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ERROR BOUNDS FOR FRACTIONAL STEP METHODS FOR
CONSERVATION LAWS WITH SOURCE TERMS*

TAO TANGt AND ZHEN-HUAN TENG$

Abstract. Fractional step methods have been used to approximate solutions of scalar conser-
vation laws with source terms. In this paper, the stability and accuracy of the basic fractional step
algorithms are analyzed when these algorithms are used to compute discontinuous solutions of nonho-
mogeneous scalar conservation laws. The authors show that time-splitting methods for conservation
laws with source terms always converge to the unique weak solution satisfying the entropy condition.
In particular, it is proved that the L errors in the splitting methods are bounded by O(v/-), where
At is the splitting time step. The L1 convergence rate of a class of fully discrete splitting methods
is also investigated.

Key words, splitting method, hyperbolic conservation laws, error estimate, monotone scheme,
Euler method
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1. Introduction. We consider the initial value problem for the nonhomogeneous
scalar conservation law

(1.1) ut / (f(u))x g(u), (x, t) e a [0, T],
(1.2) u(x, O)= uo(x), x e R,

with u0 E BV(R) NL(R) NLI(R), f e el(R), and g satisfies a Lipschitz condition,
with a Lipschitz constant L, and g(0) 0. For ease of exposition we shall consider the
one-dimensional equation (1.1) in the analysis; its extension to the multi-dimensional
case is straightforward (see 6). Also, we assume that g g(u), but the results of this
paper can be easily extended to the more general case g g(x, u) which is assumed
in [1], [13].

Most problems of technological interest are nonhomogeneous, or multi-dimensional,
or both. The source term in the nonhomogeneous problem is due to physical or ge-
ometrical effects. (see, e.g., [2], [17]). The nonhomogeneous conservation laws have
been investigated theoretically and numerically by several authors (see, e.g., [10],
[13], [25], [3], [8], [12], [17]). In the scalar case Kruzkov [10] proved the existence and
uniqueness of the solution.

In the present paper we shall consider time-splitting methods for the numerical
solutions of (1.1). In the simplest case the first step is to use the method known as
operator splitting to remove the nonhomogeneous term g(u) from (1.1). That is, we
solve the homogeneous scalar conservation law

(1.3) u / (f(u))x O.

The second step is to solve the ordinary differential equation
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ERROR BOUNDS FOR FRACTIONAL STEP METHODS 111

Let S(t) denote the exact solution operator of (1.1) which satisfies the entropy con-
ditions. Therefore, the solution of (1.1)-(1.2) can be expressed in the form u(x,t)
S(t)uo. Similarly, let $1 (t) and S2(t) denote the solution operators of (1.3) and (1.4),
respectively. The first-order fractional step method is based on the approximation

s(t ) 0 (at))n e [0, T],

or on the one with the roles of $2 and $1 reversed, where At is the splitting time step.
To maintain second-order accuracy, the Strang splitting [18] can be used, in which
the solution S(tn)uo is approximated by

(1.6) S(tn)uo (S2(At/2)SI (At)S2(At/2))n u0,

or by the one with the roles of $2 and S reversed. It should be pointed out that
first-order accuracy and second-order accuracy are based on the truncation errors for
smooth solutions. For discontinuous solutions of conservation laws, it is not difficult
to show that both approximations (1.5) and (1.6) are at most first-order accurate
[4]. To analyze the principal properties of fractional step methods for discontinuous
solutions, we shall concentrate on the splitting method (1.5). The main results in this
paper for (1.5) can be easily extended to the scheme (1.6).

For multi-dimensional homogeneous conservation laws, a first-order fractional step
method was introduced by Godunov [6], which was modified by Strang [18]. The sta-
bility, accuracy and convergence of their methods are analyzed by Crandall and Majda
[4], who proved that both the Godunov splitting algorithm and Strang splitting al-
gorithm converge to the unique weak solution satisfying the entropy condition. In
the recent work of Tang [22], the convergence rates of both methods are investigated.
However, the splitting methods for nonhomogeneous conservation laws have not been
analyzed so far. In this work, we shall show that the splitting algorithm (1.5) con-

verges to the entropy solution of (1.1)-(1.2) and a convergence rate is obtained. In
practical calculations, the solution operators S and $2 should be replaced by certain
discrete splitting operators, G and G2, respectively. That is, we need to consider
one-dimensional difference approximations, G(At) SI(At), G2(At) S2(At), to
define fully discrete splitting methods. In this work, we consider the case when G1 is
a monotone scheme and G2 is the forward Euler method. A difference scheme,

(1.7)

(1.8)

Gx(At)u uj A f( ._p+,., Uj+p) y( j_p,... ztj+p_l)

o 1 f(J+l/2)Ax
uo(x)dx,Uj AX (j-1/2)Ax

where A AtlAx is a constant and Ax is the spatial step length, is locally monotone
on the interval, [a, b], if the right-hand side of (1.7) is a nondecreasing function of
all arguments as they vary over [a, b]. The basic properties of monotone schemes are
provided in [5], [9], [11]. The forward Euler scheme

+

is the simplest and most well-known method for solving ordinary differential equations.
The main results of the present work are given by the following two theorems.

