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Abstract

The time steps associated with moving mesh methods are proportional to the smallest mesh size in space and as a

result they are very small at each time level. For some practical problems, the physical phenomena develop dynamically

singular or nearly singular solutions in fairly localized regions, and therefore the smallest time step at each time level

occurs only in these localized regions. In this work, we will develop a local time stepping algorithm for the moving mesh

methods. The principal idea will be demonstrated by investigating the nonlinear hyperbolic conservation laws. Nu-

merical experiments are carried out to demonstrate the efficiency and robustness of the proposed methods.
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1. Introduction

In this work, we shall discuss the class of adaptive grid methods often called moving mesh methods (or

dynamic methods – in contrast to the static methods) for solving time dependent PDEs. These methods

involve the solution of the underlying PDE for the physical problem in conjunction with a mesh movement
for the mesh itself. The moving mesh methods have important applications in a variety of physical and

engineering areas such as solid and fluid dynamics, combustion, heat transfer, material science, etc. The

physical phenomena in these areas develop dynamically singular or nearly singular solutions in fairly lo-

calized regions, such as shock waves, boundary layers, detonation waves, etc. In the past two decades, there

have been many efforts in developing efficient moving mesh algorithms, see, e.g., [1,3,7,16,20,28].
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It is well known that the time steps associated with the moving mesh methods are proportional to the

smallest mesh size in space. Since the moving mesh method is useful for problems whose solutions are

singular in fairly localized regions, it reduces the allowable time step only in small part of the solution
domain. It is then natural to use locally varying time steps to enhance the efficiency of the moving mesh

methods. We will design an efficient local time stepping scheme for the nonlinear hyperbolic conservation

laws and the convection-dominated problems.

Local time stepping for one-dimensional conservation laws was first proposed by Osher and Sanders

[21]. Their schemes allow each element to take either an entire step or some fixed number of smaller steps.

Another approach developed by Berger and Oliger [6] involves automatically taking smaller time steps

where the mesh is refined. In their approach refined grids are laid over regions of the coarse mesh so that

smaller time steps are taken on the refined mesh and larger time steps on the coarse mesh. Information is
then passed between the grids by means of injection and interpolation. Flaherty et al. [11] have developed a

parallel, adaptive discontinuous Galerkin method with a local forward Euler scheme which relies on in-

terpolating values in time at interfaces between time steps of different sizes. Dawson and Kirby [10] de-

veloped upwind methods for solving conservation laws, which allow local time refinement to be coupled

with local spatial refinement.

Note that most of the local time stepping techniques have been developed for fixed mesh structure. In

this work, we will combine the local time refinement techniques with the moving mesh methods. At the

regions where the underlying PDE has large solution gradients, it is expected that the spatial grid sizes
generated by a moving mesh method will be very small and therefore local time steps should be used in

these regions. Special attention will be taken so that the overall scheme is conservative. To demonstrate the

principal idea of local stepping techniques, we will apply the moving mesh methods for the hyperbolic

conservation laws. There has been some success in solving hyperbolic problems on adaptive spatial meshes,

starting with Harten and Hyman [13] who extended a Godunov scheme to handle moving grids in one space

dimension. Another static refinement strategy that has been proven very successful is the adaptive mesh

refinement method of Berger and LeVeque [5]. In contrast with static refinement techniques is the moving

mesh methods that move mesh points to where they are most needed while keeping the total number of grid
points unchanged. In recent years, several moving mesh methods for hyperbolic problems have been

proposed in the literature, including Azarenok et al. [1,2], Liu et al. [19], and Stockie et al. [23].

The paper is organized as follows. In Section 2, we describe the moving mesh methods and the local time

stepping techniques for 1D problems. Numerical experiments are also provided to demonstrate the accu-

racy and efficiency of the local time stepping approaches. The extension of the 1D algorithms will be

presented in Section 3, and some concluding remarks will be made in the final section.
2. 1D moving mesh methods with local time stepping

We consider the nonlinear conservation laws

ut þ f ðuÞx ¼ 0 ð2:1Þ

to demonstrate the principal idea of local stepping techniques; the strategies developed in this section can be

easily extended to the convection-dominated equation:

ut þ f ðuÞx ¼ �ðrðuÞuxÞx; ð2:2Þ
where 0 < � � 1 is a (small) viscosity coefficient, r > 0. The moving mesh method to be used is based on

two independent parts: a PDE evolution and a mesh-redistribution. At the time level t ¼ tn, we first advance
the solution one time step based on an appropriate numerical scheme, which gives an approximation for u
at t ¼ tnþ1 on the mesh fxnjg. Then a grid restructuring procedure is carried out to obtain a new mesh fxnþ1

j g,
which consists of solving the mesh redistributing equation (a generalized Laplacian equation) and inter-
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polating the approximate solutions on the resulting new grid. A detailed solution flowchart was presented

in [17,27].

