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Abstract. Numerical schemes based on the collisional BGK model have been developed in
recent years. In this paper, we investigate the first-order BGK schemes for the Euler equa-
tions. Particular attention is given to finding CFL-like conditions under which the schemes are
positivity-preserving (i.e. density and internal energy remain nonnegative). The first-order BGK
schemes are linear combinations of collisionless (i.e. kinetic flux-splitting scheme) and collisional
approach. We show that the collisionless approach preserves the positivity of density and in-
ternal energy under the standard CFL condition. Although the collisionless approach has the
positivity-preserving property, it introduces large intrinsic dissipation and heat conductions since
the corresponding scheme is based on two half Maxwellians. In order to reduce the viscous error,
one obvious method is to use an exact Maxwellian, which leads to the collisional Boltzmann
scheme. An CFL-like condition is also found for the collisional approach, which works well for
the test problems available in literature. However, by considering a counterexample we find that
the collisional approach is not always positivity-preserving. The BGK type schemes are formed
by taking the advantages of both approaches, i.e. the less dissipative scheme (collisional) and
the more dissipative but positivity-preserving scheme (collisionless).
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1. Introduction

In an important and influential paper, Harten, Lax and van Leer [6] drew a dis-
tinction between two numerical approaches to the solution of the Euler equations,
namely, Godunov and Boltzmann schemes. Broadly speaking, Godunov scheme is
based on the Riemann solutions, and the Boltzmann scheme uses the microscopic
particle motion as the basis to construct the scheme, where the macroscopic flow
behavior is an average collection of interactions in the microscopic world. Godunov
and Boltzmann schemes are based on two different physical considerations. The
development of numerical schemes based on a Riemann solver starts from: Eu-
ler −→ Navier-Stokes −→ high-moments equations. On the other hand, schemes
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based on the Boltzmann equation start from: Rarefied gas flow −→ Navier-Stokes
−→ Euler. Basically, this is also the direct reason why Boltzmann-type schemes
always give the entropy satisfying solutions.

Currently, the governing equations in constructing gas-kinetic schemes for the
compressible Euler equations can be distinguished mainly in two groups. One of
them is based on the Collisionless Boltzmann equation [3, 5, 10, 13, 15], and the
other is based on the collisional BGK model [17, 12, 18, 19]. The collisionless
Boltzmann solution and the Euler solution are two extreme limits in flow motion.
The former describes the gas flow without any particle collisions and the latter
includes infinite number of collisions. The transition from one scheme to other
can be finished by including more and more particle collisions, where the Navier-
Stokes solutions are between them. The BGK scheme is just a scheme to connect
collisionless Boltzmann equation and the inviscid Euler equations, which naturally
gives the Navier-Stokes solutions.

In computing numerical solutions of the Euler equations, one important re-
quirement is that density and internal energy should remain positive under a
Courant-Friedrichs-Lewy (CFL)-like condition. This property is called positivity-
preserving property. It is well known that classical approximate Riemann solvers
do not satisfy this property [4, 16]. This is a serious drawback when the solution is
near vacuum. On the other hand, schemes based on the Boltzmann equation are
found to preserve the positivity of density and internal energy under a CFK-like
condition [5, 13, 11, 18]. It is quite well understood that the kinetic flux-splitting
methods satisfy the positivity-preserving property. In the last few years, numerical
schemes based on the collisional BGK model have been developed [12, 18, 19]. It is
observed numerically that the BGK schemes also satisfy the positivity-preserving
property.

Recently, there have been also interests in developing the positive schemes, see
e.g. [9, 7]. In the sense of Liu and Lax [9], a scheme is positive if it can be written
in the form

Un+1
J =

∑
K

CnKU
n
J+K ,

so that the coefficient matrices CK , which themselves depend on all the UnJ+K , have
the following properties: (i) Each CK is symmetric positive definite, (ii)

∑
K CK

is the identity matrix. The positive schemes involve two positive parameters. It is
shown that some positive schemes do suffer from negative internal energy for the
low density and internal energy test problem (Example 4, [9]). By changing the
two parameters, i.e. by adding more dissipation, the positivity-preserving property
is recovered for the test problem.

In this paper, we will analyze the positivity-preserving properties for the BGK
schemes, in particular the first order BGK type schemes. Our schemes also in-
volve two positive parameters, which combine the so-called collisionless approach
(i.e. flux splitting method) and the collisional approach. In order to have a better
understanding of the BGK schemes, we begin with the investigations of the col-
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lisionless and collisional approaches. In Section 3 we show that the collisionless
approach is always positivity-preserving as long as the standard CFL condition
is satisfied. In Section 4, we investigate the collisional approach. A practical
CFL-like condition is obtained that works well for the test problems in literature.
However, unlike the collisionless approach, a rigorous CFL-like condition cannot
be obtained for the collisional approach. In fact, counterexamples showing that
the collisional approach is not positivity-preserving are found. To take the advan-
tages of the collisionless and collisional approaches, i.e. the positivity-preserving
property of the collisionless approach and the less-dissipation property of the colli-
sional approach, the linear combination of the two approaches is used to form the
BGK type schemes. In Section 5, it is shown that if the collisionless and collision-
al schemes are positivity-preserving for a given problem, then the corresponding
BGK schemes are also positivity-preserving for the same problem. Furthermore,
for problems violating the positivity-preserving property with the collisional ap-
proach, the BGK schemes work well if some collisionless contributions are added.

2. Preliminaries

We consider the one dimensional Euler equations of gas dynamics:
ρt +mx = 0,
mt + (mU + p)x = 0,
Et + (EU + pU)x = 0,

(2.1)

where ρ is the density, U the velocity, m = ρU the momentum, E = 1
2ρU

2 + ρe
the energy per unit mass, e the internal energy, p the pressure. We assume that
the gas is a γ-law gas, i.e. p = (γ − 1)ρe, 1 ≤ γ ≤ 3.