THEOREM 1.1. Let uo E BV(R) CL(R) CLI(R), f E CI(R), and assume that
g satisfies a Lipschitz condition and g(O) O. Let S(t)uo denote the unique weak
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112 T. TANG AND Z.-H. TENG

solution of (1.1)-(1.2) satisfying the entropy condition; then the L convergence rate
of the semi-discrete fractional step algorithm (1.5) is 1/2. More precisely, for any
tn nat e [0, T], the following estimate holds:

where C is a constant independent of At. Similar results are valid with the roles of
$2 and $1 reversed.

THEOREM 1.2..Let uo E BV(R)N L(R)N LI(R), f E CI(R), and assume
that g satisfies a Lipschitz condition and g(O) O. Assume the finite difference
scheme (1.7)-(1.8) to be monotone and consistent with (1.3), the numerical flux f to be
Lipschitz continuous, and G2 to be the forward Euler operator. If 5 := max{Ax, At}
is sufficiently small, then for any t nat [0, T],

where C is a constant independent of 5 and where the function (G2(At)Gl(At))nuo
is a piecewise constant function, i.e., for (j 1/2)Ax <_ x < (j + 1/2)Ax,

(G2(At)G1 (/kt))n to(x) (G2(At)(I(At))n uo(xj).

Similar results hold with the roles of G2 and G1 reversed.
Remark. In the one-dimensional case, the Lc condition for u0 can be dropped

since BV(R) c L(R), but in the N-dimensional case (N > 1) the L(RN) con-
dition has to be imposed since BV(RN) : L(RN) (see [7]). In order to extend
Theorems 1.1 and 1.2 to multi-dimensional nonhomogeneous conservation laws we
still list the L condition for u0 in the one-dimensional case.

2. Preliminaries. A bounded measurable function, u, is a weak solution of (1.1)
and (1.2) if for all e C(R [0, T]) with compact support in R [0, T) (i.e.,
e C(R x [0, T))),

The bounded-variation seminorm of a function u G BV(R) is defined by

It(., t)IBV(R) f lu(x + h, t) u(x, t)ldx"sup

Weak solutions are not uniquely determined by their initial data and additional prin-
ciples, entropy conditions, are needed to select the appropriate physical solution. A
weak solution, u, of (1.1)-(1.2) is an entropy solution if for all E C(R (0, T))
with (x, t) >_ 0 and any k R,

(2.1) (It klCt + sign(u k)(f(u) f(k)) + sign(u k)g)dxdt > O.

PROPOSITION 2.1. (See [10].) If to L(R), f CI(R), and g satisfies a Lips-
chitz condition with a Lipschitz constant L, then the nonhomogeneous conservation law
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ERROR BOUNDS FOR FRACTIONAL STEP METHODS 113

(1.1) possesses a unique weak solution u(x, t) S(t)uo e L(R)A C([0, T],Lzoc(R))
with u(x, O) Uo satisfying the entropy condition (2.1) and the following inequality:

Moreover, for any Vo E L (R), the following inequality holds:

Using the above results and the properties for the $1 [10] and G1 [5], [11] we can
establish the following stability results, given in Propositions 2.2-2.4, which will play
an important role in the proofs of Theorems 1.1 and 1.2. The detailed proof of them
can be found in [20].

PROPOSITION 2.2. If no, f, and g satisfy the conditions stated in Theorem 1.1,
then there exists a unique weak solution, u(x, t) =_ S(t)uo, belonging to BV(Rx [0,
L (R x [0, T]) N C([0, T], nI(R)) and satisfying the following entropy condition: for
any nonnegative function e C(R x R+), any k e R, and any T1, T2 e [0, T] such
that T1 <_ ’2

(In- kick- + sign(u- k)(f(u)- f(k))x + sign(u- k)g(u))dxdT
(2.2) + ]u- kl dx <_ 0,

T--T1

where u- u(x T),- (X -) and h(x, T)1=2= h(x T2)- h(x, T1) Moreover, the

function S(t)uo satisfies the following properties:

(2.4)
IIS(t)uollc(l) _< ectll0llL(l),
Is(t)uol v(m <_ e  lu01 v(m,

where C1 maXI.I_<LTIlu011Lo(R If’(u)l.
Following the notations in [4], we define UA (X, t) as follows:

S (2(t tn))(S.(At)S (At))nuo, t e [tn, tn+l/2),(2.7) UA $2(2(t- tn+i/2))S(At)(S.(At)S(At))nuo, t [tn+l/2,tn+l)

where t nat and tn+l/2 (n-t- 1/2)At. Further, let xj+/2 (j + 1/2)Ax,
Xj jAx, Xj --[Xj_l/2,Xj+l/2),U.+1/2 Gl(At)u, and u2+l Ge(At)u. +1/.
We define function us(x, t) as follows:

(t- tn)U. +1/2 + -(tn+l/2 t)u,
X Xj, t [tn,tn+l/2),

u5 - (tn+ t)u+1 + -7 (t tn+/2)u"+1/2
x Xj, t [t+/.,t+).

