at this point on both sides of the face (one state relates to the cell
considered and the other to the cell adjacent to the face 122′1′), and use the tangential
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Fig. 2.3. Five probable cases of location of the intercell boundary [(i, n+1/2)(i, n+1)] in
the wave pattern. Points 1, . . ., 5 indicate the node (i, n+1) location.

components of the velocity qn+1/2 on those sides. Here, rn+1/2 is a normal component
of the velocity. The normal and tangential components of the velocity are given by

rn+1/2 = nxun+1/2 + nyvn+1/2,

qn+1/2 = nyun+1/2 − nxvn+1/2,

where nx and ny are the components of the outward normal vector to the segment
1
′′
2
′′
.
After solving the Riemann problem, we find the tangential component qn+1/2 via

qn+1/2 =

{
qn+1/2 if w12 ≤ ucont,

q̃n+1/2 otherwise,
(2.13)

where ucont is the speed of the contact discontinuity in the Riemann problem, w12 is
the velocity of the edge 12 in the normal direction to this edge, q̃n+1/2 is the tangential
component of the velocity in the cell adjacent to the face 122′1′. The condition (2.13)
expresses the fact that the tangential component of the velocity is discontinuous across
the tangential (contact) discontinuity; see e.g., [10]. The velocity w12 can be defined
from the equality

∆tl1′′2′′w12 = Axy, (2.14)

where l1′′2′′ is the distance between the points 1
′′

and 2
′′
. We restore the Cartesian

components of the velocity in the center of the face

un+1/2 = nxrn+1/2 + nyqn+1/2,

vn+1/2 = nyrn+1/2 − nxqn+1/2.

In calculating cn+1/2 the average velocity in the (i+1/2, j+1/2) point is given by

un+1/2 = 0.5(un + ūn+1) ,
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where ūn+1 is the intermediate value obtained at the predictor stage. Similarly we
can obtain (v, p, ρ)n+1/2.

After solving the Riemann problem, we obtain the postwave values f at the center
of 4 intercell faces. Calculating the fluxes through the intercell face 122’1’ via (2.4)
and similarly through the other 3 intercell faces, and substituting the values of the
fluxes into (2.3), we get the final values of mass, momentum, and energy σn+1 at time
tn+1.

Note that, when calculating by (2.11) the auxiliary values, at the boundary nodes
we should use the boundary conditions. For instance, if at the left node, i=0, the
boundary condition is defined as f left, then we set f̃1,1/2=f left. If the boundary con-

dition is defined to the fluxes, e.g. reflecting boundary condition, we setf̃1,1/2=f
n−1/2
0 ,

where f
n−1/2
0 are the postwave values at the preceding time step.

2.6. Stability Condition. In 1D case the choice of admissible time step ∆t
has a clear physical sense. On the moving grid ∆t is given by

∆t = ccfl min
i

∆ti+1/2 (2.15)

where in every cell as shown in Fig. 2.2 the local time step is determined by (cf. [14]):

∆ti+1/2 =
hi+1/2

max(dII
i − wi+1 , −dI

i+1 − wi)
, (2.16)

where dII
i and dI

i+1 are the extreme right and left wave speeds at the points xi and
xi+1, respectively, obtained by solving the Riemann problem; wi is the velocity of the
node xi, i.e., the slope of the intercell boundary. The condition (2.16) means that we
estimate the time within which the left characteristic (in linearized analysis, this is a
straight line), emanating from the i+1-th node, achieves the i-th node, as well as the
time within which the right characteristic, emanating from the i-th node, achieves the
i+1-th node. From these two time steps we take the minimal one.

The Courant coefficient ccfl (or coefficient of reserve; see, e.g., [14]) is a correction
to the nonlinearity of the PDE system. To calculate the velocity wi on one hand it
is necessary to know the time step ∆t, and on the other hand wi participates in the
determination of ∆t. By this reason at time level n+1 we use ∆t obtained at the
preceding level n. The coefficient ccfl<1 (usually 0.5 to 0.9) may be corrected during
the computation. If the grid moves with high velocity, then it may be necessary to
decrease ccfl greatly to ensure the stability.

In linearized analysis on the fixed grid, we use a sound approach to get ∆ti+1/2

∆ti+1/2 =
hi+1/2

max(ui+1/2 + ai+1/2 , ai+1/2 − ui+1/2)
(2.17)

where ai+1/2 is the sound speed. The formula (2.17) can be also used if the mesh-
moving speed is not too large.

In 2D the choice of the admissible ∆t may be estimated to the t-hyperbolic by
Friedrichs’ system [14]. The system of equations (2.2) in the differential form is reduced
to the following:

Ã(f)
∂f

∂t
+B̃(f)

∂f

∂x
+C̃(f)

∂f

∂y
= 0,
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whereÃ,B̃,C̃ are n×n symmetric matrices andÃ is positive defined. The above system
is linearized as follows:

A
∂f

∂t
+ B

∂f

∂x
+ C

∂f

∂y
= 0,

where A,B, C are constant matrices. The energy form to this system is

∂

∂t
(Af , f) +

∂

∂t
(Bf , f) +

∂

∂y
(Cf ,f) = 0.