The Boltzmann equation in the 1-D case can be written as [8]

ft + ufx = Q(f, f), (2.2)

where f is the gas-distribution function, u the particle velocity, and Q(f, f) the
collision term. The collision term is an integral function which accounts for the
binary collisions. In most cases, the collision term can be simplied and the BGK
model is the most successful one [1],

Q(f, f) = (g − f)/τ, (2.3)

where g is the equilibrium state and τ the collision time. For the Euler equations,
the equilibrium state g is a Maxwellian,

g = ρ

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2), (2.4)
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where K is the degree of the internal variable given by

K = (3− γ)/(γ − 1); (2.5)

λ is connected to the gas temperature T .
The connection between the distribution function f and macroscopic flow vari-

ables is

(ρ,m,E)T =
∫
ψαfdudξ, (2.6)

where ξ is the internal degree of freedom, such as molecular rotation and vibrations,
and

ψα = (1, u,
1
2

(u2 + ξ2))T

are the moments for density ρ, momentum m and total energy E. The fluxes for
the corresponding macroscopic variables are

(Fρ, Fm, FE)T =
∫
uψαfdudξ. (2.7)

The conservation principle for mass, momentum and energy during the course of
particle collisions requires Q(f, f) to satisfy the compatibility condition∫

Q(f, f)ψαdudξ = 0, α = 1, 2, 3. (2.8)

In the 1st-order BGK scheme [17], the gas distribution function at cell interface
is

f = (1− e−t/τ )f1 + e−t/τf0

= β(t)f1 + α(t)f0,
(2.9)

where f1 is the exact Maxwellian located at the cell interface, and f0 is the initial
non-equilibrium two half Maxwellians from the left and right hand side of the
numerical boundary. The above solution will go back to collisionless solution in
the limit of τ → ∞, the so-called Kinetic Flux Vector Splitting scheme (KFVS).
On the other hand, as τ goes to zero, f will be equal to a Maxwellian f = f1
which is the exact requirement from the Euler equations.

Based on (2.9), we will in this paper consider the positivity-preserving proper-
ties for the following three cases:

• 1. Collisionless approach: α(t) ≡ 1, β(t) ≡ 0;
• 2. Collisional approach: α(t) ≡ 0, β(t) ≡ 1;
• 3. BGK: 0 ≤ α(t), β(t) ≤ 1 satisfying α(t) + β(t) ≡ 1.
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3. Collisionless approach

In this section we consider the kinetic flux-splitting scheme (i.e. collisionless
scheme) proposed by Pullin [13] and Deshpande [2, 3]. The scheme uses the fact
that the Euler equations (2.1) are the first moments of the Boltzmann equation
when the velocity repartition function is Maxwellian. In Section 3.1 we briefly re-
call the collisionless scheme. In Section 3.2 we prove that the scheme is positivity
preserving under the standard CFL condition. A similar result, which is about
half of the standard CFL condition, has been given in a recent paper of Estivalezes
and Villedieu [5].

3.1. Numerical scheme

In order to derive the collisionless Boltzmann scheme, we first construct the numer-
ical flux which is to use (2.7). We suppose that the initial data (ρ0(x),m0(x), E0(x))
are piecewise constant over the cells Cj = [xj−1/2, xj+1/2). At each time level,
once ρj,mj and Ej are given, the corresponding Uj and λj can be obtained by the
following formulas:

m = ρU, E =
1
2
ρU2 +

K + 1
4λ

ρ. (3.1)

Let

gj(x, t, u, ξ) = ρj

(
λj
π

)K+1
2

e−λj((u−Uj )
2+ξ2) (3.2)

be a Maxwellian distribution in the cell Cj . The corresponding distribution func-
tion at cell interface is defined by

f0(xj+1/2, t, u, ξ) =
{
gj(x, t, u, ξ), if u > 0
gj+1(x, t, u, ξ), if u < 0.

(3.3)

Using the formulas (2.7), we obtain the numerical fluxes

 F 0
ρ,j+1/2

F 0
m,j+1/2
F 0
E,j+1/2

 = ρj


Uj
2 erfc(−

√
λjUj) + 1

2
e
−λjU2

j√
πλj(

U2
j

2 + 1
4λj

)
erfc(−

√
λjUj) + Uj

2
e
−λjU2

j√
πλj(

U3
j

4 + K+3
8λj Uj

)
erfc(−

√
λjUj) +

(
U2
j

4 + K+2
8λj

)
e
−λjU2

j√
πλj


(3.4)

+ρj+1


Uj+1

2 erfc(
√
λj+1Uj+1)− 1

2
e
−λj+1U

2
j+1√

πλj+1(
U2
j+1
2 + 1

4λj+1

)
erfc(

√
λj+1Uj+1)− Uj+1

2
e
−λj+1U

2
j+1√

πλj+1(
U3
j+1
4 + K+3

8λj+1
Uj+1

)
erfc(

√
λj+1Uj+1)−

(
U2
j+1
4 + K+2

8λj+1

)
e
−λj+1U

2
j+1√

πλj+1

 ,
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where the complementary error function, which is a special case of the incomplete
gamma function, is defined by

erfc(x) =
2√
π

∫ ∞
x

e−t
2
dt.