The evolution for (2.1) will be based on the MUSCL-type finite volume methods. We partition the real
line into intervals In

iþ1
2

¼ ½xni ; xniþ1�. Denote xn
iþ1

2

and un
iþ1

2

the center of In
iþ1

2

and an approximation to the integral

average of u over In
iþ1

2

respectively, namely

xniþ1
2
¼ 1

2
ðxni þ xniþ1Þ; uniþ1

2
¼ 1

In
iþ1

2

��� ���
Z
In
iþ1

2

uðx; tnÞdx:

Integrating (2.1) over the control volume In
iþ1

2

� ½tn; tnþ1� leads to the following finite volume method:

unþ1

iþ1
2

¼ uniþ1
2
� Dtn

In
iþ1

2

��� ��� ð~f n
iþ1 � ~f n

i Þ; ð2:3Þ

where Dtn ¼ tnþ1 � tn, ~f n
i is some appropriate numerical flux. It is assumed that the numerical flux satisfies

~f n
i ¼ ~f ðun;�i ; un;þi Þ; ~f ðu; uÞ ¼ f ðuÞ;

where un;�i are the right and left states at an interface xiþ1
2
, respectively. In our computations, we adopt the

simple and inexpensive Lax–Friedrichs flux:

~f ða; bÞ ¼ 1

2
f ðaÞ
�

þ f ðbÞ �max
u

j fu j �ðb� aÞ
�
; ð2:4Þ

where the maximum is taken between a and b. The Godunov flux and Engquist–Osher flux can also be

applied here. A linear reconstruction can be used to increase the solution accuracy:

un;�i ¼ uni�1
2
þ si�1

2
xni
�

� xni�1
2

�
; un;þi ¼ uniþ1

2
þ siþ1

2
xni
�

� xniþ1
2

�
; ð2:5Þ

where siþ1
2
is an approximation of the slope ux at xniþ1

2

sþ
iþ1

2

¼
un
iþ3

2

� un
iþ1

2

xn
iþ3

2

� xn
iþ1

2

; s�iþ1
2
¼

un
iþ1

2

� un
i�1

2

xn
iþ1

2

� xn
i�1

2

; siþ1
2
¼ sign s�iþ1

2

� ��
þ sign sþ

iþ1
2

� �� s�
iþ1

2

� sþ
iþ1

2

��� ���
s�
iþ1

2

��� ���þ sþ
iþ1

2

��� ��� :
A system of semi-discretized difference equations is obtained from the fully discretized numerical scheme

(2.3)–(2.5), which is solved by a 3-stage Runge–Kutta method proposed by Shu and Osher [22].

We next describe the mesh redistribution which is a standard scheme used by many authors, see, e.g.,

[9,17]. The mesh equation, based on the standard equidistribution principle, is

ðxxnÞn ¼ 0; n 2 ½0; 1�; ð2:6Þ

where the function x is called monitor function which in general depends on the underlying solution and is

an indicator of the degree of singularity. In practice, the mesh-equation (2.6) is solved using the following

Gauss–Seidel type iteration:

xjþ1
2
ðxjþ1 � ~xjÞ � xj�1

2
ð~xj � ~xj�1Þ ¼ 0: ð2:7Þ

After obtaining the new mesh f~xjg, the numerical approximation on the new grid points
~xjþ1

2
¼ ð~xj þ ~xjþ1Þ=2 is updated based on the information of fxjþ1

2
;~xjþ1

2
; ujþ1

2
g. In [24], a second-order con-

servative interpolation formula was introduced. For scalar conservation laws, it is proved that the inter-

polation does not increase the total variation, and as a result the resulting adaptive mesh solutions satisfy
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several fundamental properties for the hyperbolic conservation laws. In this work, the same conservative

interpolation formula will be employed:

D~xjþ1
2
~ujþ1

2
¼ Dxjþ1

2
ujþ1

2
� ððcuÞjþ1 � ðcuÞjÞ; ð2:8Þ

where D~xjþ1
2
¼ ~xjþ1 � ~xj, cj ¼ xj � ~xj denotes the local speed of the mesh motion. The linear flux cu is ap-

proximated by a second-order scheme as proposed in [24]:

ðccuÞj ¼ cj
2
ðuþj þ u�j Þ �

jcjj
2

ðuþj � u�j Þ; ð2:9Þ

where uþj and u�j are defined by (2.5).

2.1. 1D local time stepping

For simplicity and also without loss of generality, we assume the fine meshes occur in one subinterval

ðxniH; xniTþ1Þ, see Fig. 1, where ihead ¼ iH, itail ¼ iT. If there are finitely many such refined mesh regions, the

extension is straightforward. It is natural to use a larger time step Dtn ¼ tnþ1 � tn in the regions outside

ðxniH; xniTþ1Þ, namely in

D1 ¼ fj j j6 iH� 1g; and D3 ¼ fj j jP iTþ 1g;

and smaller time steps Dtgl ; 06 l < M , in

D2 ¼ fj j iH6 j6 iTg:
u
j
2

n u
j
3

n

u
j
2

n+1 u
j
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u
j
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l u

j
3
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Fig. 1. Illustration of local time stepping from level n to level nþ 1.
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We partition the time step ½tn; tnþ1Þ into ½tnþgl ; tnþglþ1 �, 06 l6M and let frkgMk¼1 be a sequence of positive

numbers summing to unity. The numbers gl are given as the sum of the rk, that is,

gl ¼
Xl
k¼1

rk; 16 l6M � 1 and g0 ¼ 0; gM ¼ 1:

Correspondingly, the sub-steps in this time interval are given by

tnþglþ1 ¼ tnþgl þ rlþ1Dtn:

With these notations established, we will follow the scheme of Osher and Sanders [21] (see also [10]) to

define a high resolution scheme in space. More precisely, on coarse grids:

unþ1

iþ1
2

¼ uniþ1
2
� kni ð~f n

iþ1 � ~f n
i Þ i 2 D1 or i 2 D3 ð2:10Þ

and on fine grids:

unþgl
iþ1

2

¼ unþgl�1

iþ1
2

� kni rlð~f nþgl�1

iþ1 � ~f nþgl�1
i Þ i 2 D2 ð2:11Þ

for 16 l6M , where kni ¼ Dtn= In
iþ1

2

��� ��� is the ratio between the time step and the size of the local stencil. It

follows from (2.11) that

unþgl
iþ1

2

¼ uniþ1
2
� kni

Xl�1

k¼0

rkþ1ð~f nþgk
iþ1 � ~f nþgk

i Þ i 2 D2; ð2:12Þ

which gives

unþ1

iþ1
2

¼ uniþ1
2
� kni

XM�1

k¼0

rkþ1ð~f nþgk
iþ1 � ~f nþgk

i Þ i 2 D2: ð2:13Þ

On the interfaces, unþglþ1

iH�1
2

is obtained by linearly interpolating values at tn; uniH�1
2

� �
and tnþ1; unþ1

iH�1
2

� �
, and

unþglþ1

iTþ3
2

is obtained by interpolating values at tn; uniTþ3
2

� �
and tnþ1; unþ1

iTþ3
2

� �
. After completing the local time

stepping in D2, we need to redefine the numerical fluxes at the coarse-fine grid interfaces in order to

guarantee the mass conservation. The idea is to make the flux into (out of) the fine grid across a coarse cell

boundary equal to the sum over the fine time steps of flux out of (into) the adjoining fine grid cell. This is

done by requiring:

Dxni�1
2
unþ1

i�1
2

¼ Dxni�1
2
uni�1

2
� Dtn

XM�1

l¼0

rlþ1
~f nþgl
i

 
� ~f n

i�1

!
; i ¼ iH; ð2:14Þ
Dxniþ3
2
unþ1

iþ3
2

¼ Dxniþ3
2
uniþ3

2
� Dtn ~f n

iþ2

 
�
XM�1

l¼0

rlþ1
~f nþgl
iþ1

!
; i ¼ iT: ð2:15Þ

The above two equations can also be written as the following equivalent forms:

Dxni�1
2
unþ1

i�1
2

¼ Dxni�1
2
uni�1

2
� Dtnð~f n

i � ~f n
i�1Þ � Dtn dF

n
i ; i ¼ iH; ð2:16Þ
Dxniþ3
2
unþ1

iþ3
2

¼ Dxniþ3
2
uniþ3

2
� Dtnð~f n

iþ2 � ~f n
iþ1Þ þ Dtn dF

n
iþ1; i ¼ iT; ð2:17Þ
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where

dFn
i ¼ �~f n

i þ
XM�1

l¼0

rlþ1
~f nþgl
i : ð2:18Þ

We now summarize the moving mesh scheme with local time stepping in the following algorithm.

Algorithm 1.

• Step 1:Given an initial partition x½0�j :¼ xj of the physical domain Xp and a uniform (fixed) partition of the

logical domain Xc, and compute grid values u½0�
jþ1

2

based on the cell average of initial data uðx; 0Þ.
• Step 2: For mP 0, move grid fx½m�j g to fx½mþ1�

j g based on scheme (2.7) and interpolate fu½mþ1�
jþ1

2

g on the new

grid based on (2.8). Repeat the updating procedure until kx½mþ1� � x½m�k is sufficiently small.

• Step 3: Find the interface points (i.e. xniH and xniTþ1) at the time level tn. If they exist, then do the following:

(a) Determine the global Dtn based on the CFL condition:

Dtn ¼ kmin
j2D1
j2D3

xnjþ1 � xnj

f 0 un
jþ1

2

� ���� ���
0B@

1CA;

where 0 < k6 1 is an CFL constant, and set tnþ1 ¼ tn þ Dtn.
(b) Evolve the values in the coarse grid region:

unþ1

jþ1
2

¼ unjþ1
2
� Dtn

In
jþ1

2

��� ��� ð~f n
jþ1 � ~f n

j Þ; j 2 D1 [D3:

(c) Set l ¼ 0; g0 ¼ 0:
(i) Determine the local Dtgl based on the CFL condition:

Dtgl ¼ kmin
j2D2

xnjþ1 � xnj

f 0 unþgl
jþ1

2

� ���� ���
0B@

1CA;

and set tnþglþ1 ¼ tnþgl þ Dtgl . If Dtgl P tnþ1 � tnþgl , then set Dtgl ¼ tnþ1 � tnþgl .

