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Abstract

It is a very common practice to use semi-implicit schemes in various computations,
which treat selected linear terms implicitly and the nonlinear terms explicitly. For
phase-field equations, the principal elliptic operator is treated implicitly to reduce the
associated stability constraints while the nonlinear terms are still treated explicitly to
avoid the expensive process of solving nonlinear equations at each time step. However,
very few recent numerical analysis is relevant to semi-implicit schemes, while "stabi-
lized" schemes have become very popular. In this work, we will consider semi-implicit
schemes for the Allen-Cahn equation with general potential function. It will be demon-
strated that the maximum principle is valid and the energy stability also holds for
the numerical solutions. This paper extends the result of Tang & Yang (J. Comput.
Math., 34(5):471–481, 2016) which studies the semi-implicit scheme for the Allen-Cahn
equation with polynomial potentials.
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1 Introduction

There has been tremendous interests in developing energy-dispassion numerical methods
for phase-field models starting from earlier numerical works [1, 6, 12]. To make sure a
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numerical scheme satisfies the nonlinear energy stability, there are basically three class of
approaches. For ease of exposition, we consider the simplest phase-field model, i.e., the
Allen-Cahn equation with initial condition:

∂φ
∂t = ε2∆φ− f(φ), in Ω× (0, T ], (1.1)

φ(x, 0) = φ0(x), in Ω, (1.2)

where ε > 0 is the interface width parameter, f(φ) = F ′(φ), where F is a smooth function.
The corresponding energy is defined as

E(φ) :=
Z

Ω

�ε2

2
|∇φ|2 + F (φ)

�
dx. (1.3)

Energy stability means that

E(φ(·, t)) ≤ E(φ(·, s)), ∀t > s. (1.4)

The first class of energy stable scheme is the Eyre’s convex splitting method [6], which
yields a nonlinear semi-implicit scheme:

φn+1 − φn

∆t
= ε2∆φn+1 − T1(φn+1)− T2(φn), (1.5)

where T1 and T2 are some convex functionals satisfying T1 + T2 = f . This is also referred
as partially implicit scheme for phase-field modeling by [13].

The second class of energy stable scheme is to add some extra terms so that the result-
ing scheme satisfies energy non-increasing property; these schemes are called "stabilized"
approach. There have been quite large size of papers in this direction in the past 15 years,
see the review articles [9, 10] and references therein.

The third class is the direct fully implicit scheme, see, e.g., [5, 8, 13]. In particular, it is
demonstrated in [13] that a first-order fully implicit scheme for the Allen-Cahn model can
be devised so that the maximum principle is valid on the discrete level and, furthermore,
the linearized discretized system can be effectively preconditioned using discrete Poisson
operators.

It is noted by [6] that an unconditionally energy-stable scheme, such that backward
Euler scheme, is not necessarily better than a conditionally energy stable scheme when the
time step size is not small enough. In other words, if larger time steps are needed then the
first and second classes schemes are useful. However, it is argued in [13] that most implicit
schemes are energy-stable if the time-step size is sufficiently small. Moreover, it is noted

2



that a convex splitting scheme or a "stabilized" approach can be equivalent to some fully
implicit scheme with a different time scaling and thus it may lack numerical accuracy.

It is obvious that the partially implicit scheme and the fully implicit scheme all require
some iteration techniques, and are less effective than the explicit scheme or semi-implicit
scheme. In this work, we wish to study the semi-implicit energy-stable scheme for the
Allen-Cahn equation:

φn+1
j − φnj

∆t
= ε2∇+∇−φn+1

j − f(φnj ), 1 ≤ j ≤ J, (1.6)

where ∆t and ∆x are time step and mesh size in space, respectively, and

∇+uj =
uj+1 − uj

∆x
, ∇−uj =

uj − uj−1

∆x
.

It will be demonstrated that the maximum principle is valid for (1.6), and the energy
stability also holds for the numerical solutions.

The paper is organized as follows. In Section 2, we will prove the maximum principe
and the L1-stability for the numerical solutions of semi-implicit scheme (1.6). The energy
stability will be established in Section 3. Some possible extensions will be discussed in the
final section.

2 Maximum principle

It is known that a maximum principle is satisfied for the Allen-Cahn equation (1.1), see, e.g.,
[7, 11]. Below we will provide a discrete counterpart using a monotone scheme arguments.