It can be shown that after discretizing the above system on the rectangular mesh
with steps hx, hy, when solving the Cauchy problem, the energy norm of the discrete
function fn+1

i+1/2,j+1/2 does not increase; i.e., the scheme is stable in the following sense:

∞∑

i,j=−∞
(Afn+1

i+1/2,j+1/2, f
n+1
i+1/2,j+1/2) ≤

∞∑

i,j=−∞
(Afn

i+1/2,j+1/2, f
n
i+1/2,j+1/2)

subject to

∆t

(
1

∆tx
+

1
∆ty

)
≤ 1 (2.18)

where ∆tx, ∆ty are admissible 1D time steps in the x and y directions, respectively.
The formula (2.18) has been proved on the parallelogram mesh in [14].

In the case of the curvilinear mesh, to calculate the admissible time step in the
(i+1/2, j+1/2)-th cell, the formula (2.18) is generalized as follows [14]:

∆ti+1/2,j+1/2 =
∆t

′
∆t

′′

∆t′ + ∆t′′
, (2.19)

where

∆t
′
=

h
′

max(dII
41 − w41;−dI

23 − w23)
,

∆t
′′

=
h
′′

max(dII
12 − w12;−dI

34 − w34)
,

h
′
=

A1234

0.5
√

(x4 + x3 − x1 − x2)2 + (y4 + y3 − y1 − y2)2
,

h
′′

=
A1234

0.5
√

(x3 + x2 − x4 − x1)2 + (y3 + y2 − y4 − y1)2
.

Here, ∆t
′

and ∆t
′′

are the admissible time steps for 1D scheme in the ξ and η
direction, respectively, h

′
, h

′′
are the “average heights” of the bottom face A1234; w is

the velocity of the corresponding cell edge in the normal direction to this edge. For
example, w12 is the velocity of the edge 12 in the normal direction determined by
(2.14). Moreover, dII

12 and dII
41 are the so-called “extreme right wave” speeds defined

from solving the Riemann problem to the faces 122′1′ and 11′4′4, respectively; dI
23

and dI
34 are the “extreme left wave” speeds to the faces 233′2′ and 433′4′, respectively.

The resulting time step over all mesh is given by

4t = ccfl min
i,j

4ti+1/2,j+1/2.
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The GLFC scheme is of second-order accuracy in time and space in the domains
of smooth flow provided that the mesh is close to rectangular and the spacing in the
ξ and η directions satisfy

hi+1/2 − hi−1/2 = O((hi+1/2)2) , hj+1/2 − hj−1/2 = O((hj+1/2)2),

and the nodes-motion speed is small

xn+1
i,j − xn

i,j = O((hi+1/2)2) , xn+1
i,j − xn

i,j = O((hj+1/2)2) .

We close this subsection by pointing out that the values fn+1 are obtained directly
on the moving mesh, which is in contrast to the approach of Tang et al. [27, 36] where
interpolations are used on the updated mesh.

2.7. GLFC scheme in 1D. We now briefly describe the GLFC scheme in 1D
case. The gas flow is governed by the following quasilinear hyperbolic system:

∂σ

∂t
+

∂a

∂x
= 0, (2.20)

where the vector-valued functions are σ=(ρ, ρu, E)> and a=(ρu, p+ρu2, u(E+p))>.
For the smooth flow, the system (2.20) is equivalent to the system of integral equations

∮

C

σdx− adt = 0. (2.21)

We consider the cell of the moving mesh depicted in Fig. 2.2 (here instead the variable
ξ we use x). After integrating (2.21) along the contour C of the cell, we obtain the
system of the finite-difference equations

σn+1
i+1/2h

n+1
i+1/2 − σn

i+1/2h
n
i+1/2 − σ

n+1/2
i+1 hi+1 + σ

n+1/2
i hi + ∆t(an+1/2

i+1 − a
n+1/2
i ) = 0,

(2.22)
where hn

i+1/2=xn
i+1−xn

i , hi=xn+1
i −xn

i . We update the cell average values fn+1
i+1/2 by

following the two-step procedure described for the 2D scheme. At the first stage,
predictor, assuming piecewise linear distribution of the flow parameters along x, we
compute the intermediate values f̄

n+1
i+1/2 via (2.22). We utilize fn

1,i+1/2 and fn
2,i+1/2

via (2.7) by applying the monotonicity algorithm. At the second stage, corrector, after
computing prewave values f

n+1/2
2,i−1/2, f

n+1/2
1,i+1/2 via (2.12), we solve the Riemann problem

by taking into account the velocity of nodes and then determine the postwave values
f

n+1/2
i . Substituting them into (2.22) we obtain fn+1

i+1/2.

3. Grid Generation
To generate a regular adaptive-harmonic mesh we formulate the problem to mini-

mize harmonic (Dirichlet’s) functional written for a surface [25, 26, 8, 18]. The relevant
notations are shown in Fig. 3.1.