(ii) Evolve the solution with the time step Dtgl :

unþglþ1

jþ1
2

¼ unþgl
jþ1

2

� Dtgl

In
jþ1

2

��� ��� ~f nþgl
jþ1 � ~f nþgl

j

� �
; j 2 D2:

(iii) Obtain the interface values using a linear interpolation.

(iv) Set u½0�
jþ1

2

:¼ unþgl
jþ1

2

and x½0�j :¼ x½mþ1�
j for j 2 D2. If tnþglþ1 P tnþ1, then set glþ1 ¼ 1, make the interface cor-

rection using (2.16) and (2.17), and goto Step 4 below.

(v) goto step (i) above.

If there is no interface point (i.e. xniH and xniTþ1) at the time level tn, then a standard global time step is used

to evolve the PDE to t ¼ tnþ1.
• Step 4: If tnþ1 6 T , then u½0�

jþ1
2

:¼ unþ1

jþ1
2

, x½0�j :¼ x½mþ1�
j , and goto Step 2.

We point out that an alternative way for solving the underlying PDE is to transfer the physical coor-
dinates to a logical domain. For the conservation law (2.1), a mapping x ¼ xðnÞ will transfer (2.1) into the

following equation:
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ut þ
1

xn
f ðuÞn ¼ 0; 0 < n < 1: ð2:19Þ

This equation can be solved by a cell-center finite volume scheme similar to the one used for (2.1). In 1D,

solving (2.19) with a moving mesh method does not have much advantage than solving (2.1). However, in
multi-dimensions there are some advantages for solving the transformed equations, for example a regular

solution domain in multi-dimensions allows the use of uniform mesh and as a consequence fast solution

solvers (such as multi-grid methods) or domain decomposition methods may be employed easily, see, e.g.,

[8]. For these reasons, we will solve the transformed equations for two-dimensional problems in the next

section.

We close this subsection by listing the following theoretical results which are essential for solving

conservation laws.

Theorem 2.1. Assume that the conservation laws (2.1) is defined in the real line and its initial data has compact

support. Then the adaptive mesh solution obtained by using Algorithm 1 is conservative in the following sense:X
j

Dxnþ1
j unþ1

j ¼
X
j

Dxnj u
n
j : ð2:20Þ

Moreover, the numerical solution is a weak solution for the conservation law (2.1).

The first conclusion above is a direct consequence of the fact that the in and out fluxes across each cell

interface cancel by (2.10) in the coarse and (2.13) in the fine mesh regions, and by Eqs. (2.14) and (2.15) for

the boundary of the coarse and fine meshes. The convergence to the weak solution is based on the same

observations together with the use of the conservative interpolation (2.8) in the mesh movement part. The

detail proof of the above theorem can be found in [26].

2.2. Numerical experiment for 1D problems

Example 2.1. [Burgers’ equation] Consider the inviscid Burgers’ equation

ut þ
u2

2

� �
x

¼ 0; 06 x6 2p ð2:21Þ

subject to the 2p-periodic boundary condition and the initial data

uðx; 0Þ ¼ 0:5þ sinðxÞ; x 2 ð0; 2pÞ: ð2:22Þ

Adaptive solution is obtained for the above problem up to t ¼ 4 using locally varying time steps. For

comparison, the solutions using non-local time stepping are also computed. In the computation, both the

global CFL constant and local CFL constant used are chosen as 0.6. The monitor function used is

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:2junj2

q
: ð2:23Þ

It is known that a good choice of the monitor function is very important in obtaining satisfactory adap-

tation effect. In many cases the monitor functions involve some user-defined parameters which have to be

obtained by doing several experiments. This is the case for the choice of the constant 0.2 in (2.23) as well as

for the monitor constants in other numerical examples of this paper. Obviously, some theoretical study on

how to choose the monitor constants (or the general forms of the monitor functions) seems very useful. On



Table 1

Example 2.1: the l1-error and CPU-time

t ¼ 1 t ¼ 2

CPU time (s) l1-error CPU time (s) l1-error

Non-local 0.01 3.86e)2 0.04 2.19e)2
Local 0.01 4.08e)2 0.02 1.32e)2

t ¼ 3 t ¼ 4

CPU time (s) l1-error CPU time (s) l1-error

Non-local 0.07 1.88e)2 0.1 1.59e)2
Local 0.03 1.29e)2 0.04 2.55e)2
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this aspect, there have seen some efforts in this direction recently. For example, Huang and Sun [14]

proposed two types of monitor functions based on the asymptotic estimates of interpolation errors. Their

work seems useful in developing parameter-free monitor functions.