Theorem 2.1. Consider the semi-implicit scheme (1.6) with periodic boundary conditions.
Assume γ+ > γ− are two constants.

• If the nontrival function f ∈ C1(γ1, γ+) satisfies

f(γ−) = f(γ+) = 0, γ− ≤ φ0 ≤ γ+, (2.1)

• and if the time step ∆t satisfies

∆t max
γ−≤u≤γ+

f ′(u) ≤ 1, (2.2)

then
γ− ≤ φnj ≤ γ+, ∀ 1 ≤ j ≤ J, n ≥ 0. (2.3)
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Proof. We use mathematical induction to prove the result. The result is obvious at n = 0.
Assume (2.3) is true at level n. It follows from (1.6) that

φn+1
j = φnj + λ

�
φn+1
j+1 − 2φn+1

j + φn+1
j−1

�
−∆tf(φnj ).

where λ := ε2∆t/∆x2. Consequently, we have

(1 + 2λ)φn+1
j = φnj + λφn+1

j+1 + λφn+1
j−1 −∆tf(φnj )

=: G(φnj , φ
n+1
j+1 , φ

n+1
j−1 ). (2.4)

Note that
∂G

∂φnj
= 1−∆tf ′(φnj ) ≥ 0,

∂G

∂φn+1
j+1

= λ > 0,
∂G

∂φn+1
j−1

= λ > 0,

where in the first inequality we have used the assumption (2.2) and the induction assumption
at n. The above result shows that G is a monotone scheme, which yields

(1 + 2λ)φn+1
j = G(φnj , φ

n+1
j+1 , φ

n+1
j−1 )

≤ G(γ+,max
j
φn+1
j ,max

j
φn+1
j ) = γ+ + 2λmax

j
φn+1
j , (2.5)

where we have used the assumption that f(γ+) = 0. As the above result is true for all j,
we obtain

(1 + 2λ) max
j
φn+1
j ≤ γ+ + 2λmax

j
φn+1
j ,

which gives maxj φ
n+1
j ≤ γ+. Similarly, we have

(1 + 2λ)φn+1
j = G(φnj , φ

n+1
j+1 , φ

n+1
j−1 )

≥ G(γ−,min
j
φn+1
j ,min

j
φn+1
j ) = γ− + 2λmin

j
φn+1
j , (2.6)

where we have used the assumption that f(γ−) = 0. As the above result is true for all j,
we obtain minj φ

n+1
j ≥ γ−. This completes the proof of the theorem.

Before closing this section, we remark that the L1-stability also holds for the Allen-Cahn
equation (1.1). More precisely, if the conditions (2.1) and (2.2) in Theorem 2.1 are satisfied,
and also f(0) = 0 with γ− < 0 < γ+, then the numerical solutions of (1.6) satisfy

‖φn+1‖1 ≤ eL∆t‖φn‖1, (2.7)

where L = −minγ−≤u≤γ+ f
′(u), and

‖φn‖1 =
JX
j=1

|φnj |∆x. (2.8)
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We briefly outline the proof of (2.7). It follows from the semi-implicit scheme (1.6) that

(1 + 2λ)φn+1
j = (1−∆tf ′(θnj ))φnj + λφn+1

j+1 + λφn+1
j−1 , (2.9)

where we have used the assumption f(0) = 0 and θnj is between 0 and φnj . Furthermore, it
follows from (2.2) that the coefficient of φnj is non-negative. Consequently, we have (2.9)
that

(1 + 2λ)|φn+1
j | ≤ (1−∆tf ′(θnj ))|φnj |+ λ|φn+1

j+1 |+ λ|φn+1
j−1 |

≤ (1 + ∆tL)|φnj |+ λ|φn+1
j+1 |+ λ|φn+1

j−1 |. (2.10)

The above result, together with the definition (2.8), leads to

(1 + 2λ)‖φn+1‖1 ≤ eL∆t‖φn‖1 + λ‖φn+1‖1 + λ‖φn+1‖1. (2.11)

which leads to the desired estimate (2.7).