Like sine and cosin functions, erfc(x), or its double precision derfc(x), is a given
function in FORTRAN. Using the above numerical fluxes, we are able to update
ρj ,mj , Ej with the standard conservative formulations:

 ρ̃j
m̃j

Ẽj

 =

 ρj
mj

Ej

+ σ

 F 0
ρ,j−1/2 − F 0

ρ,j+1/2
F 0
m,j−1/2 − F 0

m,j+1/2
F 0
E,j−1/2 − F 0

E,j+1/2

 , (3.5)

where

σ =
∆t
∆x

,

with ∆t the stepsize in time, and ∆x the mesh size in space. The scheme can
be viewed as consisting of the following three steps (although it is not typically
implemented this way):

ALGORITHM 0 (Collisionless Approach)
1. Given data {ρnj , Unj , Enj }, compute {λnj } using (3.1).
2. Compute the numerical flux {F 0

ρ,j+1/2, F
0
m,j+1/2, F

0
E,j+1/2} using (3.4).

3. Update {ρnj ,mn
j , E

n
j } using (3.5). This gives {ρn+1

j ,mn+1
j , En+1

j }.

3.2. Positivity-preserving analysis

The numerical schemes (3.5) can be split into two steps. In the first step we
consider the case when there is only gas flowing out from the cell Cj . This gives
that ρ∗j

m∗j
E∗j

 =

 ρj
mj

Ej

+ σ


∫
u<0 ugjdudξ −

∫
u>0 ugjdudξ∫

u<0 u
2gjdudξ −

∫
u>0 u

2gjdudξ∫
u<0

u
2 (u2 + ξ2)gjdudξ −

∫
u>0

u
2 (u2 + ξ2)gjdudξ

 .

(3.6)
The second step is to add the correction terms: ρ̃j
m̃j

Ẽj

 =

 ρ∗j
m∗j
E∗j

+σ


∫
u>0 ugj−1dudξ −

∫
u<0 ugj+1dudξ∫

u>0 u
2gj−1dudξ −

∫
u<0 u

2gj+1dudξ∫
u>0

u
2 (u2 + ξ2)gj−1dudξ −

∫
u<0

u
2 (u2 + ξ2)gj+1dudξ

 .

(3.7)



264 T. Tang and K. Xu ZAMP

It can be verified that (ρ̃j , m̃j , Ẽj) obtained by (3.5) are exactly the same as those
obtained by using (3.7).

Lemma 3.1. Assume that ρ∗j ,m
∗
j , E

∗
j be computed by (3.6). If ρj ≥ 0 and ρjEj ≥

1
2(mj)2 for all integers j, then

ρ∗j ≥ 0, ρ∗jE
∗
j ≥

1
2
(
m∗j
)2 (3.8)

for all j, provided that the following CFL condition is satisfied:

σ ≤ 1
maxj (|Uj |+ cj)

, (3.9)

where cj =
√
γ/2λj is the local speed of sound.

Proof. It follows from (3.2) and (3.6) that

ρ∗j = ρj − σρj
{

1
2
Ujαj + βj

}
,

m∗j = mj − σρj

{(
U2
j

2
+

1
4λj

)
αj + ujβj

}
,

E∗j = Ej − σρj

{(
U3
j

4
+
K + 3

8λj
Uj

)
αj +

(
U2
j

2
+
K + 2

4λj

)
βj

}
,

where

αj = erfc
(
−
√
λjUj

)
− erfc

(√
λjUj

)
; βj =

e−λjU
2
j√

πλj
. (3.10)

For ease of notations, we drop the subscript j in the remaining of the proof. It
follows from (3.10) that

0 ≤ Uα ≤ 2|U |, β ≤ 1√
πλ

.

If σ satisfies (3.9), then

ρ∗ ≥ ρσ
{

max
j

(
|Uj |+ cj

)
−
(
|U |+ 1√

πλ

)}
≥ 0.

Furthermore, we observe that

ρ∗E∗ − 1
2

(m∗)2 = Aσ2 −Bσ + C,
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where, by direct calculations

A =
(
K + 1
16λ

U2 − 1
32λ2

)
ρ2α2 +

K + 2
4λ

ρ2β2 +
2K + 3

8λ
Uρ2αβ;

B =
K + 1

4λ
ρ2Uα+

2K + 3
4λ

ρ2β;

C = ρE − 1
2
m2 =

K + 1
4λ

ρ2.

The last equation indicates that C ≥ 0. It follows from Jensen’s inequality and
the integral formulations (3.6) that A ≥ 0, B ≥ 0. Direct calculation also shows
that B2 − 4AC ≥ 0. These facts imply that there are two positive roots for the
quadratic equation Aσ2 − Bσ + C = 0. In order that ρ∗E∗ ≥ 1

2 (m∗)2, the σ
should satisfy that σ ≤ σ1, here σ1 is the smaller root of the quadratic equation.
Direct calculation gives

σ1 =

(
1
2
Uα+

2K + 3
2K + 2

β +
1

K + 1

√
K + 1

8λ
α2 +

1
4
β2

)−1

.

Now introduce the following function:

F (x,K) = |x|+
√

K + 3
2K + 2

− 1
2
x
(

erfc(−x)− erfc(x)
)
− 2K + 3

2K + 2
e−x

2

√
π

− 1
K + 1

√
K + 1

8

(
erfc(−x)− erfc(x)

)2
+
e−2x2

4π
.

It can be shown that F (x,K) is always positive for any x ∈ R and for any
positive K. This can also be seen from Figure 1 where we have plotted F (x,K)
for several values of K. Since γ = (K + 3)/(K + 1), F (x,K) ≥ 0 indicates that

σ1 ≥
1

|U |+
√

γ
2λ
.

This completes the proof of this lemma. �

Lemma 3.2. Assume that ρ̃j , m̃j, Ẽj be computed by (3.7). If ρ∗j ,m
∗
j and E∗j used

in (3.7) satisfy ρ∗j ≥ 0 and ρ∗jE
∗
j ≥ 1

2(m∗j )
2 for all integers j, then for any choice

of σ > 0 the following positivity-preserving properties are held

ρ̃j ≥ 0, ρ̃jẼj ≥
1
2

(m̃j)
2 (3.11)

for all j.
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Figure 1.
The function F (x,K), with K = 0, 2, 4, 8,∞.

