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Abstract. For a simple model of a scalar wave equation with a random wave speed,
Gottlieb and Xiu [Commun. Comput. Phys., 3 (2008), pp. 505-518] employed the gen-
eralized polynomial chaos (gPC) method and demonstrated that when uncertainty
causes the change of characteristic directions, the resulting deterministic system of
equations is a symmetric hyperbolic system with both positive and negative eigen-
values. Consequently, a consistent method of imposing the boundary conditions is
proposed and its convergence is established under the assumption that the expansion
coefficients decay fast asymptotically. In this work, we investigate stochastic colloca-
tion methods for the same type of scalar wave equation with random wave speed. It
will be demonstrated that the rate of convergence depends on the regularity of the so-
lutions; and the regularity is determined by the random wave speed and the initial and
boundary data. Numerical examples are presented to support the analysis and also to
show the sharpness of the assumptions on the relationship between the random wave
speed and the initial and boundary data. An accuracy enhancement technique is in-
vestigated following the multi-element collocation method proposed by Foo, Wan and
Karniadakis [J. Comput. Phys., 227 (2008), pp. 9572-9595].
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1 Introduction

Recently there has been a growing interest in designing efficient methods for the solu-
tion of ordinary/partial differential equations with random inputs. The methods include

∗Corresponding author. Email addresses: ttang@hkbu.edu.hk (T. Tang), tzhou@lsec.cc.ac.cn (T. Zhou)

http://www.global-sci.com/ 226 c©2010 Global-Science Press



T. Tang and T. Zhou / Commun. Comput. Phys., 8 (2010), pp. 226-248 227

Monte Carlo and sampling based methods, perturbation methods, operator based meth-
ods and the generalized polynomial chaos (gPC) method, see, e.g., [1, 6, 13, 14]). Among
these methods, the gPC method has become one of the most widely used methods. With
gPC, stochastic solutions are expressed as orthogonal polynomials of the input random
parameters, and different types of orthogonal polynomials can be chosen to achieve bet-
ter convergence. It is essentially a spectral representation in random space, and exhibit
fast convergence when the solution depends smoothly on the random parameters.

Although the polynomial chaos methods (and gPC method) have been extensively
applied to analyze PDEs that contain uncertainties, this approach is rarely applied to hy-
perbolic systems. Gottlieb and Xiu [7] made the first attempt by considering a simple
model of a scalar wave equation with random wave speeds. It was shown that when un-
certainty causes the change of characteristic directions, the resulting deterministic system
of equations is a symmetric hyperbolic system with both positive and negative eigenval-
ues. A consistent method of imposing the boundary conditions is proposed. A numerical
method based on the gPC method is introduced and its convergence theory is established.

In this work, we also consider the same model scalar wave equation with random
wave speed using the stochastic collocation methods. Collocation methods have been
studied and used in different disciplines for uncertainty quantification (see, e.g., Tatang
[11], Xiu and Hesthaven [15], Keese and Matthies [8] Ganapathysubramanian and Zabaras
[5]). In collocation methods one seeks to satisfy the governing differential equations at
a discrete set of points, called ”nodes”, in the corresponding random space. Two of the
major approaches of high-order stochastic collocation methods are the Lagrange inter-
polation approach, see Xiu and Hesthaven [15] and later (independently) in [1], and the
pseudo-spectral gPC approach from [13].

Following the methods introduced by Tatang [11], we use the roots of the next higher
order polynomial as the points at which the approximation is to be found. Let Θ =
{yk}

N
k=1∈Γ (the parameter space) be such a set of nodes, where N is the number of nodes.

A Lagrange interpolation of the solution w(x,y) can be written as

INw(x,y)=
N

∑
k=1

w̃k(x)Fk(y), (1.1)

where

Fk ∈PN , Fi(yk)=δik, 1≤ i,k≤N, (1.2)

are the Lagrange interpolation polynomials, and w̃k(x) :=w(x,yk), 1≤ k≤N, is the value
of w at the given node yk ∈Θ.

In this work, we will apply the Lagrange interpolation approach to the model scalar
wave equation with random wave speed (see, [7]):

∂tu(x,t;y(ω))= c(y(ω))∂xu(x,t;y(ω)), x∈D≡ (−1,1), t>0, (1.3)

u(x,0;y(ω))=u0(x;y(ω)), x∈D. (1.4)
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We will adopt a probabilistic framework and model y as a random variable with prop-
erly defined probability space (Ω,A,P), whose event space is Ω and is equipped with
σ-algebra A and probability measure P . Let ρ(y) : Γ → R+ be the probability density
functions of the random variable y(ω),ω∈Ω, and its image Γ≡ y(Ω)∈R be intervals in
R. In what follows, for simplicity, we just omit the symbol ω and assume that y is in the
parametric space Γ≡ [−1,1].