3 Energy Stability

A numerical correspondence of the energy definition (1.3) is given below

Eh(φn) =
ε2

2

JX
j=1

(∇+φ
n
j )2∆x+

JX
j=1

F (φnj )∆x. (3.1)

Theorem 3.1. Consider the semi-implicit scheme (1.6) with periodic boundary conditions.
If the conditions (2.1) and (2.2) in Theorem 2.1 are satisfied, then the numerical solutions
of (1.6) satisfy

Eh(φn+1) ≤ Eh(φn). (3.2)

Proof. It follows from the definition of the discrete energy (3.1) that

Eh(φn+1)− Eh(φn)

=
ε2

2

JX
j=1

(∇+φ
n+1
j +∇+φ

n
j )(∇+φ

n+1
j −∇+φ

n
j )∆x+

JX
j=1

�
F (φn+1

j )− F (φnj )
�

∆x

=: ε2I1 + I2. (3.3)
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We now estimate I1 and I2. Note that

I1 =
1

2

JX
j=1

∇+(φn+1
j + φnj )∇+(φn+1

j − φnj )∆x

=
JX
j=1

∇+φ
n+1
j ∇+(φn+1

j − φnj )∆x− 1

2

JX
j=1

�
∇+(φn+1

j − φnj )
�2

∆x

≤
JX
j=1

∇+φ
n+1
j ∇+(φn+1

j − φnj )∆x

= −
JX
j=1

∇+∇−φn+1
j (φn+1

j − φnj )∆x (3.4)

where in the last step we have used the discrete integration by parts. Furthermore, using
Taylor expansion gives

F (φn+1
j ) = F (φnj ) + f(φnj )(φn+1

j − φnj ) +
1

2
f ′(θnj )(φn+1

j − φnj )2, (3.5)

where γ− ≤ θnj ≤ γ+, which yields

I2 =
JX
j=1

�
f(φnj )(φn+1

j − φnj ) +
1

2
f ′(θnj )(φn+1

j − φnj )2
�
∆x. (3.6)

It follows from the (3.3), (3.4) and (3.6) that

Eh(φn+1)− Eh(φn)

≤
JX
j=1

h
− ε2∇+∇−φn+1

j (φn+1
j − φnj ) + f(φnj )(φn+1

j − φnj )
i
∆x

+
JX
j=1

1

2
f ′(θnj )(φn+1

j − φnj )2∆x. (3.7)

It follows from the semi-implicit scheme (1.6) that

(φn+1
j − φnj )2

∆t
= ε2∇+∇−φn+1

j (φn+1
j − φnj )− f(φnj )(φn+1

j − φnj ),

Combining the above two results gives

Eh(φn+1)− Eh(φn)

≤
JX
j=1

∆x

∆t

�
−1 +

1

2
∆tf ′(θnj )

�
(φn+1
j − φnj )2 ≤ 0, (3.8)

where in the last step we have used the assumption (2.2) and the maximum principle result
(2.3).
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4 Concluding Remarks

This paper extends the result of [11] which provides similar maximum principle and energy
stability results for the polynomial double well potential F . In [11], numerical experiments
also demonstrated that the semi-implicit (sometimes also called implicit-explicit) method
is an effective scheme for solving the Allen-Cahn equations.

It is demonstrated in [1] that semi-implicit scheme is very effective for the Ginzburg-
Landau equation and the Cahn-Hilliard equation. We may conjecture that the energy
stability (3.2) also holds for the semi-implicit solutions of the Cahn-Hilliard equation. How-
ever, standard energy analysis used in this work may not be sufficient to establish such a
result. It is expected some deeper analysis is needed to verify the conjecture.

We point out that it is possible to extend the present framework to handle the Cahn-
Hilliard equation with a logarithmic free energy. The key ingredient for establishing the
energy stability with the present framework is the boundedness of numerical solutions. The
solution boundedness is indeed true for the Cahn-Hilliard equation with a logarithmic free
energy [3]; however, there has very few theoretical justification of the numerical counterpart.
It is worth mentioning two relevant works in this direction. One is the work of Copetti and
Elliott [4] who analyzed the implicit Euler scheme and obtained the uniform maximum
bound of the numerical solutions; another one is due to Chen et al. [2] who studied the
first-order and second-order partially implicit scheme and obtained the L∞-bound of the
numerical solutions. Of course, more interesting and challenging issue is to analyze the
energy stability of semi-implicit schemes for the Cahn-Hilliard equation with a logarithmic
free energy.
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