Proof. It follows from Lemma 3.1 that ρ∗j ≥ 0, ρ∗jE
∗
j ≥ 1

2
(
m∗j
)2. It is observed

from (3.7) that ρ̃j ≥ ρ∗j ≥ 0. Similar to the proof of Lemma 3.1, we can write
ρ̃jẼj − 1

2 (m̃j)
2 into the following form:

ρ̃jẼj −
1
2

(m̃j)
2 = Aσ2 +Bσ + C,

where the coefficients A,B, and C are obtained from (3.7). Using the facts that
ρ∗jE

∗
j ≥ 1

2
(
m∗j
)2 and∫

u>0

u

2
(u2 + ξ2)gj−1dudξ ≥

∫
u>0

1
2
u3gj−1dudξ;∫

u<0

u

2
(u2 + ξ2)gj+1dudξ ≤

∫
u<0

1
2
u3gj+1dudξ,

we can show that A ≥ 0, B ≥ 0 and C ≥ 0. This completes the proof of (3.11). �

Combining Lemmas 3.1 and 3.2, we conclude that the collisionless approach is
positivity-preserving as long as the standard CFL condition is satisfied.

Remark 3.1. Lemma 3.2 shows that the CFL condition based on the positivity-
preserving analysis for the numerical scheme (3.5) can be determined by analyzing
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the simplified scheme (3.6). In other words, the CFL condition is obtained by
considering the scheme (3.5) with the following assumption:

ρj−1 = 0, ρj > 0, ρj+1 = 0. (3.12)

4. Collisional approach

Although the collisionless Boltzmann scheme has positivity-preserving property,
its description of the flow motion is inadquate. As we know, for the compressible
Euler equations, the corresponding gas distribution should be Maxwellians. How-
ever, the flux function in the collisionless Boltzmann scheme is based on two half
Maxwellians at each cell interface. In other words, it introduces intrinsic numerical
dissipation and heat conductions. In order to reduce the viscous error, we need in
some ways to modify the gas distribution at the cell interface. One of the obvious
ways is to use an exact Maxwellian.

4.1. Numerical scheme

We suppose that the initial data (ρ0(x),m0(x), E0(x)) are piecewise constant over
the cells Cj = [xj−1/2, xj+1/2). We further assume that across the cell interface

f1(xj+1/2, t, u, ξ) = ρ̄j+1/2

(
λ̄j+1/2

π

)K+1
2

e−λ̄j+1/2((u−Ūj+1/2)2+ξ2), (4.1)

where ρ̄j+1/2, λ̄j+1/2, Ūj+1/2 are to be determined. In other words, f1(xj+1/2, t, u, ξ)
is a local Maxiwellian distribution. Since mass, momentum and energy are con-
served during particle collisions, we have the following condition

∫
f1(xj+1/2, t, u, ξ)

 1
u

1
2(u2 + ξ2)

 dudξ =
∫
f0(xj+1/2, t, u, ξ)

 1
u

1
2(u2 + ξ2)

 dudξ,

(4.2)
where f0(xj+1/2, t, u, ξ) on the right hand side is given by (3.3). Direct calculation
using (4.2) gives

 ρ̄j+1/2
ρ̄j+1/2Ūj+1/2

1
2 ρ̄j+1/2

(
Ū2
j+1/2 + K+1

2λ̄j+1/2

)
 = ρj


1
2erfc(−

√
λjUj)

1
2Ujerfc(−

√
λjUj) + 1

2
e
−λjU2

j√
πλj

1
2

(
U2
j

2 + K+1
4λj

)
erfc(−

√
λjUj) + Uj

4
e
−λjU2

j√
πλj


(4.3)
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+ρj+1


1
2erfc(

√
λj+1Uj+1)

1
2Uj+1erfc(

√
λj+1Uj+1)− 1

2
e
−λj+1U

2
j+1√

πλj+1

1
2

(
U2
j+1
2 + K+1

4λj+1

)
erfc(

√
λj+1Uj+1)− Uj+1

4
e
−λj+1U

2
j+1√

πλj+1


The first equation in (4.3) gives ρ̄j+1/2, the second equation yields Ūj+1/2, and the
third one leads to λ̄j+1/2. Further, using (4.1) and the formulas (2.7), we obtain
the numerical fluxes

 F 1
ρ,j+1/2

F 1
m,j+1/2
F 1
E,j+1/2

 =
∫
f1(xj+1/2, t, u, ξ)u

 1
u

1
2 (u2 + ξ2)

 dudξ (4.4)

= ρ̄j+1/2

 Ūj+1/2
Ū2
j+1/2 + 1

2λ̄j+1/2
1
2 Ū

3
j+1/2 + K+3

4λ̄j+1/2
Ūj+1/2

 .

Using the above numerical fluxes, we are able to update ρj ,mj , Ej with the stan-
dard conservative formulations:

 ρ̃j
m̃j

Ẽj

 =

 ρj
mj

Ej

+ σ

 F 1
ρ,j−1/2 − F 1

ρ,j+1/2
F 1
m,j−1/2 − F 1

m,j+1/2
F 1
E,j−1/2 − F 1

E,j+1/2

 , (4.5)

where F 1
ρ,j±1/2, F

1
m,j±1/2, F

1
E,j±1/2 are given by (4.4), and σ = ∆t/∆x. The

scheme can be viewed as consisting of the following four steps:

ALGORITHM 1 (Collisional Approach)

1. Given data {ρnj , Unj , Enj }, compute {λnj } using (3.1).
2. Compute {ρ̄j+1/2, Ūj+1/2, λ̄j+1/2} using (4.3).
3. Compute the numerical flux {F 1

ρ,j+1/2, F
1
m,j+1/2, F

1
E,j+1/2} using (4.4).

4. Update {ρnj ,mn
j , E

n
j } using (4.5). This gives {ρn+1

j ,mn+1
j , En+1

j }.