Let us consider the functional defining the adaptive-harmonic grid clustered in
regions of large gradients of the function f(x, y):

I =
∫ ∫ ((1 + f2

x)(x2
ξ + x2

η) + 2fxfy(xξyξ + xηyη) + (1 + f2
y )(y2

ξ + y2
η)

(xξyη − xηyξ)
√

1 + f2
x + f2

y

dξdη. (3.1)
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Fig. 3.1. Harmonic coordinates on the surface of the graph of a control function z=f(x, y).

The function f is usually referred to as a control/(monitor) function. The problem of
grid adaptation is formulated as follows. Let the coordinates of the grid nodes be given,
which is formed by quadrilateral elements. The problem is to find new coordinates
of the grid nodes minimizing the functional (3.1) values computed for a mapping of
the unit square onto every grid cell. In unsteady problems such a formulation for grid
adaptation is considered at every time step.

In order to control the number of grid nodes in the layer of large gradients, it has
been suggested to multiply the control function f by a coefficient ca; i.e., replace f
by caf in (3.1); see [5, 18, 27, 40]. In general, the larger the coefficient of adaptation
ca is, the stronger grid lines condensation in the layer of large gradients we get.

If the control function f is discontinuous then, when adapting, the cell size might
approach zero in the vicinity of the discontinuity. In [3] it has been shown that the
discrete functional in the 1D case has the infinite barrier preventing the grid cells from
degenerating. In the 2D case, despite the infinite barrier for some ca disappearing,
the iterative procedure of minimizing the functional prevents grid lines overlap. This
allows for obtaining highly condensed grid lines in the vicinity of discontinuities.

In practical computation of 2D unsteady flows, redundant gridline compression
leads to very small time steps. Moreover, we have to reduce ca in order not to leave
the admissible set of convex grids (when all quadrilateral cells are convex). This makes
the mesh stop “to feel” the discontinuities of mild and low intensity and reacts only to
discontinuities of large intensity. Thus, sometimes (mainly in 2D unsteady flows) it is
necessary to smooth the discontinuous control function f in regions of large gradients.
There are several ways to do it. In [29, 27, 36] the monitor function is smoothed in
the vicinity of discontinuity. We use another approach by introducing an additional
parameter restricting the gradient rise for the control function. In our approach the
number of grid points in the vicinity of the shock is defined by the flow solver property
to smear the shocks. The second-order Godunov’s type scheme smears shocks within 2
to 3 cells, which is independent of the cell thickness [39]. In fact, it is not necessary to
place in the shock zone more than 2 points, since the shock zone is of infinitely small
thickness. This is in contrast to the boundary or internal layers in viscous flows where
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real physical gradients of the functions exist and require precise description. Thus, in
the hyperbolic problems, the coefficient ca plays the following role: When increasing
ca the mesh begins “to feel” the discontinuities of less intensity; when decreasing the
sensitivity of the mesh is also decreased. In the limit of ca=0 we obtain a quasiuniform
harmonic mesh independent of the control function.

Thus, the coefficient ca is only responsible for selecting those discontinuities of the
function f(x, y) to which the mesh is adapted. Therefore, it is necessary to have one
more controlling parameter determining the range of the gradients that approximates
the discontinuity line in the solution and simultaneously restricts maximum gradient
of the grid control function. It is accomplished as follows. First, at the mesh nodes
we define the function f̃ = cafh, where fh is an interpolant of f whoes values in
the nodes equal the value of f. Then we specify Dmax, maximal value of modulus of
gradient to the control function f , say Dmax=λ max(|∇f̃ |), where the coefficient λ<1

and |∇f̃ |=
√

f̃2
x + f̃2

y . Next the gradient of the function is updated via

∇f̃∗ =

{
Dmax∇f̃/|∇f̃ | if |∇f̃ | > Dmax ,

∇f̃ otherwise .
(3.2)

Then the resulting values of f̃∗x and f̃∗y are substituted into (3.1) to replace fx and fy.
It is not necessary to use this procedure to simulate 1D and steady 2D flows. In the

case of rapidly developed unsteady supersonic flows, the above procedure should be
applied to prevent the cells to be folded in the vicinity of the shock waves. The question
of mesh adaptation to the vector-function, i.e., using several control functions, has
been investigated in [1, 19].

In 1D, to generate the inverse harmonic mapping it is required to minimize the
following functional [25, 26]

I =
∫ 1

0

1
xξ

√
1 + c2

af2
x

dξ. (3.3)

Here we use caf instead of f , which indicates that we seek for the arc-length equidis-
tribution in the metric of the curve caf .

4. Minimization of the Functional
In this section, numerical implementations about minimizing the functional (3.1)

and (3.3) will be described.