A well-posed set of boundary conditions is given by:

u(−1,t;y)=uL(t;y), c(y)<0,

u(1,t;y)=uR(t;y), c(y)>0.
(1.5)

Eqs. (1.3)-(1.5) complete the set up of the problem.
We now solve problem (1.3)-(1.5) by using the Lagrange interpolation approach. We

first choose a set of Gauss-collocation-points {yi}
N
i=0, that is, {yi}

N
i=0 are the roots of some

polynomial ΦN+1. The commonly seen correspondences between the polynomials Φk(y)
and the distribution of the random variable y include Hermite-Gaussian (the original
PC expansion), Legendre-uniform, Laguerre-Gamma, etc., cf. [2, 10]. We then solve the
following system of equations:

∂tu(x,t;yj)= c(yj)∂xu(x,t;yj), j=0,1,··· ,N. (1.6)

Note that with the collocation method the boundary conditions and the initial conditions
can be proposed easily, which is not the case in the Galerkin methods [7]. More precisely,
we have

u(−1,t;yj)=uL(t;yj), if c(yj)<0,

u(1,t;yj)=uR(t;yj), if c(yj)>0,
(1.7)

together with the initial condition

u(x,0;yj)=u0(x;yj). (1.8)

Note that in the linear case we can obtain the exact solution u(•,t;yj) for (1.6)-(1.8). The
approximation solution for the original problem (1.3)-(1.5) is then given by

uN(x,t;y)= I
y
Nu :=

N

∑
k=0

u(x,t;yk)Fk(y), (1.9)

where Fk(y) are the standard Lagrange interpolation polynomials defined by (1.2).

2 Regularity in various spaces

2.1 Regularity in H1

Without lose of generality, we use D to indicate the physical space and Γ the parametric
space. Since stochastic functions intrinsically have different structure with respect to y
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and with respect to x, the analysis of numerical approximations requires tensor spaces.
The details for the definition can be founded in [1]. Following [1], if u∈L2⊗Hk(D), then
u(·,y,t)∈ Hk(D) a.e. on Γ and u(x,t,·)∈ L2(Γ) a.e. on D. Moreover, we have (for every
fixed t<T) the isomorphism

L2⊗Hk(D)≃ L2(Γ;Hk(D))≃Hk(D;L2(Γ))

with the definitions

L2(Γ;Hk(D))

=
{

v : Γ×D→R |v is strongly measurable and
∫

Γ
‖v(·,y,t)‖2

Hk (D) <+∞
}

,

and

Hk(D;L2(Γ))

=
{

v : Γ×D→R |v is strongly measurable and∀|α|≤ k,∃∂αv∈L2(Γ)⊗L2(D),
∫

Γ

∫

D
∂αvϕ(x,y)dxdy=(−1)|α|

∫

Γ

∫

D
v(x,y,t)∂α ϕ(x,y)dxdy ∀ϕ∈C∞

0 (Γ×D)
}

.

We also denote

Γ+ =
{

y|y∈Γ, and c(y)>0
}

, Γ−=
{

y|y∈Γ, and c(y)<0
}

.

With the above definitions, we now introduce the following lemma.

Lemma 2.1. Consider the problem (1.3)-(1.5). If the following conditions are satisfied:

∫

Γ

∫

D
ρ(y)

(

∂xu0(x;y)
)2

dxdy<∞, (2.1a)

∫ T

0

∫

Γ+

ρ(y)

c(y)

(

∂tuR(t;y)
)2

dydt<∞, (2.1b)

∫ T

0

∫

Γ−

ρ(y)

|c(y)|

(

∂tuL(t;y)
)2

dydt<∞, (2.1c)

then
∫

Γ

∫

D
ρ(y)u2

xdxdy<C(T), 0< t≤T, (2.2)

where ρ(y)>0 is the probability distribution function and C(T) is a positive constant depending
on T.

Proof. Using (1.3) and (1.5), we have, for c(y)<0,

ux(−1,t;y)=
1

c(y)
ut(−1,t;y)=

1

c(y)
∂tuL(t;y). (2.3)
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Similarly, for c(y)>0,

ux(1,t;y)=
1

c(y)
∂tuR(t;y). (2.4)

It follows from the governing equation (1.3) that

∂t(u2
x)= c(y)∂x(u2

x), x∈D, t>0,

which leads to

∂t

∫

D
ρ(y)u2

xdx=ρ(y)c(y)
[

u2
x(1,t;y)−u2

x(−1,t;y)
]

≤

{

ρ(y)c(y)u2
x(1,t;y) if c(y)>0,

−ρ(y)c(y)u2
x(−1,t;y) if c(y)<0.