For evolving Eq. (2.21) a second-order MUSCL finite volume scheme (with the Lax–Friedrichs flux) and

a 3rd order Runge–Kutta method are used. In Table 1, the l1-error and CPU-time are listed. The total

number of grid points is 50. As we expected, the computer time used for the computations with and without

using the local time-stepping is almost the same before t ¼ 1 (i.e., when the singularity is formed), and a
difference of about ratio 2 is observed after t ¼ 1. The corresponding l1-errors are not increased until t ¼ 3,

and are increased at about t ¼ 4. In Fig. 2, comparisons are made for the mesh trajectory (06 t6 3) and the

numerical solution (t ¼ 3) obtained by using the local and non-local time-stepping techniques. These results

are in good agreement.

Example 2.2. Consider the one-dimensional Buckley–Leverett equation:

ut þ f ðuÞx ¼ �ðrðuÞuxÞx; 0 < x < 1; ð2:24Þ

where the flux function has an s-shaped form:

f ðuÞ ¼ u2

u2 þ ð1� uÞ2
ð2:25Þ

and the diffusion coefficient rðuÞ vanishes at u ¼ 0 and 1:

rðuÞ ¼ 4uð1� uÞ:

The initial function is

uðx; 0Þ ¼ 1� 3x 06 x6 1
3
;

0 1
3
< xP 1

	
ð2:26Þ

and the boundary value of uð0; tÞ ¼ 1 is kept fixed.

This is a prototype model for oil reservoir simulations (two-phase flow), where the flux is nonlinear.

Typically, rðuÞ vanishes at some values of u, and (2.24) is a degenerate parabolic equation. In our com-

putation, the diffusion coefficient � is taken as 0.01.
In contrast with the Burgers’ equation, the flux function for this problem is non-convex, which intro-

duces some extra numerical difficulties and so serves as a good test problem [6]. Both the global and local

CFL constants are taken as 0.4. The monitor function used is
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Fig. 2. Example 2.1: mesh trajectory for 06 t6 3 and numerical solution at t ¼ 3. Top is obtained by using the locally varying time

steps, and the bottom is with non-local time stepping.
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x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 50u2x

q
: ð2:27Þ

In the solution domain ½0; 1�, 30 grid points are used. In Table 2, the l1-error and CPU-time at different time

levels are presented. A speed-up of about 1.65–2.1 times with the local time stepping is observed. It is also

noted that the l1-errors are smaller when the local time stepping is used. This accuracy improvement may be

due to the use of smaller time steps in the steep layer regions, which uses more detailed information from

the level tn so that the approximation at the level tnþ1 is more accurate. In Fig. 3, the mesh trajectory up to

t ¼ 0:5 and the numerical solution at t ¼ 0:5 are plotted. The agreement between the moving mesh solutions
with and without the local stepping techniques is good.

We close this section by discussing the choice of the monitor functions. It is seen that the forms of the

monitors (2.23) and (2.27) are different, with n-derivative variable for Example 2.1, and x-derivative var-

iable for Example 2.2. In our experience, for solutions with discontinuity or extremely large gradients then



Table 2

Example 2.2: the l1-error and CPU-time

t ¼ 0:2 t ¼ 0:3

CPU time (s) l1-error CPU time (s) l1-error

Non-local 0.33 8.21e)3 0.67 7.98e)3
Local 0.20 1.12e)3 0.36 1.44e)3

t ¼ 0:4 t ¼ 0:5

CPU time (s) l1-error CPU time (s) l1-error

Non-local 1.04 9.96e)3 1.43 9.56e)3
Local 0.52 1.58e)3 0.68 1.18e)3
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Fig. 3. Example 2.2: left is the mesh trajectory for 06 t6 0:5 and the right is the numerical solution at t ¼ 0:5. Top is obtained by using

the locally varying time steps, and the bottom is with non-local time stepping.
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an n-derivative is preferred. This will avoid clustering too many points in the neighborhood of the dis-

continuities. In other words, this choice can better balance the number of points inside and outside a steep

internal layer. In the case that the solution is smooth and that the solution gradient is not extremely large
then an x-derivative can be used. In general (and in particularly in multi-dimensions), a monitor with n-
derivative seems more appropriate (see, e.g., [8,24,25]). Moreover, some regularization factors (0.2 in (2.23)

and 50 in (2.27)) may be used in the monitor functions, which allow us to reduce (or increase) the mag-

nitude of the monitor function in situations where the derivatives are very large (or not very large). This is

to avoid over-resolution of steep layers. There have existed several works to discuss the choice of the

monitor functions, see, e.g., [1,4,23].
3. 2D moving mesh methods with local time stepping

To demonstrate the principal idea of local stepping techniques we again consider the 2D nonlinear

conservation law:

ut þ f ðuÞx þ gðuÞy ¼ 0; ðx; yÞ 2 Xp; ð3:1Þ

where Xp is the physical domain. As mentioned at the end of Section 2.1, there are some advantages in

solving (3.1) in a logical domain. In our computations, we regard Xp as the image of a computational