4.1. 1D Case. Using the midpoint rule gives the discretized functional for
(3.3):

Ih =
imax∑

i=1

∆ξ

(xξ)i+1/2

√
1 + c2

a(fx)2i+1/2

, (4.1)

where imax is the number of intervals in space, step ∆ξ is set equal to 1, and the
underlying derivatives are computed via

(xξ)i+1/2 = (xi+1 − xi)/∆ξ , (fx)i+1/2 = (fi+1 − fi)/(xi+1 − xi).
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To minimize (4.1), Newton’s method is applied:

xp+1
i = xp

i − τ
∂Ih

∂xi

[
∂2Ih

∂x2
i

]−1

, (4.2)

where the iterative parameter τ≤1, the first and second derivatives are defined by

∂Ih

∂xi
=

−1

(xi − xi−1)2
√

1 + c2
a(fx)2i−1/2

+
1

(xi+1 − xi)2
√

1 + c2
a(fx)2i+1/2

,

∂2Ih

∂x2
i

=
2

(xi − xi−1)3
√

1 + c2
a(fx)2i−1/2

+
2

(xi+1 − xi)3
√

1 + c2
a(fx)2i+1/2

.

When deriving the above derivatives we fix metric, i.e. (fx)i+1/2, which guarantees
the infinite barrier property for any ca>0 and prevents grid lines from overlapping [3].

-

6
η

ξ

1 2

34

1 2

3

2

34

1

34

Fig. 4.1. Computing cell is a unit square in parametric plane. Solid lines indicate the cell
considered, dash lines show the adjacent cells.

4.2. 2D Case. Approximation of the functional (3.1) is performed on the mesh
of quadrilaterals, each of them is a unit square in the logic plane (see Fig. 4.1):

Ih =
imax∑

i=1

4∑

k=1

1
4

[Fk]i , (4.3)

where imax is the total number of grid cells, and k indicates the vertex number in a
cell. In (4.3), Fk is defined by

Fk =
D1[1 + (fx)2k] + D2[1 + (fy)2k] + 2D3(fx)k(fy)k

Jk [1 + (fx)2k + (fy)2k]1/2
, (4.4)
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where

D1 = (xk+1 − xk)2 + (xk−1 − xk)2,
D2 = (yk+1 − yk)2 + (yk−1 − yk)2,
D3 = (xk+1 − xk)(yk+1 − yk) + (xk−1 − xk)(yk−1 − yk),
Jk = (xk+1 − xk)(yk−1 − yk)− (xk−1 − xk)(yk+1 − yk).

If the set of convex grids is not empty, then the system of the following algebraic
equations has at least one solution being the convex mesh:

Rx =
∂Ih

∂xi
= 0, Ry =

∂Ih

∂yi
= 0.

Consider the method of minimizing the functional (4.3) by assuming the grid to be
convex at the p-th step of the iterative procedure. We use the quasi-Newton method
in the sense that the Hessian is a diagonal matrix:

xp+1
i = xp

i − τ

(
Rx

∂Ry

∂yi
−Ry

∂Rx

∂yn

)(
∂Rx

∂xi

∂Ry

∂yi
− ∂Ry

∂xi

∂Rx

∂yi

)−1

,

(4.5)

yp+1
i = yp

i − τ

(
Ry

∂Rx

∂xi
−Rx

∂Ry

∂xi

)(
∂Rx

∂xi

∂Ry

∂yi
− ∂Ry

∂xi

∂Rx

∂yi

)−1

.

To demonstrate how to find Rx, Ry and their derivatives, we consider one of four
triangles into which the cell is divided by two diagonals, e.g., with vertex 1, 2, and
4, see Fig. 4.1. Integrand (4.4) is independent of the rotation of the coordinates ξ, η,
and as a result the formulas below hold for the remaining 3 triangles. For the triangle
124 setting k=1, k+1=2, k−1=4 in (4.4) gives

D1 = (x2 − x1)2 + (x4 − x1)2,
D2 = (y2 − y1)2 + (y4 − y1)2,
D3 = (x2 − x1)(y2 − y1) + (x4 − x1)(y4 − y1), (4.6)
J1 = (x2 − x1)(y4 − y1)− (x4 − x1)(y2 − y1).

We introduce notation F1 = U/V , where

U = D1α + D2β + D3γ, V = J1, α =

[
1 + (fx)21

]

M1
,

(4.7)

β =

[
1 + (fy)21

]

M1
, γ =

(fx)1(fy)1
M1

, M1 =
√

1 + (fx)21 + (fy)21 .

For convenience we omit the subscript of F1, i.e., using F to indicate it. Using the
chain rule for F=U/V gives

Fx = (Ux − FVx)/V, Fy = (Uy − FVy)/V,

Fxx = (Uxx − 2FxVx − FVxx)/V, Fyy = (Uyy − 2FyVy − FVyy)/V,

Fxy = Fyx = (Uxy − FxVy − FyVx − FVxy)/V.