(2.5)

The above result, together with (2.3) and (2.4), yields

d

dt

∫

Γ

∫

D
ρ(y)u2

xdxdy

≤
∫

Γ+

ρ(y)

c(y)

(

∂tuR(t;y)
)2

dy+
∫

Γ−

ρ(y)

|c(y)|

(

∂tuL(t;y)
)2

dy. (2.6)

The desired estimate (2.2) is obtained by integrating the above inequality with respect to
t and by using the assumption (2.1).

Theorem 2.1. Consider the problem (1.3)-(1.5). Assume that there exists a constant C such that

|c′(y)|≤C, almost everywhere in Γ, (2.7)

i.e., c′(y) is bounded in the distribution sense in Γ. If the assumption (2.1) holds and furthermore
if

∫

Γ

∫

D
ρ(y)(∂yu0(x;y))2dxdy<∞, (2.8a)

∫ T

0

∫

Γ+

ρ(y)

c(y)
(∂yuR(t;y))2dydt<∞, (2.8b)

∫ T

0

∫

Γ−

ρ(y)

|c(y)|
(∂yuL(t;y))2dydt<∞, (2.8c)

then
∫

Γ

∫

D
ρ(y)u2

ydxdy<C(T), 0< t≤T, (2.9)

where C(T) is a finite number depending on T.
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Proof. Differentiating both sides of (1.3) with respect to y gives

(uy)t = c′(y)ux +c(y)(uy)x

which yields
(u2

y)t =2c′(y)uxuy+c(y)(u2
y)x.

Integrating the above equation with respect to x leads to

∂t

∫

D
ρ(y)u2

ydx

=2ρ(y)c′(y)
∫

D
uxuydx+ρ(y)c(y)

[

u2
y(1,t;y)−u2

y(−1,t;y)
]

≤2ρ(y)c′(y)
∫

D
uxuydx+







ρ(y)
c(y)

(∂yuR)2(t;y) if c(y)≥0,

− ρ(y)
c(y)

(∂yuL)
2(t;y) if c(y)<0,

(2.10)

which yields

d

dt

∫

Γ

∫

D
ρ(y)u2

ydxdy

≤C
∫

Γ

∫

D
ρ(y)u2

xdxdy+C
∫

Γ

∫

D
ρ(y)u2

ydxdy

+
∫

Γ+

ρ(y)

c(y)
(∂yuR(t;y))2dy+

∫

Γ−

ρ(y)

|c(y)|
(∂yuL(t;y))2dy, (2.11)

where the boundedness assumption of c′(y) is used. The desired estimate (2.9) follows
from Lemma 2.1, Gronwall inequality and the assumption (2.8).

2.2 Regularity in H2

Lemma 2.2. Consider the problem (1.3)-(1.5). If the following conditions are satisfied:

∫

Γ

∫

D
ρ(y)

(

∂xxu0(x;y)
)2

dxdy<∞, (2.12a)

∫ T

0

∫

Γ+

ρ(y)

c3(y)

(

∂ttuR(t;y)
)2

dydt<∞, (2.12b)

∫ T

0

∫

Γ−

ρ(y)

|c3(y)|

(

∂ttuL(t;y)
)2

dydt<∞, (2.12c)

then
∫

Γ

∫

D
ρ(y)u2

xxdxdy<C(T), 0< t≤T, (2.13)

where ρ(y)>0 is the probability distribution function, and C(T) is a positive constant dependent
on T.
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Proof. It follows from (1.3) that

utt = c(y)(ut)x = c(y)(c(y)ux)x = c2(y)uxx.

This, together with (1.5), gives, for c(y)<0,

uxx(−1,t;y)=
1

c2(y)
utt(−1,t;y)=

1

c2(y)
∂ttuL(t;y). (2.14)

Similarly, for c(y)>0,

uxx(1,t;y)=
1

c2(y)
∂ttuR(t;y). (2.15)

It follows from the governing equation (1.3) that

∂t(u2
xx)= c(y)∂x(u2

xx), x∈D, t>0,

which leads to

∂t

∫

D
ρ(y)u2

xxdx=ρ(y)c(y)
[

u2
xx(1,t;y)−u2

xx(−1,t;y)
]

≤

{

ρ(y)c(y)u2
xx(1,t;y) if c(y)>0,

−ρ(y)c(y)u2
xx(−1,t;y) if c(y)<0.