Therefore, us(x, .) is a piecewise constant function in R and u5(., t) C([0, T]). Also,
us(xy, t) u2 and u5(xj, t,+/2) u.+/2.
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114 T. TANG AND Z.-H. TENG

PROPOSITION 2.3. Let the functions uo, f, and g be subject to the conditions
stated in Theorem 1.1. Then the splitting solution UA defined in (2.7) satisfies the
following properties:

where 0 <_ T1,72

__
T, and C1 is defined in Proposition 2.2.

PROPOSITION 2.4. Let the functions to, f g and the operators G1, G2 be subject
to the conditions stated in Theorem 1.2. Then the fully discrete solution u5 defined in
(2.8) satisfies the following properties:

(2.13) Ilus(., t)IIL(R <_ eLTIIuOIIL(R),
(2.14) lU6(.,t)]BV(R) _< eLTIuoIBV(R),

(2.16)

for all t, -1, -2 E [0, T], where C2 (2p + 1)L, with 2p + 1 the number of difference
grid points and L the Lipschitz constant of f.

3. A general error bound. Throughout this paper, C denotes a positive con-
stant independent of e, At, and Ax, but possibly with different values at differ-
ent places. Moreover, in the subsequent sections, u and q denote u(x, T) and
q(x’, -’), respectively, and u, q, and w should be understood as u(x, T), q(x, ’), and
w(x, x’, , ’) &(x x’, T T’), respectively. We first introduce a nonnegative func-
tion 0 E C satisfying 0() 0(-),0() 0 for I1 >- 1, sign()0’() <_ 0, and

fR O()d 1. For e > 0, let

(x, t) o"(t)o(x), O(t
l
o(t/e) Oe (x) _l o(x/e).

It can be shown that 0 e C(R), cO e C(R2), and

(3.1) 0()= 0 if I1 >- e; I[0IILI(R) 1;

(3.2) cO(x,t)--0 if Ixl >_e or Itl_>e;

20(0);
20(0).Ilall,(-) IIxllr,(-)=

Assume functions p, q e L (R [0, T]) satisfying

(3.3)
(3.4)

lip(" + h, .) p(., I)IIL’(R) --< Amax {Ihl, I. 1},
IIq(" + h, r2) q(., T1)IILI(R) _< B max {Ihl, Iru rl},

for any h R and -2, E [0, T], where A and B are positive constants independent
of h, - and T2. For a given t (0, T], let S R x [0, t], ds dxdT and ds’ dx’d".
For p, q L(R x [0, T]) satisfying (3.3) and (3.4), we define the functional A as
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ERROR BOUNDS FOR FRACTIONAL STEP METHODS 115

follows:

A(p, q,t) fs /s (IP- q’lw + sign(p-q’)(f(p)-f(q’))wx)dsds’
+ {[p q’]w} dxds’,

T--’0

where S R x [0, t], p p(x, -), q’ q(x’, ’), and w w(x, x’, ’, T’) C(x x’, "T’). Our global error bound result, Lemma 3.1, is based on Kuznetsov’s lemma [11],
which states that if p, q e L (R [0, T]) satisfy (3.3) and (3.4), respectively, then for
any t E [e, T],

(3.6) lip(, t) q(., t)
_< lip(., O)- q(., O)IIL (p,. + A(p,q,t)+ A(q,p,t)+ (A + B)e.

Propositions 2.2-2.4 indicate that u, u/x, and u5 belong to L(R [0, T]) fq LI(R
[0, T]) and satisfy (3.3) and (3.4).

LEMMA 3.1. Assume function q e L(R [0, T])rq LI(R [0, T]) satisfying the
condition (3.4). Let u0, f, and g be subject to the conditions stated in Theorem 1.1.
Moreover, if u, the entropy solution of (1.1)-(1.2), and q satisfy the condition

(3.7) A(q, u, tn) _< -2 sign(u q’)g(q’)wdsdx’d7’ 4-
m--O J tm4-1/2

with ,), ,),(, At, 5) > 0, where S R [0, tn], then the following result holds:

(3.8)