When making differentiation, we assume fx, fy are independent of x, y. Thus, for the
chosen triangle 124 we have
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• for vertex 1 of the triangle:

Ux = 2(2x1 − x2 − x4)α + 2(2y1 − y2 − y4)γ,

Uy = 2(2y1 − y2 − y4)β + 2(2x1 − x2 − x4)γ,

Uxx = 4α, Uyy = 4β, Uxy = 4γ,

Vx = y2 − y4, Vy = x4 − x2, Vxx = Vxy = Vyy = 0;

• for vertex 2:

Ux=2(x2 − x1)α + 2(y2 − y1)γ,

Uy=2(y2 − y1)β + 2(x2 − x1)γ,

Uxx=2α, Uyy=2β, Uxy=2γ,

Vx = y4 − y1, Vy = x1 − x4, Vxx = Vxy = Vyy = 0;

• for vertex 4:

Ux=2(x4 − x1)α + 2(y4 − y1)γ,

Uy=2(y4 − y1)β + 2(x4 − x1)γ,

Uxx=2α, Uyy=2β, Uxy=2γ,

Vx = y1 − y2, Vy = x2 − x1, Vxx = Vxy = Vyy = 0.

If the vertex 1 corresponds to the i-th node of the global numeration, then the con-
tributions of four adjacent cells are summarized by

[Rx]i =
4∑

l=1

[Fx]l, [Ry]i =
4∑

l=1

[Fy]l, [Rxx]i =
4∑

l=1

[Fxx]l,

[Rxy]i =
4∑

l=1

[Fxy]l, [Ryy]i =
4∑

l=1

[Fyy]l.

Here, l=1 corresponds to the triangle 124 of the cell considered, l=2 corresponds to
the triangle 231 of the left cell, l=3 corresponds to the triangle 342 of the left-down
cell, l=4 corresponds to the triangle 413 of the down cell.

To find the derivatives (fx)i and (fy)i, we discretize the following relations:

fx = (yηfξ − yξfη)/J, fy = (−xηfξ + xξfη)/J,

and calculate them as average values over the 4 adjacent cells to the i-th node

[fx]i =
4∑

l=1

[fx]l

/
4∑

l=1

Jl, [fy]i =
4∑

l=1

[fy]l

/
4∑

l=1

Jl.

Here, index l corresponds to the same triangles as described above. For example, if
l=1, then for the considered cell we have

[fx]1 = [(y4−y1)(f2−f1)− (y2−y1)(f4−f1)] ,
[fy]1 = [(x2−x1)(f4−f2)− (x4−x1)(f2−f1)] ,

and J1 is computed via the formula (4.6).
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If a flow solver gives the values of the control function in the cell center, it is
required to update them to the nodes. Since every i-th node (except boundary nodes)
is surrounded by 4 cells, it can be done by

fi = ca

4∑

l=1

f c
l Jl

/
4∑

l=1

Jl, (4.8)

where i is a global node number, f c
l is the value in the cell center, ca is the coefficient

of adaptation which may depend on the node position, i.e. ca=ca(x, y). Finally, it is
convenient to normalize the control function:

f̃i =
fi − fmin

fmax − fmin

√
(xmx − xmin)2 + (ymax − ymin)2.

The above formulas can be used for generating the quasiuniform mesh in the physical
domain Ω by defining f=const and, therefore, fx=fy=0. The matter of untangling
the initial prepared folded mesh has been considered in [8, 18].

4.3. Redistribution of the Boundary Nodes. The algorithm of redistribut-
ing the boundary nodes, consisting of using constrained minimization, has been sug-
gested in [3]. Such an approach leads to consistent redistribution of the grid nodes
inside the domain Ω and on its boundary ∂Ω, which increases the reliability of grid
generation and modeling the flow problem. In this approach we minimize the following
functional

Ĩh =
imax∑

i=1

4∑

k=1

1
4

[Fk]i +
∑

l∈L
λlGl = Ih +

∑

l∈L
λlGl, (4.9)

where the constraints Gl=G(xl, yl)=0 define on ∂Ω, λl are the Lagrange multipli-
ers, L is the set of the boundary nodes. The function G(x, y) is assumed piecewise
differentiable.

If the set of convex grids is not empty, the system of algebraic equations has at
least one solution being the convex mesh:

Rx =
∂Ih

∂xi
+ λi

∂Gi

∂xi
= 0, Ry =

∂Ih

∂yi
+ λi

∂Gi

∂yi
= 0, Gi = 0. (4.10)

Here λi=0 if i /∈ L, and constraints are defined to the boundary nodes i ∈ L. The
method of solving the system (4.10) is described in [3].

5. Numerical Results
With the preparations in the above sections, we are now ready to summarize our

moving mesh algorithm. At each time step, the numerical scheme for solving 1D or
2D equations of gas dynamics contains the following stages:

1. Generate the mesh at the next time level tn+1.
2. Compute the gas dynamics values at time tn+1.
3. Evaluate the derivatives (fx)i and (fy)i at every mesh node (in 1D case

(fx)i+1/2) at tn+1.
4. Make one iteration step and compute the new values of (x, y)i at tn+1 by

formulas (4.2) or (4.5).



BORIS N. AZARENOK, SERGEY A. IVANENKO, AND TAO TANG 169

5. Repeat starting with step 2 to convergence or within given number of iterations.
6. Compute the final gas dynamics values at tn+1.
In this section, two numerical examples are considered: a 1D example consisting

of simple waves (without wave interactions) and a 2D example having complicated
wave structures. In the 1D case, some detailed error analysis is made.