(2.16)

The above result, together with (2.14) and (2.15), yields

d

dt

∫

Γ

∫

D
ρ(y)u2

xxdxdy

≤
∫

Γ+

ρ(y)

c3(y)

(

∂ttuR(t;y)
)2

dy+
∫

Γ−

ρ(y)

|c(y)3|

(

∂ttuL(t;y)
)2

dy. (2.17)

The desired estimate (2.13) is obtained by integrating the above inequality with respect
to t and by using the assumption (2.12).

Lemma 2.3. Consider the problem (1.3)-(1.5). If the assumption (2.7) holds and also if

∫

Γ

∫

D
ρ(y)

(

∂xyu0(x;y)
)2

dxdy<∞, (2.18a)

∫ T

0

∫

Γ+

ρ(y)

c(y)

(

∂tyuR(t;y)−
c′(y)

c(y)
∂tuR(t;y)

)2
dydt<∞, (2.18b)

∫ T

0

∫

Γ−

ρ(y)

|c(y)|

(

∂tyuL(t;y)−
c′(y)

c(y)
∂tuL(t;y)

)2
dydt<∞, (2.18c)

then
∫

Γ

∫

D
ρ(y)u2

xydxdy<C(T), 0< t≤T, (2.19)

where ρ(y)>0 is the probability distribution function, and C(T) is a constant dependent on T.



T. Tang and T. Zhou / Commun. Comput. Phys., 8 (2010), pp. 226-248 233

Proof. It follows from (1.3) that ux =ut/c(y), which together with (1.5), gives, for c(y)<0,

uxy(−1,t;y)=
1

c(y)

(

uty(−1,t;y)−
c′(y)

c(y)
ut(−1,t;y)

)

=
1

c(y)

(

∂tyuL(t;y)−
c′(y)

c(y)
∂tuL(t;y)

)

. (2.20)

Similarly, for c(y)>0,

uxy(1,t;y)=
1

c(y)

(

∂tyuR(t;y)−
c′(y)

c(y)
∂tuR(t;y)

)

. (2.21)

It follows from the governing equation (1.3) that

∂t(u2
xy)=2c′(y)uxxuxy+c(y)∂x(u2

xy), x∈D, t>0,

which leads to

∂t

∫

D
ρ(y)u2

xydx

=
∫

D
2ρ(y)c′(y)uxxuxydx+ρ(y)c(y)

[

u2
xy(1,t;y)−u2

xy(−1,t;y)
]

≤
∫

D
2ρ(y)c′(y)uxxuxydx+

{

ρ(y)c(y)u2
xy(1,t;y) if c(y)>0,

−ρ(y)c(y)u2
xy(−1,t;y) if c(y)<0.

(2.22)

The above result, together with (2.7), (2.20) and (2.21), yields

d

dt

∫

Γ

∫

D
ρ(y)u2

xydxdy

≤C
∫

Γ

∫

D
ρ(y)u2

xxdxdy+C
∫

Γ

∫

D
ρ(y)u2

xydxdy

+
∫

Γ+

ρ(y)

c(y)

(

∂tyuL(t;y)−
c′(y)

c(y)
∂tuL(t;y)

)2
dy

+
∫

Γ−

ρ(y)

|c(y)|

(

∂tyuR(t;y)−
c′(y)

c(y)
∂tuR(t;y)

)2
dy. (2.23)

The desired estimate (2.19) is obtained by integrating the above inequality with respect
to t and by using the assumption (2.18).

Theorem 2.2. Consider the problem (1.3)-(1.5). Assume that (2.7) holds, i.e., c′(y) is bounded
in the distribution sense in Γ. Moreover, we assume that c′′(y) is bounded in the distribution
sense:

|c′′(y)|≤C, almost everywhere in Γ. (2.24)
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If the assumptions (2.1), (2.12) and (2.18) hold and furthermore if

∫

Γ

∫

D
ρ(y)(∂yyu0(x;y))2dxdy<∞, (2.25a)

∫ T

0

∫

Γ+

ρ(y)

c(y)

(

∂yyuR(t;y)
)2

dydt<∞, (2.25b)

∫ T

0

∫

Γ−

ρ(y)

|c(y)|

(

∂yyuL(t;y)
)2

dydt<∞, (2.25c)

then
∫

Γ

∫

D
ρ(y)u2

yydxdy<C(T), 0< t≤T, (2.26)

where C(T) is a finite number depending on T.