4.2. Positivity-preserving analysis

If the Algorithm 1 makes sense, then it is required that ρ̃j ≥ 0, ρ̃jẼj ≥ 1
2(m̃j)2.

The two requirements will lead to the CFL condition. The collisional scheme is
strongly nonlinear, which makes the analysis more difficult. However, it is found
for the density ρ̃, the analysis is simple. From (4.3)–(4.5), we obtain
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ρ̃j = ρj + σ
{ρj−1Uj−1

2
erfc(−

√
λj−1Uj−1) +

ρj−1
2

e−λj−1U
2
j−1√

πλj−1
(4.6)

+
ρjUj

2

(
erfc(

√
λjUj)− erfc(−

√
λjUj)

)
− ρj

e−λjU
2
j√

πλj

− ρj+1Uj+1
2

erfc(
√
λj+1Uj+1) +

ρj+1
2

e−λj+1U
2
j+1√

πλj+1

}
.

It can be shown that, for any U ∈ R and for any fixed λ > 0, that

Uerfc(−
√
λU) +

e−λU
2

√
πλ
≥ 0, −Uerfc(

√
λU) +

e−λU
2

√
πλ
≥ 0. (4.7)

This, together with (4.6), yield

ρ̃j ≥ ρj + σ

{
ρjUj

2

(
erfc(

√
λjUj)− erfc(−

√
λjUj)

)
− ρj

e−λjU
2
j√

πλj

}

≥ ρj + σ

{
−ρj|Uj | − ρj

1√
πλj

}
. (4.8)

To ensure that ρ̃j ≥ 0, it is required that

σ ≤ min
j

(
|Uj |+

1√
πλj

)−1

. (4.9)

The positivity-preserving analysis for the internal energy is much more compli-
cated than that for the collisionless approach. In fact, an CFL-like condition based
on the positivity-preserving analysis seems impossible for the collisional approach.
We will consider two special cases in the remaining of the section. The first case
uses the assumption (3.12), which is the case that there is only gas flowing out
from the cell Cj , but there is no any mass moving into the cell. As pointed out in
Remark 3.1, the CFL condition for the collisionless approach is obtained by using
(3.12).

4.2.1.Special case I. In order to find a practical CFL number satisfying the positivity-
preserving requirements, we consider the extrem case (3.12), i.e.

ρj−1 = 0, ρj > 0, ρj+1 = 0. (4.10)

Lemma 4.1. If (4.10) is satisfied, then

1
λ̄j±1/2

≤ 1
λj
. (4.11)
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Proof. Since ρj±1 = 0, it follows from (4.3) that

ρ̄j±1/2 =
1
2
ρjerfc(∓

√
λjUj), (4.12)

ρ̄j±1/2Ūj±1/2 = ρ̄j±1/2Uj ±
ρj
2
e−λjU

2
j√

πλj
, (4.13)

1
2
ρ̄j±1/2

(
Ū2
j±1/2 +

K + 1
2λ̄j±1/2

)
=

1
2
Uj
(
ρ̄j±1/2Ūj±1/2

)
+
K + 1

4λj
ρ̄j±1/2.

(4.14)

Using the above formulas, we can obtain

K + 1
4λ̄j±1/2

ρ̄j±1/2 =
K + 1

4λj
ρ̄j±1/2 ∓

ρj
4
e−λjU

2
j√

πλj
Ūj±1/2. (4.15)

It follows from (4.7) that Ūj+1/2 ≥ 0 and Ūj−1/2 ≤ 0. This, together with (4.15),
yield (4.11). �

Lemma 4.2. If (4.10) is satisfied, then

ρ̃jẼj−
1
2
m̃2
j ≥ −

ρ2
j

8λ2
j

σ2−
(

5(K + 1)
8λj

ρ2
j |Uj|+

K + 2
2λj

ρ2
j√
πλj

)
σ+

K + 1
4λj

ρ2
j , (4.16)

where ρ̃j , m̃j and Ẽj are defined by (4.4) and (4.5).

Proof. It follows from (4.4) and (4.5) that

ρ̃jẼj −
1
2
m̃2
j = Aσ2 −Bσ + C,

where

A =
(
ρ̄j+1/2Ūj+1/2 − ρ̄j−1/2Ūj−1/2

) (1
2
ρ̄j+1/2Ū

3
j+1/2 −

1
2
ρ̄j−1/2Ū

3
j−1/2

+
K + 3

4λ̄j+1/2
ρ̄j+1/2Ūj+1/2 −

K + 3
4λ̄j−1/2

ρ̄j−1/2Ūj−1/2

)
− 1

2

(
ρ̄j+1/2Ū

2
j+1/2 − ρ̄j−1/2Ū

2
j−1/2 +

ρ̄j+1/2

2λ̄j+1/2
−

ρ̄j−1/2

2λ̄j−1/2

)2
;

B =
(

1
2
ρjU

2
j +

K + 1
4λj

ρj

)(
ρ̄j+1/2Ūj+1/2

− ρ̄j−1/2Ūj−1/2

)
+ ρj

(1
2
ρ̄j+1/2Ū

3
j+1/2 −

1
2
ρ̄j−1/2Ū

3
j−1/2
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+
K + 3

4λ̄j+1/2
ρ̄j+1/2Ūj+1/2 −

K + 3
4λ̄j−1/2

ρ̄j−1/2Ūj−1/2

)
− ρjUj

(
ρ̄j+1/2Ū

2
j+1/2 − ρ̄j−1/2Ū

2
j−1/2 +

ρ̄j+1/2

2λ̄j+1/2
−

ρ̄j−1/2

2λ̄j−1/2

)
;

C = ρjEj −
1
2
m2
j =

K + 1
4λj

ρ2
j .