Example 5.1. Consider 1D flow of ideal gas with γ=1.4 and initial parameters [35]:

(ρ, u, p) =
{

(1, 0, 1) , if 0≤x < 0.5
(0.125, 0, 0.1) , if 0.5≤x≤1.

At t>0 the wave pattern consists of a rarefaction fan with left and right
characteristics ulft

rar≈−1.18322 and urght
rar ≈−0.07027, a contact discontinuity with

ucont≈0.92745, and a shock wave with ush≈1.75216. We compute this problem up
to t=0.25. The boundary conditions at the ends x=0 and 1 do not need to be speci-
fied, i.e., we solve the Cauchy problem for the 1D Euler equations.

In the first series of computations, the initial grid is uniform with imax=60. Since
by t=0.25 the shock almost approaches the right end x=1, in adaptive computations
we add to the right end 10 more segments to exclude the influence of the edge to the
nodes being attracted into the shock zone. This treatment does not have any practical
effect to the error estimation since only 3 to 7 of them enter into the control interval
0≤x≤1 when adapting. The admissible time step 4t is calculated from the stability
condition (2.15), with ccfl=0.5 for the fixed mesh and ccfl=0.6 for the moving mesh.
At n=1 the time step is obtained from the linearized condition (2.17) on the fixed
mesh for both the fixed and moving mesh cases.

The error of calculation is estimated for density using the numerical solution ρh

and exact ρex in the L1 norm via the formula

‖Er‖L1 =
∫ 1

0

|ρh(x)− ρex(x)|dx

≈
imax∑

i=1

jmax∑

j=1

∣∣∣ρi+1/2 + qjhi+1/2ρ
(1)
i+1/2 − ρex(xi+1/2 + qjhi+1/2)

∣∣∣

·∆xi,j , (5.1)

where each zone (i, i+1) is partitioned uniformly into jmax=100 segments, which
implies qj=(j−0.5)/jmax−0.5 and ∆xi,j=hi+1/2/jmax. In (5.1) the derivative of ρ is
computed using a linear interpolation

ρ
(1)
i+1/2 =

ρi+3/2 − ρi+1/2

hi+3/2 + hi+1/2
+

ρi+1/2 − ρi−1/2

hi+1/2 + hi−1/2
.

The control function f in the functional (4.1) used for this computation is the density
ρ since it is sensitive to both the shock and contact discontinuity. With Newton’s
method (4.2), we perform piter=50 iterations at each time step. It is found that using
the indicator

max
i

∣∣∣xp+1
i − xp

i

∣∣∣ < δ,
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where δ ≈ 10−5 to 10−4, to stop the Newton iterations gives lower accuracy. To
comply with the stability condition within the first 5 time steps, we set piter=5 since
we begin calculation on the uniform mesh. The computed density is displayed in Fig.
5.1, from which we observe that the moving mesh solution with ca=8 provides better
resolution of all structures in the wave pattern. In Fig. 5.1d a small oscillations
(≈1.8%), observed for the fixed mesh solution, disappears on the moving one. In
Table 5.1, the numerical errors with different choices of the degree of adaptation,
i.e. ca, are presented. To identify the influence of adaptation on different waves, we
calculate the errors gained throughout the rarefaction wave, contact discontinuity,
and shock, respectively:

‖Er‖rar
L1

=
∫ xa

0

|ρh − ρex|dx, ‖Er‖cont
L1

=
∫ xb

xa

|ρh − ρex|dx,

‖Er‖sh
L1

=
∫ 1

xb

|ρh − ρex|dx,

where xa = 0.5(urght
rar + ucont)t, xb = 0.5(ucont + ush)t, which are also presented in

Table 5.1.
We observe that the shock is smeared over two cells on both meshes, see Fig.

5.1d, but since the spacings in the shock zone are reduced by about factor of 8 and
due to suppressing oscillations, the error ‖Er‖sh

L1
is decreased by a factor of 9.67; see

the cases ca=0 and ca=8 in Table 5.1. The error ‖Er‖rar
L1

is decreased by a factor of
2.44 since the moving mesh solution more precisely describes the weak discontinuity
zones where the left and right characteristics of the rarefaction fan join the flow with
constant parameters. Moreover, in the domain of the rarefaction wave, the spacings
on the moving mesh are twice smaller than on the fixed one; see Fig. 5.1b. Thickness
of the contact discontinuity is also reduced, see Fig. 5.1c, and adaptation gives the
winning in accuracy by factor of 3.11. Note that the contact zone, when treated by
the second-order scheme, is smeared with time (on the uniform mesh proportionally
to t1/3 [39]), and the mesh adaptation cannot prevent this process from happening.
Thus, as expected, the maximal gain of the accuracy is provided by the shock zone.

One can compare the above results with the moving mesh results presented in [29]
where this problem was computed using the moving mesh PDE technique. Different
monitor functions on the moving mesh have allowed the accuracy gaining by factor
of 1.09 to 1.81 in comparison with the fixed mesh solution.