(logical) domain Xc under some suitable mapping

x ¼ xðn; gÞ; y ¼ yðn; gÞ and n ¼ nðx; yÞ; g ¼ gðx; yÞ; ð3:2Þ

where ðx; yÞ and ðn; gÞ are the physical and computational coordinates, respectively. The corresponding

transformed equation for (3.1) is of the form

ut þ
1

J
F ðuÞn þ

1

J
GðuÞg ¼ 0; ðn; gÞ 2 Xc; ð3:3Þ

where J ¼ xnyg � xgyn is the Jacobian of the coordinate transformation, and

F ðuÞ ¼ ygf ðuÞ � xggðuÞ; GðuÞ ¼ xngðuÞ � ynf ðuÞ:

It is noted that the transformation (3.2) is time-independent and therefore the time derivative in (3.1) is not

transformed to a moving frame. However, the meshes in the physical domain are indeed time-dependent,

which is realized by using the solution-dependent monitor functions. Using a cell-center finite volume

method to discretize (3.3) gives

�unþ1

jþ1
2
;kþ1

2

¼ �unjþ1
2
;kþ1

2
� knj;k ~F n

jþ1;kþ1
2

�
� ~F n

j;kþ1
2

�
� ln

j;k
~Gn
jþ1

2
;kþ1

�
� ~Gn

jþ1
2
;k

�
; ð3:4Þ

where

knj;k ¼
Dtn

DnJjþ1
2
;kþ1

2

; ln
j;k ¼

Dtn
DgJjþ1

2
;kþ1

2

;

�unjþ1
2
;kþ1

2
¼ 1

DnDg

Z
A
jþ1

2
;kþ1

2

uðn; g; tnÞdndg

and Ajþ1
2
;kþ1

2
is the control cell ½nj; njþ1� � ½gk; gkþ1�.

The local time stepping for an 2D moving mesh method uses a similar procedure as described in Al-

gorithm 1. At time level t ¼ tn, numerical solution on coarse mesh is obtained using (3.4) with a single larger
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time step; and solution on finer mesh is obtained using smaller time step. More precisely, in the finer mesh

region, for each l ¼ 1; . . . ;M ,

�unþgl
jþ1

2
;kþ1

2

¼ �unþgl�1

jþ1
2
;kþ1

2

� rl knj;k ~F nþgl�1

jþ1;kþ1
2

�h
� ~F nþgl�1

j;kþ1
2

�
þ ln

j;k
~Gnþgl�1

jþ1
2
;kþ1

�
� ~Gnþgl�1

jþ1
2
;k

�i
; ð3:5Þ

which gives

�unþ1

jþ1
2
;kþ1

2

¼ �unjþ1
2
;kþ1

2
�
XM�1

l¼0

rlþ1 knj;k ~F nþgl
jþ1;kþ1

2

�h
� ~F nþgl

j;kþ1
2

�
þ ln

j;k
~Gnþgl
jþ1

2
;kþ1

�
� ~Gnþgl

jþ1
2
;k

�i
: ð3:6Þ

At the interface where large time-step region and small time-step region are adjacent, unknown solutions

on the boundary are again obtained using linear interpolation. AfterM fine-time steps have been computed,

we redefine the numerical fluxes at the coarse/fine grid interfaces using the method similar to that in the 1D

case. For example, the numerical approximation for the cell east to the interface of jþ 1
2
; k þ 1

2


 �
(see Fig. 4)

is given by

�unþ1

jþ3
2
;kþ1

2

:¼ �unþ1

jþ3
2
;kþ1

2

þ knjþ1;k dF
n
jþ1;kþ1

2
; ð3:7Þ

where

dFn
jþ1;kþ1

2
¼ �~F n

jþ1;kþ1
2
þ
XM�1

l¼0

rlþ1
~F nþgl
jþ1;kþ1

2

:

If the cell to north of jþ 1
2
; k þ 1

2


 �
is not refined, then it is redefined as

�unþ1

jþ1
2
;kþ3

2

:¼ �unþ1

jþ1
2
;kþ3

2

þ ln
j;kþ1 dG

n
jþ1

2
;kþ1; ð3:8Þ

where

dGn
jþ1

2
;kþ1 ¼ �~Gn

jþ1
2
;kþ1

þ
XM�1

l¼0

rlþ1
~Gnþgl
jþ1

2
;kþ1

:

We now describe the mesh redistribution in two space dimension. It is assumed that a fixed (square uni-

form) mesh is given on the computational domain. The mesh generation equation is of the form

onðG1 onxÞ þ ogðG1 ogxÞ ¼ 0;

onðG2 onyÞ þ ogðG2 ogyÞ ¼ 0;
Fig. 4. Solution is corrected at a coarse grid/fine grid interface.
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where G1;G2 are monitor functions. In our computations, a very simple monitor is chosen so that the mesh

generation equation is of the form

~r � ðx ~rxÞ ¼ 0; ~r � ðx ~ryÞ ¼ 0; ð3:9Þ

where ~r ¼ ðon; ogÞT. Moreover, the conservative interpolation proposed by Tang and Tang [24] is used to

update the approximate solutions on the new grid:

~Ajþ1
2
;kþ1

2

��� ���~ujþ1
2
;kþ1

2
¼ Ajþ1

2
;kþ1

2

��� ���ujþ1
2
;kþ1

2
� ðcxuÞjþ1;kþ1

2

h
� ðcxuÞj;kþ1

2

i
� ðcyuÞjþ1

2
;kþ1

h
� ðcyuÞjþ1

2
;k

i
; ð3:10Þ

where cxj;k ¼ xj;k � ~xj;k, c
y
j;k ¼ yj;k � ~yj;k.