Using the facts that Ūj+1/2 ≥ 0, Ūj−1/2 ≤ 0, we obtain from the expression for A
that

A ≥ −1
2

(
ρ̄j+1/2

2λ̄j+1/2
−

ρ̄j−1/2

2λ̄j−1/2

)2
≥ −1

8
max

(
ρ̄2
j+1/2

λ̄2
j+1/2

,
ρ̄2
j−1/2

λ̄2
j−1/2

)
.

It follows from (4.12) that ρ̄j±1/2 ≤ ρj . This, together with Lemma 4.1, yield
A ≥ −ρ2

j/8λ
2
j . Further, we split the coefficient B into the following form

B =
K + 1

4λj
ρj
(
ρ̄j+1/2Ūj+1/2 − ρ̄j−1/2Ūj−1/2

)
+B+ −B−, (4.17)

where

B± =
1
2
ρjU

2
j

(
ρ̄j±1/2Ūj±1/2

)
+ ρjŪj±1/2

(
1
2
ρ̄j±1/2Ū

2
j±1/2 +

K + 1
4λ̄j±1/2

)
− ρjUjŪj±1/2

(
ρ̄j±1/2Ūj±1/2

)
+

1
2λ̄j±1/2

ρj ρ̄j±1/2
(
Ūj±1/2 − Uj

)
.

It follows from (4.12)–(4.14) that

B+ =
K + 1

4λj
ρj
(
ρ̄j+1/2Ūj+1/2

)
+

ρ2
j

4λ̄j+1/2

e−λjU
2
j√

πλj

+
1
2
ρjUj ρ̄j+1/2Ūj+1/2(Uj − Ūj+1/2).

Using (4.14) gives

ρjUjρ̄j+1/2Ūj+1/2(Uj − Ūj+1/2) =
K + 1

4

(
1

λ̄j+1/2
− 1
λj

)
ρj ρ̄j+1/2Uj

≤ K + 1
4λj

ρj ρ̄j+1/2|Uj |,

where in the last step we have used the result of Lemma 4.1. Combining the above
two results, we obtain

B+ ≤ K + 1
4λj

ρj
(
ρ̄j+1/2Ūj+1/2

)
+

ρ2
j

4λ̄j+1/2

e−λjU
2
j√

πλj
+
K + 1

8λj
ρj ρ̄j+1/2|Uj |.
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Similarly, we have

B− ≥ K + 1
4λj

ρj
(
ρ̄j−1/2Ūj−1/2

)
−

ρ2
j

4λ̄j−1/2

e−λjU
2
j√

πλj
− K + 1

8λj
ρj ρ̄j−1/2|Uj |.

It follows from (4.17) and the above two inequalitites that

B ≤ K + 1
2λj

ρj
(
ρ̄j+1/2Ūj+1/2 − ρ̄j−1/2Ūj−1/2

)
+

ρ2
j

2λj
e−λjU

2
j√

πλj
+
K + 1

8λj
ρj
(
ρ̄j+1/2 + ρ̄j−1/2

)
|Uj |,

where we have used the result of Lemma 4.1. Using (4.12), (4.13) and the fact
that erfc(−x) + erfc(x) = 2, we obtain

B ≤ K + 1
2λj

ρ2
j

(
|Uj |+

1√
πλj

)
+

ρ2
j

2λj
1√
πλj

+
K + 1

8λj
ρ2
j |Uj|.

This completes the proof of this lemma. �

It is easy to show that the positive root of the right hand side polynomial (with
respect to σ) of (4.16) satisfies

σ+ ≥
(

5
2
|Uj |+

2(K + 2)
K + 1

1√
πλj

+
1√

2(K + 1)λj

)−1

≥
(

5
2
|Uj|+

5
2
cj

)−1
,

for all K ≥ 0, where cj =
√
γj/2λj is the local speed of sound. In order that the

right hand side of (4.16) is positive, we require that

σ ≤ 0.4
maxj (|Uj |+ cj)

. (4.18)

Under the above condition, we also obtain from (4.8) that ρ̃j ≥ 0.
We point out that the CFL-like condition (4.18) works well for the available

test problems in literature, including those in [5, 9]. For these test problems, we
have not found any case with negative internal energy. In particular, the collisional
scheme also works for the low density and low internal energy problem proposed
in [4].

For the collisionless approach, Lemma 3.2 ensures that a rigourous CFL condi-
tion can be obtained by using the assumption (4.10). However, there is no result



Vol. 50 (1999) Gas-kinetic schemes for the compressible Euler equations 273

similar to Lemma 3.2 that holds for the collisional approach. Is (4.10) again a cor-
rect assumption leading to a rigourous CFL condition for the collisional approach?
4.2.2. Special case II.

Physically, the collisional approach is based on the assumption of local equi-
librium Maxwellian distribution, in which the viscosity and heat conductivity go
to zero automatically. However, in some situations, even for the Euler equations,
the gas will not stay on the equilibrium state. The example for this is the discon-
tinuous shocks, where the dissipative terms are crucial to achieve a smooth shock
transition by transferring kinetic energy into thermal energy. So, for the strong
shock cases, the collisional approach has intrinsic weakness and it will definitely
give some mal-behavior due to the incorrect physical assumptions. Let us consider
the following example. A stationary shock is located at cell interface x = 0 with
distributions (ρ1, U1, P1) and (ρ2, U2, P2) on the left and right sides. The upstream
and downstream flow conditions are

ρ1 = 1,
U1 = 1, x ≤ 0,
P1 = 1

γM2 ,

(4.19)

and 

ρ2 = ρ1
γ+1

2 M2
/(

1 + γ−1
2 M2

)
,

U2 = U1

(
γ − 1
γ + 1

+
2

(γ + 1)M2

)
, x > 0,

P2 = P1

(
2γ
γ + 1

M2 − γ − 1
γ + 1

)
,

(4.20)

where γ = 1.4, M is the Mach number. In Fig 2, we plot the internal energy ρ̃0Ẽ0−
1
2m̃

2
0, where ρ̃0, Ẽ0 and m̃0 are computed by the collisional scheme Algorithm 1,

with σ = 0.2/max(|Uj | + cj), 0.4/max(|Uj | + cj), 0.6/max(|Uj | + cj) and σ =
1/max(|Uj |+ cj).