Proof. Differentiating both sides of (1.3) with respect to y twice gives

(uyy)t = c′′(y)ux+2c′(y)uxy+c(y)(uyy)x,

which yields
(u2

yy)t =4c′′(y)uxuyy+4c′(y)uxyuyy+2c(y)(u2
yy)x. (2.27)

Integrating the above equation with respect to x leads to

∂t

∫

D
ρ(y)u2

ydx≤4ρ(y)c′′(y)
∫

D
uxuyydx+4ρ(y)c′(y)

∫

D
uxyuyydx

+2







ρ(y)
c(y)

(∂yyuR)2(t;y) if c(y)≥0,

− ρ(y)
c(y)

(∂yyuL)
2(t;y) if c(y)<0,

(2.28)

which yields

d

dt

∫

Γ

∫

D
ρ(y)u2

yydxdy

≤C
∫

Γ

∫

D
ρ(y)u2

xdxdy+C
∫

Γ

∫

D
ρ(y)u2

yydxdy+C
∫

Γ

∫

D
ρ(y)u2

xydxdy

+
∫

Γ+

ρ(y)

c(y)

(

∂yyuR(t;y)
)2

dy+
∫

Γ−

ρ(y)

|c(y)|

(

∂yyuL(t;y)
)2

dy, (2.29)

where the boundedness assumption of c′(y) and c′′(y) is used. The desired estimate (2.26)
follows from Lemmas 2.1-2.3, the Gronwall inequality and the assumption (2.25).

Remark 2.1. It is clear that if the boundary data and the initial data satisfy some further
assumptions, then the solution of the problem (1.3)-(1.5) should have higher regularity.
A more detailed set of conditions can be found following the above procedures, which
will be omitted in this paper.
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2.3 Regularity in BV space

Using a similar trick used in the proof of Lemma 2.1, we can obtain the following result.

Lemma 2.4. Consider the problem (1.3)-(1.5). If the following conditions are satisfied:
∫

Γ

∫

D
ρ(y)|∂xu0(x;y)|dxdy<+∞, (2.30a)

∫ T

0

∫

Γ+

ρ(y)

c(y)
|∂tuR(t;y)|dydt<+∞, (2.30b)

∫ T

0

∫

Γ−

ρ(y)

|c(y)|
|∂tuL(t;y)|dydt<+∞, (2.30c)

then we have
∫

Γ

∫

D
ρ(y)|∂xu(x,t;y)|dxdy<C(T), 0< t≤T, (2.31)

where C(T) is a constant dependent on T.

Theorem 2.3. Consider the problem (1.3)-(1.5). Assume that the assumption (2.7) holds, i.e.,
c′(y) is bounded in the distribution sense. If the assumption (2.30) holds and furthermore if

∫

Γ

∫

D
ρ(y)|∂yu0(x;y)|dxdy<+∞, (2.32a)

∫ T

0

∫

Γ+

ρ(y)

|c(y)|
|∂yuR(t;y)|dydt<+∞, (2.32b)

∫ T

0

∫

Γ−

ρ(y)

|c(y)|
|∂yuL(t;y)|dydt<+∞, (2.32c)

then we have
∫

Γ

∫

D
ρ(y)|uy(x,t;y)|dxdy<C(T), 0< t≤T, (2.33)

where C(T) is a finite number depending on T.

Proof. Differentiating both sides of (1.3) with respect to y and multiplying the resulting
equation by sgn(uy) yield

|uy|t = c′(y)uxsgn(uy)+c(y)|uy|x, (2.34)

where sgn(uy) gives the sign of uy. Integrating the above equation with respect to x leads
to

∂t

∫

D
ρ(y)|uy|dx

=ρ(y)c′(y)
∫

D
uxsgn(uy)dx+ρ(y)c(y)

[

|uy(1,t;y)|−|uy(−1,t;y)|
]

≤ρ(y)c′(y)
∫

D
uxsgn(uy)dx+







ρ(y)
|c(y)|

|∂yuR(t;y)| if c(y)≥0,

ρ(y)
|c(y)|

|∂yuL(t;y)| if c(y)<0,
(2.35)
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which yields

d

dt

∫

Γ

∫

D
ρ(y)|uy|dxdy≤C

∫

Γ

∫

D
ρ(y)|ux|dxdy

+
∫

Γ+

ρ(y)

|c(y)|
|∂yuR(t;y)|dy+

∫

Γ−

ρ(y)

|c(y)|
|∂yuL(t;y)|dy, (2.36)

where the boundedness assumption of c′(y) is used. The desired estimate (2.33) follows
from Lemma 2.4, the Gronwall inequality and the assumption (2.32).