Below we will provide some numerical examples to demonstrate the performance of the local time

stepping method in 2D.

Example 3.1. [2D inviscid Burgers’ problem]. Our first 2D problem is concerned with the two-dimensional

inviscid Burgers’ equation

ut þ
u2

2

� �
x

þ u2

2

� �
y

¼ 0; 06 x; y6 1: ð3:11Þ

We take as an initial condition a function consisting of two cone shapes, one with height 1 and the other

with height �1. The initial condition is displayed in Fig. 5.
Fig. 5. Initial condition for Example 3.1.
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In the Burgers’ problem, larger values of the solution give rise to larger velocities. Consequently, the

centers of the cones are advected along at a higher rate than the edges. Moreover, the positive cone has

positive velocity and the negative cone has negative velocity, and as a result the cones approach each other
and collide in the center of the domain.

The numerical solutions are obtained using the moving mesh method with local time stepping techniques

as described earlier. In our computations, 80� 80 grid points are used and both the local and global CFL

constants used are 0.4. The monitor function in (3.9) is of the form

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a1 j u j2 þa2 j ~ru j2

q
: ð3:12Þ

The constants a1 and a2 are chosen as 6 and 1, respectively. It was pointed out in [25] that the inclusion of

the j u j term in the monitor function may increase the adaptation effect. Our computational results also

suggest that the inclusion of the j u j term enhances the efficiency of the moving mesh algorithm although

the improvement is not significant. Therefore, we only use the j u j term in this example.

Table 3 shows the CPU-time at different time levels. A speed-up of about 2.12–2.47 for the local time

stepping scheme is observed. In Fig. 6, a comparison on the meshes and numerical solutions obtained using
and without using the local time stepping is made. The agreement between the local time stepping results

and the global time stepping results is very good.

Example 3.2. [2D viscous Burgers’ problem]. Our second 2D problem is concerned with the two-dimen-

sional viscous Burgers’ equation

ut þ
u2

2

� �
x

þ u2

2

� �
y

¼ �r2u; 06 x; y6 1: ð3:13Þ

The initial condition and Dirichlet boundary condition are chosen so that the exact solution to the un-

derlying problem is given by

uðx; y; tÞ ¼ 1



þ eðxþy�tÞ=2���1
:

This solution describes a straight-line wave (u is constant along the line xþ y ¼ c) moving in the di-
rection h ¼ 45�. In our computation, we consider the case with a moderately small diffusion coefficient

� ¼ 0:005. It is noted that the smaller � is, the more convection dominates, and the higher the concentration

of mesh points required around the wave front. The monitor function used is (3.12) with ða1; a2Þ ¼ ð0; 1Þ. In
this problem, large solution gradients will be developed to the boundaries in a later time. As a consequence,

boundary point redistribution should be made in order to improve the quality of the adaptive mesh. This is

done by solving some 1D moving mesh equations on boundaries, see, e.g., [17]. In our computations, both

the global and local CFL constants are 0.4, and an 80�80 grid is used. Fig. 7 shows the adaptive meshes

and the corresponding point-wise errors at t ¼ 1, obtained by using the moving mesh methods with and
without local time stepping. As expected, a quite large portion of the grid points is moved to the steep layer

region. It is observed that the meshes obtained by using the two time-stepping approaches are almost the
Table 3

Example 3.1: CPU time comparison

t ¼ 0:4 (s) t ¼ 0:6 (s) t ¼ 0:8 (s) t ¼ 1 (s)

Non-local 17.7 22.2 25.1 27.2

Local 7.2 9.9 11.8 12.8



Fig. 6. Meshes and solutions for Example 3.1: left and right are for the non-local and local time stepping results, respectively. (a) mesh

at t ¼ 0:4, (b) solution at t ¼ 0:4, (c) mesh at t ¼ 1, and (d) solution at t ¼ 1.
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same, but the point-wise errors are quite different. It is also observed from Table 4 that with the local time

stepping approach the resulting l1-errors become smaller and there are about 2–4 times saving in com-

putational cost.