It is seen from Fig 2 that for σ = 0.4/max(|Uj | + cj), the internal energy
becomes negative if M ≥ 25. Even with unrealisticly small σ = 0.2/max(|Uj |+cj),
the internal energy becomes negative for larger values of M .

The above analysis suggests that, unlike the collisionless approach, the collision-
al Boltzmann scheme is not positivity-preserving. Therefore, some modifications
are required in order to take the advantage of the less-dissipation property in the
collisional scheme.

5. The BGK approach

Collisionless and collisional schemes are two extreme limits in the description of
flow motion. In the smooth flow region, collisional approach gives correct flux
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Figure 2.
The internal ebergy: from top to bottom are obtained by using σ = 0.2/max(|Uj |+ cj),
0.4/max(|Uj |+ cj), 0.6/max(|Uj |+ cj) and σ = 1/max(|Uj |+ cj).

functions by its equlibrium Maxwellian. However, in the discontinuous region, the
real physical gas distribution function should be a non-Maxwellian and all physical
dissipative mechanism are included in the deviation of the distribution function
away from the equilibrium state. So, in order to correctly describe both smooth
and discontinuous flow motions we need somehow to keep both collisionless and
collisional distributions. We hope also by doing this that the positivity-preserving
property is recovered. The linear combination of the collisionless and collisional
approaches forms the BGK scheme.

5.1. Numerical scheme

We suppose that the initial data (ρ0(x),m0(x), E0(x)) are piecewise constant over
the cells Cj = [xj−1/2, xj+1/2). We assume that across the cell interface we have

f2(xj+1/2, t, u, ξ) = α(t)f0(xj+1/2, t, u, ξ) + β(t)f1(xj+1/2, t, u, ξ), (5.1)

where α(t) > 0, β(t) > 0 are given coefficients satisfying α(t) + β(t) ≡ 1, f0 and
f1 are given by (3.3) and (4.1), respectively. The corresponding numerical fluxes
are given by F 2

ρ,j+1/2
F 2
m,j+1/2
F 2
E,j+1/2

 = α(t)

 F 0
ρ,j+1/2

F 0
m,j+1/2
F 0
E,j+1/2

+ β(t)

 F 1
ρ,j+1/2

F 1
m,j+1/2
F 1
E,j+1/2

 , (5.2)
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where F 0
ρ,j+1/2, F

0
m,j+1/2, F

0
E,j+1/2 are given by (3.4), F 1

ρ,j+1/2, F
1
m,j+1/2, F

1
E,j+1/2

are given by (4.4). Using the above numerical fluxes, we update ρj ,mj , Ej based
on the following conservative formulations: ρ̃j

m̃j

Ẽj

 =

 ρj
mj

Ej

+ σα(t)

 F 0
ρ,j−1/2 − F 0

ρ,j+1/2
F 0
m,j−1/2 − F 0

m,j+1/2
F 0
E,j−1/2 − F 0

E,j+1/2


+ σβ(t)

 F 1
ρ,j−1/2 − F 1

ρ,j+1/2
F 1
m,j−1/2 − F 1

m,j+1/2
F 1
E,j−1/2 − F 1

E,j+1/2

 .

(5.3)

The scheme can be viewed as consisting of the following four steps:

ALGORITHM 2 (BGK scheme)

1. Given data {ρnj , Unj , Enj }, compute {λnj } using (3.1).
2. Compute the numerical flux {F 0

ρ,j+1/2, F
0
m,j+1/2, F

0
E,j+1/2} using (3.4).

3. Compute the numerical flux {F 1
ρ,j+1/2, F

1
m,j+1/2, F

1
E,j+1/2} using (4.4).

5. Update {ρnj ,mn
j , E

n
j } using (5.3). This gives {ρn+1

j ,mn+1
j , En+1

j }.

5.2. Positivity-preserving analysis

Let (ρ0
j ,m

0
j , E

0
j ) and (ρ1

j ,m
1
j , E

1
j ) be computed by the right hand sides of (3.5)

and (4.5), respectively. Namely, ρ0
j

m0
j

E0
j

 =

 ρj
mj

Ej

+ σ

 F 0
ρ,j−1/2 − F 0

ρ,j+1/2
F 0
m,j−1/2 − F 0

m,j+1/2
F 0
E,j−1/2 − F 0

E,j+1/2

 , (5.4)

and  ρ1
j

m1
j

E1
j

 =

 ρj
mj

Ej

+ σ

 F 1
ρ,j−1/2 − F 1

ρ,j+1/2
F 1
m,j−1/2 − F 1

m,j+1/2
F 1
E,j−1/2 − F 1

E,j+1/2

 . (5.5)

Since α(t) + β(t) = 1, the formulas (5.3) can be written in the following form ρ̃j
m̃j

Ẽj

 = α(t)

 ρ0
j

m0
j

E0
j

+ β(t)

 ρ1
j

m1
j

E1
j

 . (5.6)

Theorem 5.1. Assume that under the CFL condition σ ≤ σ̃ the following positivity–
preserving properties hold

ρ0
j ≥ 0, ρ1

j ≥ 0, (5.7)

ρ0
jE

0
j ≥

1
2

(m0
j )2, ρ1

jE
1
j ≥

1
2

(m1
j )2, (5.8)
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for all j. Then for any σ ≤ σ̃, we have

ρ̃j ≥ 0, ρ̃jẼj ≥
1
2

(m̃j)2, (5.9)

for any j, where (ρ̃j , m̃j, Ẽj) are given by (5.3).