3 Convergence of the collocation method

Given a function f , its expectation is defined by

E[ f ]=
∫

Γ

∫

D
ρ(y) f (x,y)dydx; (3.1)

and its mean square is defined by

M[ f ]=

(

∫

Γ

∫

D
ρ(y) f (x,y)2dydx

)1/2

. (3.2)

Lemma 3.1. ([2], p. 289. Estimates for the interpolation error.) Assume a given function
w(y) satisfies w(m)∈ L2(−1,1) and denote INw its interpolation polynomial associated with the
(N+1)-point Gauss, or Gauss-Radau, or Gauss-Lobatto points {yj}

N
j=0, namely,

INw(y)=
N

∑
i=0

w(yi)Fi(y). (3.3)

Then for m≤N the following estimate holds

‖w− INw‖L2(D)≤CN−m‖w(m)‖L2(−1,1). (3.4)

Theorem 3.1. Let u be the solution of (1.3)-(1.5) and uN be the stochastic collocation solution
of (1.9). If the assumptions in Theorem 2.1 are satisfied, then the following estimates on the
mean-square and mean errors hold:

ems(u−uN) := M[u−uN ]≤C(T)N−1, 0< t≤T, (3.5)

emean(u−uN) :=E[|u−uN |]≤C(T)N−1, 0< t≤T, (3.6)

where C(T) is a constant depending on T but independent of N.
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Proof. For any fixed x, it follows from Lemma 3.1 that

∫

Γ
ρ(y)

(

u(x,t;y)−uN(x,t;y)
)2

dy≤CN−2
∫

Γ
ρ(y)u2

ydy. (3.7)

Integrating the above inequality with respect to x and using Theorem 2.1 yield the desired
estimate (3.5). As for (3.6), it follows from a standard inequality ‖w‖L1 ≤C‖w‖L2 .

If the given data satisfies higher smoothness properties, higher rate of convergence
can be obtained. More precisely, we have the following result; whose proof is similar to
that of Theorem 3.1 and is therefore omitted.

Theorem 3.2. Let u be the solution of (1.3)-(1.5) and uN be the stochastic collocation solution
of (1.9). If the assumptions in Theorem 2.2 are satisfied, then the following estimates hold:

ems(u−uN)≤C(T)N−2, 0< t≤T, (3.8)

emean(u−uN)≤C(T)N−2, 0< t≤T, (3.9)

where C(T) is a constant depending on T but independent of N.

We now discuss the mean error for the case that the exact solution belongs to BV. Let

QN( f )=
N

∑
i=1

wi,N f (yi,N)

be the Gaussian quadrature formula associated with the weight function ρ with N notes
(wi,N are the weights), and the reminder is defined by

RN( f )=
∫ 1

−1
ρ(y) f dy−QN ( f ).

Lemma 3.2. ([4]) Let f be function of total bounded variation V( f ) over [−1,1]. Then for the
remainder Rn of the Gaussian formula Qn, we have

|RN( f )|≤
π

2N+1
V( f ). (3.10)

Using Theorem 2.3 and the above lemma, we can obtain the following error estimate.

Theorem 3.3. Let u be the solution of (1.3)-(1.5) and uN be the stochastic collocation solution
of (1.9). If the assumptions in Theorem 2.3 are satisfied, then for 0< t≤T we have the following
estimate for the mean error:

emean :=E[|u−uN |]≤C(T)N−1, 0< t≤T, (3.11)

where C(T) is a constant depending on T but independent of N.
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4 Numerical examples

In this section we present some numerical examples to support the theoretical results
derived above. In all computations, y is a random variable uniformly distributed in Γ,
and the corresponding simple points are the Legendre-Gauss points.

4.1 Example with u∈H1,H2,H3 in the random space

Consider the following problem

ut =yux (4.1)

with the following three initial conditions

u(x,0;y)=sin(x)+4sgn(y)y −1< x,y<1;

u(x,0;y)=sin(x)+4sgn(y)y2 −1< x,y<1;

u(x,0;y)=sin(x)+4sgn(y)y3 −1< x,y<1,

The corresponding boundary conditions are

{

u(−1,t;y)=sin(−1+yt)+4y y>0,
u(1,t;y)=sin(1+yt)−4y y<0;

{

u(−1,t;y)=sin(−1+yt)+4y2 y>0,
u(1,t;y)=sin(1+yt)−4y2 y<0;

{

u(−1,t;y)=sin(−1+yt)+4y3 y>0,
u(1,t;y)=sin(1+yt)−4y3 y<0.

It can be checked that the exact solutions for the above three initial-boundary value prob-
lems are:

u(x,t;y)=sin(x+yt)+4sgn(y)y; (4.2)

u(x,t;y)=sin(x+yt)+4sgn(y)y2; (4.3)

u(x,t;y)=sin(x+yt)+4sgn(y)y3, (4.4)

which can be verified to belong to H1,H2,H3 respectively. In fact, the initial conditions
given above only belong to H1,H2,H3 respectively.