It should be pointed out that if an explicit method is applied to a problem without steep layers then even

a singularly perturbed convection-diffusion problem can be solved as the time-step restriction would be that

of the CFL condition. However, if there is a thin internal layer, as the case in this example, then the mesh

needs to be highly adapted to resolve such a layer, which will affect the choice of time-step restriction of an
explicit method. Roughly speaking, the time-step restriction in this region should satisfy

Dt � minfDtCFL;Dtvisg, where DtCFL is the standard CFL condition and Dtvis is the viscous time step in the

layer regions. The viscous time step is defined by Dtvis � Dx2=�, where Dx is the mesh diameter in the layer

region. For the viscous Burgers’ equation the layer has width Oð�Þ, which implies that



Table 4

Example 3.2: the l1-error and CPU-time

t ¼ 0:2 t ¼ 0:4

CPU time (s) l1-error CPU time (s) l1-error

Non-local 48.25 1.87e)4 98.14 3.00e)4
Local 11.23 1.78e)4 32.72 1.76e)4

t ¼ 0:6 t ¼ 0:8

CPU time (s) l1-error CPU time (s) l1-error

Non-local 156.50 4.24e)4 252.30 6.55e)4
Local 65.59 1.86e)4 133.58 2.45e)4

Fig. 6 (continued)
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Fig. 7. Meshes and point-wise errors for Example 3.2 at t ¼ 1: left is obtained by using the non-local time stepping and the right using

the local time-stepping.
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Dx � c1�: ð3:14Þ

It follows that if the proportional constant c1 is sufficiently small then the time-step restriction of an explicit

method will be determined by the viscous time step rather than the CFL condition. In our computations,

since the proportional constant c1 in (3.14) is not too small the value of Dtvis is similar to that of DtCFL.
However, in case that c1 is very small (e.g., this will occur if the monitor constant a2 in (3.12) is large

enough), then with an explicit scheme the (very small) viscous time step has to be used. In this case, one
possibility to handle the extremely small time steps (only for a few points near the viscous shock curves) is

to use appropriate implicit methods.

Example 3.3. [2D Buckley–Leverett equation]. Consider the two-dimensional convection-diffusion equa-

tion

ut þ f ðuÞx þ gðuÞy ¼ �r2u; ð3:15Þ

with � ¼ 0:01. The flux function is of the form

f ðuÞ ¼ u2

u2 þ ð1� u2Þ ; gðuÞ ¼ f ðuÞð1� 5ð1� u2ÞÞ ð3:16Þ

and the initial data is
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Fig. 8. Example 3.3: left is the percentage of elements taking the local time step; and the right is the ratio between the largest and

smallest time steps.

Table 5

Example 3.3: CPU time comparison

t ¼ 0:1 (s) t ¼ 0:2 (s) t ¼ 0:3 (s) t ¼ 0:4 (s) t ¼ 0:5 (s)

Non-local 32.8 64.1 94.3 123.0 150.7

Local 12.5 30.2 47.4 64.1 78.9
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Fig. 9. Example 3.3: distribution of regions using local time stepping at t ¼ 0:5. Darker (lighter) region uses smaller (larger) time steps.
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uðx; y; 0Þ ¼ 1 x2 þ y2 < 0:5;
0 otherwise:

	
ð3:17Þ

Note that the above model includes gravitational effects in the y-direction. This example is taken from

[15]. For this problem, 80� 80 grid points are used and both the global and local CFL constants are chosen

as 0.4. The monitor function used is (3.12) with ða1; a2Þ ¼ ð0; 1Þ. Table 5 shows the CPU-time used at

different time level. It is observed that CPU time has a speed-up of about 1.9–2.6 times for local time

stepping scheme. In Fig. 8, the percentage of elements taking local time step and the ratio between the

largest and smallest time steps are presented. It is seen that the percentage is decreasing for tP 0:1, and the
ratio is also decreasing. This indicates that the CPU time saving is getting less when t is larger. In Fig. 9, the

region using locally varying time steps at t ¼ 0:5 is presented. Numerical solutions at t ¼ 0:5 obtained by

using the moving mesh methods are shown in Fig. 10. The results obtained using and without using the

locally varying time steps are in good agreement.
Fig. 10. Meshes and solutions for Example 3.3 at t ¼ 0:5: left are obtained using the locally varying time steps, and right with the non-

local time stepping.
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4. Concluding remarks

In this work, a local time stepping technique for moving mesh methods has been developed. The al-
gorithm proposed is relatively simple and has some good properties such as maintaining global conser-

vation and convergence to a weak solution of scalar hyperbolic conservation laws. Numerical experiments

in both 1D and 2D indicate that the local time stepping methods exhibit similar accuracy and stability to

the global time stepping schemes, at a fraction of the computational cost.

It should be pointed out that the moving mesh method used in this paper is not representative of all

moving mesh methods. For example, in the moving mesh PDE (MMPDE) approach of Russell and others

[8,12,18], the physical PDE is solved on a moving mesh, whereas in this work the physical PDE is always

solved on a fixed mesh and the effect of the mesh movement is achieved through the grid restructuring. The
latter approach has been developed and used by several authors recently, see, e.g., [1,2,17,19,28]. One of the

advantages of using this approach is that it delinks the PDE evolution part and the mesh-redistribution part

so that the existing PDE solvers can be employed directly. This approach can also easily keep some desired

properties of the numerical solutions such as mass conservation (in particular in multi-dimensions).

However, the stability restriction on a fixed mesh will be governed by the smallest mesh size and therefore a

local time stepping technique seems necessary for this type of moving mesh methods.
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