Proof. It follows from (5.6) that ρ̃j ≥ 0 if (5.8) is satisfied. Moreover, if (5.8)
holds, then

ρ̃jẼj =
(
αρ0

j + βρ1
j

)(
αE0

j + βE1
j

)
≥
(
α
√
ρ0
jE

0
j + β

√
ρ1
jE

1
j

)2

≥ 1
2

(
αm0

j + βm1
j

)2
,

where in the last step we have used (5.8). This completes the proof of the theorem.
�
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Figure 3.
The internal energy obtained by using the BGK scheme with σ = 0.5/max(|Uj |+ cj): from top
to bottom are obtained with (α, β) = (0.1, 0.9), (0.01, 0.99), and (0, 1).

The above theorem implies that the CFL condition (based on positivity of
the density and the internal energy) for the BGK schemes can be determined by
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those for the collisionless and collisional schemes. Since the collisionless approach
is positivity-preserving under the standard CFL condition, this theorem suggests
that from the positivity-preserving point of view, the BGK scheme is not worse
than the collisional scheme. In fact, the numerical experiemnts show that with
small contributions from the collisionless part, the difficulties with negative inter-
nal energy encounted in the collisional approach can be overcome. To see this,
we consider the same example as considered in Section 4.2.2. In Fig 3, we plot
the internal energy as defined in Section 4.2.2 by using the scheme (5.6), with
σ = 0.5/max(|Uj | + cj). The top curve is obtained with (α, β) = (0.1, 0.9), the
middle one is obtained with (α, β) = (0.01, 0.99), and the bottom one is obtained
with (α, β) = (0, 1). It is noted that by adding 1% contribusions from the colli-
sionless approach the trouble with negative internal energy is almost disappeared.
If 10% collisionless contribusions are added, then the internal energy is well above
the axis of e = 0.

It should be pointed out that for all of the three schemes investigated in this
work, the density is always positive as long as the requirement (4.9) is satisfied.
This requirement is weaker than the standard CFL-condition and is always satis-
fied. So the main concern is to ensure that the internal energy is non-negative.

With test problems available in literature the most difficult case in keeping
positivity of density and internal energy is strong rarefaction waves (see, e.g. [4,
16]). We will test the BGK schemes for two typical examples. In the following
computation γ = 1.4.

Example 1. Low density and internal energy Riemann problem [4] with initial
data,

(ρ, U, p) =
{

(1,−2, 0.4) 0 ≤ x < 0.5,
(1, 2, 0.4) 0.5 ≤ x ≤ 1.

The CFL number used in computation is 0.9/max(|Uj |+ cj) and 100 grid points
are used. In Fig 4 we plot the logarithm of minimal internal energy

e = min
j

{
ρnjE

n
j −

1
2

(
mn
j

)2
}
.

It is observed that for both collisionless and collisional approaches, the internal
energy is always positive. By Theorem 5.1, the internal energy is also positive for
the corresponding BGK schemes.

Example 2. Vacuum apparition [5] with initial data,

(ρ, U, p) =
{

(1,−5, 0.4) 0 ≤ x < 0.5,
(1, 5, 0.4) 0.5 ≤ x ≤ 1.

The CFL number is 0.9/max(|Uj |+ cj) and 100 grid points are used. We plot the
minimal internal energy in Fig 5. Again, it is observed that for both collisionless
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Figure 4.
The history of the minimal internal energy obtained by using the collisionless approach (circle)
and the collisional approach (solid) for Example 1.

and collisional approaches the internal energy is always positive. By Theorem 5.1,
the internal energy is also positive for the corresponding BGK schemes. We also
present numerical results for the density and velocity from the collisional approach
at t = 0.05 in Figs 6 and 7. As we can see from these figures, even with ρ ∼ 10−9,
the internal energy is still positive and the flows are moving away from each other
to form the vaccum at center.

Finally, we point out that the ALGORITHM 2 can also be extended to sec-
ond order BGK schemes that yield finer resolution, while keeping the positivity-
preserving property.

6. Conclusion

In this paper, we have investigated the positivity-preserving property for the first
order gas-kinetic schemes, which include collisionless, collisional and BGK type
Boltzmann schemes. The positivity-preserving property is a necessary condition
for any numerical schemes in order to get physically reasonable solutions. However,
it should be pointed out that this property is not sufficient for obtaning a good
flow solvers. The positivity property in the gas-kinetic schemes is closely related
to the nonlinear coupling in the flow variables in the construction of positive gas
distribution functions, and this coupling is hardly satisfied in any other schemes
where the flow equations are updated separately, such as Lax-Friedrichs method.
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Figure 5.
The history of the minimal internal energy obtained by using the collisionless approach (circle)
and the collisional approach (solid) for Example 2.
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Figure 6.
The density at t = 0.05 obtained by using the collisional approach for Example 2.
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Figure 7.
The velocity at t = 0.05 obtained by using the collisional approach.

For these schemes with nonlinear coupling through certain averages, i.e. Roe’s
scheme, the positivity is also hardly satisfied because the gas evolution is not
as simple as upwinding in the scalar equations. Even for the exact Riemann
solver, it is also questionable about its solutions in the gas-vaccum interaction
cases. The Godunov method and Boltzmann schemes are two main branches in
the algorithm development for the compressible flow simulations (not necessarily
Euler equations). From the physical point of view, the gas-kinetic schemes give a
correct description in a more general flow situations. The commonly anomalous
phenomena in the exact and approximate Riemann solvers, such as carbuncle
phenomena, post-shock oscillations, odd-even decoupling, negative temperature,
can be avoided.
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