To compare the computer costs, the number of mesh iterations at every time step
piter should be multiplied by the ratio of admissible time steps on the moving and fixed
mesh; see Table 5.1. We observe that when ca=8, we have to use approximately 238
times (piter ·n(ca = 8)/n(ca = 0) = 50 · 319/67 ≈ 238) more computer time than that
for the fixed mesh computation. Obviously this cannot be justified by the gaining of
accuracy of factor 3.32. This disadvantage of the moving mesh approach is in general
true in 1D computations. However, our numerical experience shows that in 2D with
strong gridline compressions, we need to perform only 1 or 2 mesh iterations at each
time step. Nevertheless the problem of decreasing the running time is to be solved,
since stability requires the time step ∆t to be small enough.

With the purpose to decrease computer costs, we have used the following numer-
ical strategy. Up to time t1 (t1 was varied from 0.15 to 0.22) we first performed at
every time step piter=5 mesh iterations, and then in the interval (t1, 0.25) we defined
piter=50. Increasing piter from 5 to 50 can be executed gradually within several time
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(a) (b)

(c) (d)

Fig. 5.1. Example 5.1. (a) Plots of density; (b) Close-up of solution in the vicinity of
rarefaction fan; (c) contact discontinuity; and (d) shock.

steps. Results turned out to be unsatisfactory. In all cases the error was increased
even in comparison with the fixed mesh solution.

In the second series of computations, the grid consists of imax=120 intervals.
Results are also presented in Table 5.1. We obtain the gaining in accuracy by a
factor of 2.63. As in the preceding case, the maximal gain by a factor of 11.72 is
obtained to the shock zone and minimal by a factor of 1.60 to the rarefaction fan
zone.

Example 5.2. As a 2D example, we consider a spherical explosion between two par-
allel walls at z=0 and z=1. Initially the gas is at rest with parameters (p, ρ)out=(1, 1)
everywhere except in a sphere centered at (0, 0, 0.4) with radius 0.2. Inside the sphere
(p, ρ)in=(5, 1), γ=1.4. This problem was proposed by LeVeque [23].

The initial jump in pressure results in an outward moving shock, a contact dis-
continuity, and an inward-moving rarefaction wave. There occurs interactions among
these waves and between the waves and the walls. The flow by t=0.7 consists of sev-
eral shocks and strong contact/(tangential) discontinuity surrounding the low density
region near the center.

First, until the initial outward shock reaches the wall z=0, the solution is spheri-
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Table 5.1. Comparison of fixed (ca=0) and moving grid solutions for shock tube problem.
Here, n is the number of time steps, τ is the iterative parameter in procedure (4.2).

ca n τ ‖Er‖L1 ‖Er‖rar
L1

‖Er‖cont
L1

‖Er‖sh
L1

mesh imax = 60
0 67 – 0.005926 0.002229 0.002256 0.001441
1 127 0.6 0.004125 0.001529 0.001723 0.000874
2 179 0.6 0.002950 0.001002 0.001340 0.000608
4 236 0.35 0.002443 0.001220 0.000975 0.000249
8 319 0.35 0.001787 0.000913 0.000725 0.000149
mesh imax = 120
0 135 – 0.003159 0.001058 0.001339 0.000762
1 324 0.7 0.001564 0.000671 0.000740 0.000153
2 469 0.6 0.001330 0.000598 0.000576 0.000157
3 577 0.5 0.001199 0.000663 0.000471 0.000065
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Fig. 5.2. Pressure contours from 0.775 to 1.5 with increment 0.0125 in the x-z plane at
t=0.7 computed on the rectangular mesh 100×140.

cally symmetric. It remains cylindrically symmetric, and we use the 2D axi-symmetric
formulation for the problem; see system (2.2) where we use the variable z instead x
and x instead y and parameter ν=1 in (2.1) for determining the vector c. In the half
plane with constant φ (where φ is an angle in cylindrical coordinates) we compute
the domain (x, z)∈[0, 1.4]×[0, 1]. On the axis x=0 we define the symmetric bound-
ary conditions, on the walls z=0, 1 the reflection condition is employed, and on x=1.4
undisturbed values (u, v, p, ρ)out are used. The fixed mesh is rectangular. In all compu-
tations the coefficient ccfl is chosen as 0.6. The pressure contours at t=0.7 computed
on the fixed mesh 100×140 are presented in Fig. 5.2.

We perform adaptation by minimizing the discrete functional (4.3). On the walls
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Fig. 5.3. Pressure contours computed on the adapted mesh 100×140.

Fig. 5.4. Adapted mesh 100×140, p is a control function, ca=0.21, Dmax=5.5.

and the axis of symmetry, we apply constrained minimization by solving the sys-
tem (4.10). The adaptive procedure is switched on at t=0.45. Since strong gridline
compression results in decreasing the admissible time step, i.e., ∆t falls down propor-
tionally to the increase of the cell aspect ratio, we use the following strategy. In the
main part of the time interval, the computation is performed on not very condensed
mesh, and at some moment t′=0.7−δt we attain a maximum compression of gridlines
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Fig. 5.5. Adapted mesh 200×250, p is a control function, ca=0.18, Dmax=5.
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Fig. 5.6. Pressure contours computed on the rectangular mesh 200×250.

in the vicinity of discontinuities. Following this methodology, we set a rather small
coefficient of adaptation, ca=0.07 to 0.1, in the time interval (0.45, 0.65). In this time
interval, it is then sufficient to perform 3 mesh iterations at every time step. The
iterative parameter τ in quasi-Newton procedure (4.5) is set to 0.9. The admissible
time step ∆t is decreased by 5 to 10 times in comparison with ∆t on the rectangular
mesh.
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Fig. 5.7. Pressure contours computed on the adapted mesh 200×250.