_< Ilu(’, 0) N(’, 0)IILI(R)+C e+’),+At+--

Remark. An alternative definition of the functional A is

(3.9) A(p, q, t) =_ A(p, q, t) sign(p q’)g(p)wdsds’,

which incorporates the inhomogeneous term into A (see [23], [24]). By the entropy
condition (2.2) we have (u, q, tn) <_ 0 for any q e L(R [0, T]). The Kuznetsov’s
lemma can also be generalized for/ with no problem. However, if we use the fact
/(u, q, tn) _< 0 and try to bound/(q, u, tn), then the global error estimate cannot be
obtained. For example, in the case q u/x, the splitting method yields (cf. (4.6))

CAt

It’+
{sign(uA (x, r) U’)g(UA (X, r))

rn--0

r--T--At/2
dTdxds’ 4-

CAt
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116 T. TANG AND Z.-H. TENG

Since the function sign(.) is discontinuous, it seems impossible to obtain an o(At) error
bound from the last integral term. To avoid the discontinuity of the sign function, we
replace the integral term in (3.9) by the integral term in (3.7). We aso estimate both
A(u, q, tn) and A(q, u, tn) so that the resulting inequality does not involve subtraction
of two sign functions (el. (3.1)).

In order to obtain Lemma 3.1, we need to use the following inequality; we defer
its proof to the Appendix and simply give the result here:

(3.10) A(u,q, tn)

< 2 .t.+, sign(u q’)g(u)wdsdx’dT’ + C At +
m--0 Jtm+l/2

Note that g satisfies a Lipschitz condition. From (3.6), (3.7), and (3.10), we have, for
all t [e, T],

(3.11)

Using the properties of co, we can easily show that

(3.12) is lu(x’m)- q(x"m’)iwdxds’<-Ilu(’, )- q(’, )llc’(m + C.

From (3.11) and (3.12), we obtain that for all tn E [e,T]

Ilu(., tn) q(’, t)llLl(tl) <_ C I1(’, ) q(’, ’)ll,(mdr

(3.13) +11(’, 0) q(., 0)llg(m + C + + At +

In the case t, e [0, e], we obtain from (2.6) and (3.4) that Ilu(’, t)- q(., t)llL,(m _<
IIu(., 0) q(., 0)[ILI(R + Ce. This, together with the Gronwall-type inequality (a.3),
yields (3.8). Therefore, we have proved Lemma 3.1.

4. Proof of Theorem 1.1. We begin by estimating A(UA, u, tn), where uzx is
defined by (2.7) and u is the unique entropy solution of (1.1)-(1.2).
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ERROR BOUNDS FOR FRACTIONAL STEP METHODS 117

(4.1)

(4.2)

Proof. Given (x, r) belonging to C(RR+) and k e R. Let (x, r) (x, r/2)
and

(m) (r) 21 (r)(S. (At)S (At))muo, um) (P) S2 ()Sl (At)(S(At)S (At))uo,

where 0 r At. Using the change of variable r 2(7- t) and using the definition
of UA, we have

(4.3) -I, ft+/, (lu ki+, + 2sign(,- k)(f(u)

i, jar (,,) ki+) + sign(u)- k)(f(u))

":’-+’ .x.

were ()(, r) (,t + r), na were te scona ste follows from tke entron
conaition for ), since ) is tke (unique) entro solution of (1.). B settinf

(’, ’), (, ) (, ’, , ’) in (4.) nd intefrtinf tke resultinf ineulit
with respect to m and m, we obtain (4.1). Next, using the change of vriable
2(m- tm+ll) nd using the intefrtion b 7rts, we obtain

(4.4) (1 kl. + 2sign(
Jtm+l/2

we.. (+,I.) (., .) (-, t..+l +.). Si.ce .’)(.) s.tises (1.4) fo.. [0, t], it
follows that the last term of (4.4) is 0. Then (4.2) is obtained.

Remark. Lemma 4.1 characterizes the main property of the time-splitting method.
In the time interval [tm, tm+il) we used the entropy condition for the solution opera-
tot Si, while in [tm+il, tm+i) we noticed that S is an ordinary differential equation
(ODE) solution operator.
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118 T. TANG AND Z.-H. TENG

As in the proof for (A.2), the following inequality can be established:

(4.5)

Adding the inequalities (4.1), (4.2), and (4.5) yields

(4.6) A(u/x, u, tn) <_ 2 sign(ux- u’)g(u)wdTdxds’ +
m=O dtm+l/2

CAt

By changing notations, - - T’, X - X’, and noting that w(x, x’, T, 7’) W(X’, x, ’, ),
we get

A(ltA, it, tn) --2 sign(u uA)g(u)wdsdx’dT’ +
m-’O d trn+l/2

CAt

Noting that u/x (., 0) u(., 0), Lemma 3.1 gives

(4.7)

Hence, setting c v/At in (4.7) yields Theorem 1.1.

5. Proof of Theorem 1.2. We now estimate A(us, U, tn), where u5 is defined
by (2.8) and u is the entropy solution of (1.1)-(1.2).