Fig. 1 presents the mean-square and mean errors against the number of nodes. It is
clear from Fig. 1 that the corresponding convergence rates for the mean-square errors
are 1, 2, and 3, respectively, which agrees well with the theoretical predictions. The rate
for the mean errors seems better than the theoretical predictions, which implies that the
estimate may not be sharp for the mean errors.
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Figure 1: Example of Section 4.1: mean-square errors for solutions with different regularity.

4.2 A smooth problem

We consider the problem with a periodic boundary condition in physical space:
{

ut(x,t;y)=yux(x,t;y) 0< x<2π, t>0,
u(x,0;y)=cos(y) 0< x<2π.

The boundary conditions of the type (1.5) are given so that the exact solution is of the
form

u(x,t;y)=cos(x−yt).

It can be verified that the exact solution belongs to H
(m)
y (−1,1) for any given positive inte-

ger m. Consequently, it is expected that exponential rate of convergence can be obtained.
In Fig. 2, we plot the mean-square error against the order N for several time levels. The
exponential rate of convergence of convergence is observed. Also the errors are propor-
tional to the increase of t, and this phenomenon is a severe problem for the polynomial
chaos method. Wan and Karniadakis had a paper discussing such an issue [12].

4.3 BV solution in the random space

Consider ut =yux with the initial condition

u(x,0;y)=sin(x)+1 −1< x<1, y>0,
u(x,0;y)=sin(x)+1+α −1< x<1, y<0,

(4.5)

and the boundary condition

u(1,t;y)=sin(1+yt)+1 y>0,
u(−1,t;y)=sin(−1+yt)+1+α y<0.

(4.6)
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Figure 2: Example of Section 4.2: mean-square errors against the order N for a smooth solution.
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Figure 3: Example of Section 4.3 with α=0.4: error of mean (lower curve) and mean-square (upper curve) at
t=2. For the BV solutions, the rates for the mean error and the mean-square are 1 and 0.5, respectively.

The exact solution is of the form
{

u(x,t;y)=sin(x+yt)+1 y>0,
u(x,t;y)=sin(x+yt)+1+α y<0.

If α 6= 0, then the solution is not in H1 but in BV in the random space. More precisely,
the initial condition (4.5) satisfies (2.32a) but not (2.8a). Then we can obtain the error
estimates in Theorem 3.3 but not those in Theorem 3.1.

Fig. 3 presents both the mean-square and mean errors. It is observed that the mean
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Figure 4: Example of Section 4.4: error of mean (lower curve) and mean-square (upper curve) at t=2. For the
non-BV solutions, the rates for the mean error and the mean-square are 0.5 and 0.25, respectively.

error is of order one which verifies Theorem 3.3. However, the mean-square error is not
of convergence order one; in fact the results indicate a half-order.

4.4 Solution not in BV

Consider
{

ut(x,t;y)=yux(x,t;y) −1< x<1, t>0,
u(x,0;y)=sin(πx),

(4.7)

with the boundary condition
{

u(1,t;y)= t y>0,
u(−1,t;y)=−t y<0.

It can be verified that the above problem does not satisfy (2.1b)-(2.1c); so it is expected
that the order-one rate of convergence for the mean error may not be held for this simple
problem. In Fig. 4, we plot the mean and mean-square errors. The rates of convergence
for both mean and mean-square errors become smaller; which are about 0.5 and 0.25
respectively.

To have a better understanding of the numerical approximations for this non-BV so-
lution, we compare numerical errors for several cases with different solution regularity.
We begin with smoother solutions; Figs. 6 and 5 present the exact solution and the errors
of the numerical solution for the H1 and BV solutions. In both cases, the large errors
occur at the line y = 0. In Fig. 7, similar illustrations are made for the non-BV solutions
at two different time levels. It is observed that the large numerical errors occur near two
lines:

x+yt=1, y>0, x+yt=−1, y<0. (4.8)
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Figure 5: Example of Section 4.2 (the case that the exact solution is in H1): the exact solution (left) and the
numerical errors (right) at t=1 with N =50.

Figure 6: Example of Section 4.3 (the case that the exact solution is in BV): the exact solution (left) and the
numerical errors (right) at t=1 with N =50.

Figure 7: Example of Section 4.4 (the case that the exact solution is not in BV): the exact solution (left) and
the numerical errors (right) at t=1 with N =50.
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Figure 8: Same as Fig. 7, except at t=3.
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Figure 9: Example of Section 4.3 (the solution is in BV): the exact and numerical solutions at t = 1, x =−1
(left) and at t=1, x=0.5 (right). N =50.
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Figure 10: Example of Section 4.4 (the solution is non-BV): the exact and numerical solutions at t=2, x=−1
(left) and at t=2, x=0.99 (right). N =50.