Fig. 5.8. Adapted mesh 100×140, ρ is a control function, ca=0.4, Dmax=6.

In the final interval (0.65, 0.7), the coefficient ca is increased to the range
(0.18, 0.4), and then time step falls down to 5% to 0.5% of that for the rectangu-
lar mesh. The time step is not a constant since the mesh constantly “breaths” and
accordingly the value of ∆t periodically decreases and then increases. At this stage
it is sufficient to perform 1 to 2 mesh iterations at every time step. The maximal
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Fig. 5.9. Density contours from 0.2 to 1.3 with increment 0.0125 computed on the rect-
angular mesh 100×140.
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Fig. 5.10. Density contours computed on the adapted mesh 100×140.

gradient of the control function in (3.2) is set to Dmax=5 to 6. Note that the larger
the parameter Dmax is used, the thinner the smeared shock can be obtained. For
steady flows we do not use the restriction procedure (3.2) at all [3]; and in some cases
of unsteady flow with simple shock structure, the parameter Dmax used is about 100
[19]. However, for the present modeling it is not appropriate to use large Dmax due



BORIS N. AZARENOK, SERGEY A. IVANENKO, AND TAO TANG 177

to the complicated structure of many interacting shocks.
In the first series of adaptive computations the pressure p is used as a control

function. In Figs. 5.3 and 5.4 the pressure contours and adapted mesh are shown,
respectively. We see that the shock thickness is decreased significantly in comparison
with the fixed mesh solution presented in Fig. 5.2. However, the gridlines can be
strongly condensed only to the outer shock and two more ones adjoining it. This is
due to insufficient number of grid points. In the next calculation we use the mesh
200×250; see Fig. 5.5. Here, both the intensive shocks and compression waves are
well depicted by the condensed grid lines. The pressure contours, computed on the
rectangular and adapted meshes, are presented in Figs. 5.6 and 5.7, respectively.

Since p is continuous across the tangential discontinuity, the mesh does not “feel”
it. In the next calculation, the density ρ is used as the control function. It is seen from
Fig. 5.8 that the mesh 100×140 resolves the tangential discontinuity very well. The
density contours computed on the quasiuniform and adaptive meshes are presented in
Figs. 5.9 and 5.10, respectively. It is observed that, in spite of the fact that in Fig.
5.8 ca is twice larger than that in Fig. 5.4, the shocks are less well indicated by the
grid lines. This occurs due to the influence of the contact discontinuity, which takes
away quite large amount of the grid points when the density is chosen as the control
function.

6. Concluding Remarks
The computational results presented in this work show that the method of

adaptive-harmonic grid generation can be successfully applied to unsteady problems
of gas dynamics. The grid is clustered in such a way that we can obtain satisfactory
resolutions of the discontinuities without using a large number of grid nodes.

In the 2D case, the adapted mesh looks like a set of blocks with the boundaries
defined automatically by the condensed gridlines. Inside every “block,” the mesh is
quasiuniform, and the solution is smooth. This approach may be considered as a
further development of the moving block technique presented in the monograph of
Godunov et al. [14], where the flow domain is divided into blocks with boundaries
being the shock waves or contact discontinuities. Advantage of the moving adaptive
grid approach is that such a “cutting” is performed automatically. In real-world com-
putations to obtain such a complex nonstationary configuration of the blocks, even
if we would be able to capture their boundaries “by hand,” we would have serious
problems joining those blocks.

At a first glance, it seems that for unsteady problems the grid adaptation increases
the total time of computation significantly in our 2D calculations approximately by
factor of 10 to 20 due to additional updating the flow parameters after every mesh
iteration and reduction of the admissible time step. A detail analysis removes this
impression. Suppose we want to reduce the thickness of shock wave smearing by a
factor of 20. With the moving mesh method, we attain such a cell aspect ratio in
the shock zone. However, with the rectangular mesh, we need to increase number of
grid points by 20 times in not only x and y directions but also the time direction,
since the time step falls as well. As a result we need computer memory about 400
times larger, and the running time will increase by a factor of 203=8000. With the
moving mesh approach, the computer cost is approximately the number of iterations
at each time step multiplying by the ratio of the admissible time step. So in this case
the running time increases by a factor of 20β (in reality by a lesser factor since we
perform calculations with the smallest ∆t only within a part of time t), where β is the
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number of iterations at each time step which is about 2 to 3 in the 2D computations.
This comparison demonstrates the great saving in computer memory and gaining in
computer time for the use of the proposed moving mesh methods. The advantage of
the adaptive procedure seems more impressive in 3D calculations.
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