LEMMA 5.1.

Proof. We shall use the following notations:

Tt+vTM v"+112 vTM Tx+vj Vj+
F(v(x, t), w) sign(v(x, t) w)(f(v(x, t)) f(w)).

It can be verified that the left-hand side of (5.1) is equal to 113 -t- I14 + I15 -- I16, where

i13 :--
m=0 d tm

lug{x, tin+I u’lwrdTdxds’

JsfP r=t’+/2
dxds"

I14 :--
m--0 J tm

2F(us(x, tm), u’)wxdTdxds’,
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ERROR BOUNDS FOR FRACTIONAL STEP METHODS 119

Using (2.16) and the following facts (cf. the proof for (A.2)),

lu6(x, t,+il.) VI I(x,’,-)  ’ll I(x, t,+ll.) u(x,

IF(ue(x, tm), u’) F(ue(x, T), U’)l < Clue(x, t.) ue(x, T) l,

we can show that Ils <_ C6/e and I6 <_ Ce/e. Also, we can show that

Using the Mean Value theorem, we have

(.2)

where x E (Xj_l/2,Xj+l/2). Similarly, for 114 we have

/S ftm+l/2
m=0 Jtm

y 2F(6(x, t,,), ’)((x+,l,., x’, , ’)
J

--a)(Xj_ll2, X’, T, m’))dmds’

is ftm+l/2E2Tx+F(u?,u’1
m=O j J tm

Od(Xj_F1/2,X, T, T’)dmds’

SET+F(u? u’)Atw(xj+ll2, x’, tm,* T’)ds’,
m-O j

where t (tin, tin+l Using the following results,

n-1

’ Ilu(., tm+ll2) uS(’, t,)llL,() <_ C,
m--0

Ilue(" + Ax, tin) ue(., tn)ll’(l) < C,
m--O

X; T X; C5
IW(Xl T o(xe, , T’)lds’ <_
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120 T. TANG AND Z.-H. TENG

we obtain from (5.2) and (5.3)that
(5.4) I +

m=0 j

Since u+/2 G(At)u with G a monotone scheme, there exists a Lipschitz
continuous numerical entropy flux [5] satisfying

(.) p(v,..., v) (, ’), xT?I? ’1 + tT:P(?_,, _) O.

The first part of (5.5), together with (5.4), yields

I13 + I4
n-1

m=0

+-1) (z, ,t, )as’
m=0 j

The inequality in (g.5) indicates that the first term of the right-hand side of the above
inequality is nonpositive. Also, since F satisfies a Lischit condition, the second term
of the right-hand side of the above inequality can be bounded by

m=0 j

Therefore, we have proved that Ia + I14 C/e. This completes the proof of Lemma
5.1.

LEMMA 5.2.

m=0

m=0 =tm+/2

Proof. Using the integration by parts and the definition of u5, we obtain

_[t.+, (lu6_u,]o_+2sign(u,_u,)g(ub)w)dT
d;m+l/2

=tm+/2

/t+l (6(X, m+l)- 6(X, m+1/2) 9(u))wdT+ 2sign(u, u’)
Jtm+l/2 t

T=$m+l/2

+ 2sign(ue u’) (g(u(x, tm+/2)) g(ue(x, )))wdv.
Jtm+/
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ERROR BOUNDS FOR FRACTIONAL STEP METHODS 121

Observe that

m--O Jtm+l[

2L/iJtm+l/2rrt--O

2sign(us u’) (g(us(x, tin+l/2)) g(us(x, T)))wddxds’
Its(x, tm+i/2) us(x, 7)ldTdx <_ CAt <_ CS.

Using the above two results we obtain (5.6). [

Similar to the proof for (A.2) the following inequality can be obtained:

jtm_}_l/2m--O

n--1

/S/Ftftm++
m--O J tm

sign(u5 u’)(f(us) f(u’))wxdTdxds’

1/2

sign(us u’)(f(u) f(u’))wddxds’

_
CS/.

Adding the inequalities (5.1), (5.6), and (5.7) gives

m--O J tin+l/2
sign(u5 u’)g(us)wdTdxds’ +

C5

(5.8) -2 sign(u- u)g(u)wdsdx’dr’ + + CS.
m-O atm+l/2

Note that Ilus(., 0)- u(., 0)IILI(R _< C5. Then Theorem 1.2 can be obtained from
Lemma 3.1 by setting q u5 and e v/.

6. Extensions. In this section we describe some extensions of the error bound
results given in 1. For simplicity, the proofs are omitted since they are for the most
part analogous to the ones given before.