The errors for some fixed x-values are presented in Figs. 9 and 10. The results again
suggest that the accuracy of approximation is highly relevant to the solution regularity.
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5 An accuracy enhancement technique

For examples used in the previous section, a simple analysis shows that the non-
smoothness occurs because the random speed c(y) changes sign. In this case, the ac-
curacy can be enhanced by a domain decomposition idea, suggested recently by Foo et
al. [3]. In this section, we will improve the accuracy for the examples used in the last
section where c(y) changes sign at y=0. The approach used can be easily extended to the
general one-dimensional case when c(y) changes sign more than one time.

Without lose generality, let us consider the case that c(y) changes sign only once in
(−1,1). In this case, we can separate the set for y([−1,1]) into two subsets B1,B2,, and
in each subset Bi we can use an affine mapping to map the collocation points into the
subset. Then we can use the same collocation methodology used in the previous sections
to obtain the approximate solutions in each subset separately. More precisely, for each
subset, we have the local approximate solution ui satisfying

ui(x,t;y)= IN
Bi u(x,y,t)=

r

∑
j=1

u(x,qi
j)Li

j(y), (5.1)

where the points qi
j are mapped collocation points in Bi. Finally, we can get the approxi-

mation by

ũ(x,y,t)=
2

∑
i=1

IBiu(x,y)I{y∈Bi}, (5.2)

where I{y∈Bi} is the conventional characteristic function.
We subsequently consider the computation of statistics and define the conditional

probability density function in each element:

ηi =
ρ(y)

∫

Bi ρ(y)dy
. (5.3)

The local mean of a function u is defined by

Ei[u(x,t;y)]=E[u(x,t;y) |y∈Bi ]=
∫

Bi

u(x,t;y)ηidy. (5.4)

Using the cubature rule over each element, we can easily compute the approximate local
mean of u as

Ei
a[ũ(x,t;y)]=

r

∑
j=1

u(x,qi
j)wj≈Ei

a[ũ(x,t;y)]. (5.5)

Finally, the approximate global mean can be assembled from the local means via the
Bayes’ formula

Ea[ũ(x,t;y)]=
2

∑
i=1

Ei
aP(y∈Bi)≈E[ũ(x,t;y)], (5.6)
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Figure 11: Convergence of the accuracy enhancement method (5.3) with the comparison with the classical

approach, for the H1-solution (left) and the BV-solution (right), at t=8.
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Figure 12: Convergence of the new method for the non-BV solution; left is the mean error and the right
is mean-square error; for the non-BV solution in the last section at t=2.

and other statistics can be computed by the same procedure. We plot in Fig. 11 the mean
and mean-square errors for the H1-solution and the BV-solution given in the last sec-
tion by using the new method (5.3), which are compared with those obtained by using
the classical collocation approaches described in the last section. It is observed that the
method (5.3) recovers the spectral accuracy.

For the non-BV case, we separate the solution domain according to the two lines
(4.8) which yields three sub-domains. Then similar approach to (5.3) can be used. For
comparison, the cases of Figs. 9 and 10 are re-plotted using the results obtained by the
corresponding accuracy enhancement methods; indeed it is observed from Figs. 13-14
that much more accurate numerical approximations are obtained with the new strategy.
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Figure 13: Same as Fig. 9, except with the accuracy enhancement method.
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Figure 14: Same as Fig. 10, except with the accuracy enhancement method.

While we should mention here that the methods above might not be easy to apply for
more complex problems.

6 Concluding remarks

There are some advantages of using stochastic collocation method, e.g., its implementa-
tion is simple and the method seems convenient to handle nonlinear or more complicated
problems. Compared to stochastic Galerkin methods, the collocation methods generally
result in a larger number of equations than a typical Galerkin method; however, these
equations are easier to solve as they are completely decoupled and require only repeti-
tive runs of a deterministic solver. Such a property makes the collocation methods more
attractive for problems with complicated governing equations.
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Stochastic methods for hyperbolic system with uncertainty are still in the early stage
of development. This paper provides a preliminary investigation on the stochastic collo-
cation method for a simple model of a scalar wave equation with random wave speed. It
has been demonstrated that the rate of convergence depends not only on the initial data
and boundary conditions, but also on the random wave speed.

There are some further issues arising from the analysis. For example, as demonstrated
in Section 4.3, it seems that a half-rate of convergence exists for the mean-square error
for BV solutions; but this is not covered in the present theoretical framework. Some
theoretical analysis for the accuracy enhancement techniques proposed in Section 5 is
also needed.
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