6.1. Conditions for the initial data and the source term. In this sub-
section, we discuss the conditions for u0 and g. Unlike the homogeneous case [4],
[22], u0 E L(R) is required when the nonhomogeneous term is given. This condi-
tion is used to ensure the continuity in time, i.e., the estimates (2.6), (2.12), and
(2.16). These properties are very important in obtaining Theorems 1.1 and 1.2, at
least under the general framework used in the present work. Without the assumption
u0 E LI(R), none of the estimates (2.6), (2.12), and (2.16) holds. To see this, we
consider the case when f =_ O, g(u) u, and u0 1. In this case, the exact solution
is u(x,t) et. Therefore, for any -2 -, we have Ilu(.,-2)- U(’,T1)IIL(R) --CX),
IlUA(’, T2)--UA(’, )IIL(R) +C, and Ilus(., T2)- us(., )IIL(R) +oc. Also, with-
out the assumption u0 LI(R), the error estimates in Theorems 1.1 and 1.2 cannot
be obtained. Consider the same example (i.e., f 0, g(u) u, and u0 =- 1), we have
for any [a, b] c R,

(6.1) lit(., At) us(’,/kt)l[L([a,b]) (b a) (eAt 1 At).
If b a -- c, then the right-hand side of (6.1) goes to infinity, no matter how small
At is. Therefore, the error I[u(.,t)- u(’,t)[[Ll(t) cannot be bounded without the
assumption u0 LI(R).
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122 T. TANG AND Z.-H. TENd

In most practical problems, g(0) 0 is satisfied (see, e.g., [2], [17]). This condition
is also assumed in [1]. Again, without this requirement, the estimates (2.6), (2.12),
and (2.16) do not hold. This can be seen by considering the case when f 0, g(u)
1 + u and u0 0. In this case, the exact solution is u(x, t) e 1, and therefore
lit(., At) u5(., At)IILI(R) is unbounded.

For the nonhomogeneous problem (1.1)-(1.2), one of the basic problems is the
so-called Riemann problem. In this case,

(6.2) to(x) { ur if x >

where a, ut,u R are constants. Hence, for the Riemann problem, uo L(R),
but it is easy to see that uo
Ltoc(R), we give the following results; their proofs are similar to the proofs of Theo-
rems 1.1 and 1.2.

THEOREM 6.1. Let uo BV(R)aL(R), f CI(R) and assume that g satisfies
a Lipschitz condition and g(O) O. Let S(t)uo denote the unique weak solution of
(1.1)-(1.2) satisfying the entropy condition. Then for all [a, b] C R with a, b finite,

(6.a) max S(tn)o S(t)Sl(t) o
([a,bl)t=nt[O,Tl

where c maxlloll( I’()l ad C is a constant idependent 4 a,b, and
t.
TOaM 6.2. et o BV(N)(N), f C(N), ad assume that 9 satisfies

a ipschitz coditio and 9(0) O. Assume the fieite difference scheme (1.7)-(1.8) to
be monotone and consistent with (1.a), the merical flz f to be ipschitz continuous,
and G to be the forward Eler operator. Then for an [a, b] with a, b fiite,

(6.4) max
tn =nAt[O,T]

C(1 +
where c maxllrllollL(R ]if(u)], 5 max{Ax, At}, and C is a constant inde-
pendent of a, b, and .

6.2. Multi-dimensional case. The results in the present work can be easily
extended to the multi-dimensional nonhomogeneous conservation laws

+
v(, 0)= v0(), for RN,

where g (z,... ,XN) RN, e CI(R), v0 L(RN) BV(R) L(R), G
satisfies a Lipschitz condition in v uniformly with respect to , and in uniformly
with respect to v; G(0, ) 0. It can be shown that then there is a unique function

v(, t), clled the entropy solution of (6.5), which satisfies v

L(R), v(.,0) v0, and the entropy condition" for each e C(R (0, T)),
0, andkR

T N

fR (]v-k[t+sign(v-k)(f(v)- fi(k))Cx+sign(v-k)G(v,))dgdtO.
N

i=l

D
ow

nl
oa

de
d 

02
/1

3/
21

 to
 1

24
.1

6.
14

8.
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



ERROR BOUNDS FOR FRACTIONAL STEP METHODS 123

Denote the entropy solution of (6.5) by S[I-’al(t)vo with f "= (fl,..., fN) E RN.
That is, SV-’a](t)vo v(z_, t), where v is the entropy solution of (6.5). Set S(f’) (t)
S[(0 0,f,o 0),o1 (t). That is, S(f’) is the solution operator of the following equation:

Ov off(v) o,
Ot (x XN, t) +

where (xl,..., Xi-1, Xi+l,..., XN) RN-1 is regarded as parameters. Also, we define
S(’a) (t) as the solution operator of the following equation:

(z, t) t)Ot

Further, we define {h(i)}/N=l such that h(i) h(j) if - j and h(i) e {fl,..., fN}.
Using the techniques developed in [22] and in this work, we can show that for nat

N

i=1

where C is a positive constant independent of At.

7. Conclusions. In this work, we have proved that the nonlinear semigroup
S(t), the exact solution operator of (1.1), can be approximated by (S2(At)SI(At))n,
as It- nat < At << 1, where $1 and $2 are the solution operators of (1.3) and
(1.4), respectively. In the homogeneous case, i.e., g =_ 0, setting p u, the exact
solution of (1.3), in (3.6) and using the entropy condition, we have A(u, q, t) <_ 0 for
all q L(R). Therefore, it is not necessary to estimate the term A(u, q, tn) in this
case. However, for nonhomogeneous conservation laws, this term plays an important
role in the error analysis and therefore a detail analysis for A(u, q, tn) is required.

In the homogeneous case, several authors provided convergence rates for various
difference schemes or splitting methods (see, e.g., [11], [14], [15], [16], [19], [22], [24]).
Although their problems are different, the convergence rates obtained are half in most
of the cases. Therefore, the convergence rates obtained in this paper might be the best
possible. In particular, the convergence rate in Theorem 1.2 should be the optimal
one, since even in the homogeneous case the optimum rate for monotone schemes is

1/2 (see [21]). However, no numerical evidence has been found so far to confirm that
the convergence order in (1.10) of Theorem 1.1, or in the general case (6.6), is the
best possible (see also the numerical experiments in [22]). It remains to be seen if the
optimum convergence rates in these two cases are higher than 1/2.

A. Appendix. Again, for ease of notation, we denote u(x, T), p(x,
and q(x, r) by u,p, u, and q, respectively, in most of the integrands. Also, we
assume in this appendix that p,q e L(R x [0, T])NLI(R x [0, T]) satisfy (3.3) and
(3.4), respectively. In order to obtain (3.10), we first prove the following inequalities:

E IP q’ Iwdsdx’dr’
m=0

"j tm

(A.1) + Ip- q’lwdsdx’d <_
m--O d tm+l/2
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124 T. TANG AND Z.-H. TENG

m--0 "/tm

(A.2) + sign(p q’)(f(p) f(q’))wzdsdx’d" < C
At

m=0 Jtm+l/2

m--O dtm
"r--O

dxdxdT-

Proof of (A.1). By letting 7-’ 7-’-At/2 and 7- 7-- At/2, we rewrite the first
term of (A. 1) as

m:0 "tm+l/2 fR JAt/2 IR IN(x’ 7" At/2) q(xI, T’ At/2)lo.)TdxdTdxldTf,

where we have used the fact that W(X,X’,T- At/2, 7-’--At/2) w(x,x’, 7, ").
Therefore, the left-hand side of (A.1) can be written as I1 + I2 + I3, where

Since p,q e LI(R x [0, T]), we have

wldxdds’+Lfo/xt [q’llldxdds’ CAt/e.

Similarly, we can show that Ia has the same bound. Finally, noting that
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ERROR BOUNDS FOR FRACTIONAL STEP METHODS 125

and using (3.3) and (3.4), we obtain I2 _< CAt/e. []

Proof of (A.2). Since sign(p q’)(f (p) f(q’)) f(p V q’) f (p A q’), where
a V b max{a, b}, a A b min{a, b}, the left-hand side of (A.2) can be written as

I4 + I5 + I6, where

Let

mx Idf(u)ldul.M- ma{llPll(Io,ml),llqllaIo,ml)), M
li_<M

The term I4 can be bounded by

fAtl iaMllP- q’llwldzdrds’ CAtle.

Similarly, Ia CAt/e. The following simple observations are very useful:

laVb-cVdl laVb-cVbl+[cVb-cVdl la-cl+lb-dl,
la A b c A d[ la A b c A bl + ]c A b c A dl la cl + lb dl,

which lead to

s M (IP p(x, At/2)l

+1( (x’, ’ A/2)I)Ixldds’.
y (3.3) nd (3.4) e obtain that S CAI. This completes the proof of (A.2). m

Proof of (A.3). The left-hand siae of (A.3) is euivient to S + Is + S + Io,
wh

s (Ip(z,) q(x’, ’ At/)l
m:0

-I(x, t) (x’, ’)1 (x, x’, t, )dxdx d

-I(z, o) q(’, r’ At/2)l (z, x’, 0, r )dxd d,
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126 T. TANG AND Z.-H. TENG

Similar to the proofs of (A.1) and (A.2) we can show that I7 <_ CAt, Is <_ CAt, I9 <_
CAt/e, Ilo <_ CAt/e. []

We now turn to the proof of (3.10). Setting p u in (A.1), (A.2), and (A.3) and
adding the resulting inequalities yields

A(u,q, tn)

<_ -2
Jt.+

lu q’lw + sign(u q’)(f(u) f(q’))wz dsdx’d"
m=0 /2

n--1 tm+l
lu-q’lw(1.4) +2 E

J t.+l/. .:0
m:0

(dxdx d7 + C At +

Since u is the entropy solution of (1.1)-(1.2), it satisfies the entropy condition (2.2).
By letting k q(x’, T’), (X, T) w(x, X’, ’, T’), -1 0, and T2 tn in (2.2), we obtain

fs (lu- q’lw-+sign(u-q’)(f(u)-f(q’))wx)ds
+ {l-q’lw},_=o dz<_ sign( q’)9()wds- [t.+/., t.+]Integrating the above inequality with respect to x in R and T in tm=o

respectively, and using (A.4), we obtain (3.10). []

REFERENCES

[1] A. CHALABI, Stable upwind schemes for hyperbolic conservation laws with source terms, IMA
J. Numer. Anal., 12 (1992), pp. 217-241.

[2] R. COURANT AND K. O. FRIEDRICHS, Supersonic Flow and Shock Waves, Interscience, New
York, 1948.

[3] P. COLELLA, A. MAJDA, AND V. ROYTBURD, Theoretical and numerical structure for reacting
shock waves, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 1059-1080.

[4] M. CRANDALL AND A. MAJDA, The method of fractional steps for conservation laws, Numer.
Math., 34 (1980), pp. 285-314.

[5] , Monotone difference approximations to scalar conservation laws, Math. Comp.,
34 (1980), pp. 1-21.

[6] S. K. GODUNOV, Finite difference methods for numerical computations of discontinuous so-
lutions of the equations of fluid dynamics, Math. USSR-Sb., 47 (1959), pp. 271-295 (in
Russian).

[7] P. GORA AND A. BOYARSKY, On functions of bounded variation in high dimensions, Amer.
Math. Monthly, 99 (1992), pp. 159-160.

[8] D. F. (]RIFFITHS, A. M. STUART, AND H. C. YEE, Numerical wave propagation in an advection
equation with a nonlinear source term, SIAM J. Numer. Anal., 29 (1992), pp. 1244-1260.

[9] A. HARTEN, J. M. HYMAN, AND P. D. LAX, On finite difference approximations and entropy
conditions for shocks, Comm. Pure Appl. Math., 29 (1976), pp. 297-322.

D
ow

nl
oa

de
d 

02
/1

3/
21

 to
 1

24
.1

6.
14

8.
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



ERROR BOUNDS FOR FRACTIONAL STEP METHODS 127

[10] S. N. KRUZKOV, First order quasi-linear equation in several independent variables, Math.
USSR-Sb., 10 (1970), pp. 217-243.

[11] N. N. KUZNETSOV, Accuracy of some approximate methods for computing the weak solutions

of a first-order quasi-linear equation, USSR Comput. Math. and Math. Phys., 16 (1976),
pp. 105-119.

[12] R. J. LEVEQUE AND H. C. YEE, A study of numerical methods for hyperbolic conservation laws
with stiff source terms, J. Comput. Phys., 86 (1990), pp. 187-210.

[13] T. P. LIu, Quasilinear hyperbolic systems, Comm. Math. Phys., 68 (1979), pp. 141-172.
[14] B. J. LUCIER, Error bounds for the methods of Glimm, Godunov and LeVeque, SIAM J. Numer.

Anal., 22 (1985), pp. 1074-1081.
[15] H. NESSYAHU AND E. TADMOR, The convergence rate of approximate solutions for nonlinear

conservation laws, SIAM J. Numer. Anal., 29 (1992), pp. 1505-1519.
[16] R. SANDERS, On convergence of monotone finite difference schemes with variable spatial dif-

ferencing, Math. Comp., 40 (1983), pp. 91-106.
[17] G. A. SOD, A numerical study of a converging shock, J. Fluid Mech., 83 (1977), pp. 785-794.
[18] G. STRANG, On the construction and comparison of difference schemes, SIAM J. Numer. Anal.,

5 (1968), pp. 506-517.
[19] E. TADMOR, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations,

SIAM J. Numer. Anal., 28 (1991), pp. 891-906.
[20] T. TANa AND Z. H. TENG, Error bounds for fractional step methods for conservation laws with

source terms, Research Report 92-16, Department of Mathematics and Statistics, Simon
Fraser University, British Columbia, Canada, 1992.

[21] , The sharpness of Kuznetsov’s O(x/-) L-error estimate for monotone difference
schemes, Math. Comp., to appear.

[22] Z. H. TENG, On the accuracy of fractional step methods for conservation laws in two dimen-
sions, SIAM J. Numer. Anal., 31 (1994), pp. 43-63.

[23] A. TVEITO AND R. WINTHER, Existence, uniqueness and continuous dependence for a system of
hyperbolic conservation laws modeling polymer flooding, SIAM J. Math. Anal., 22 (1991),
pp. 905-933.

[24] An error estimate for a finite difference scheme approximating a hyperbolic system of
conservation laws, SIAM J. Numer. Anal., 30 (1993), pp. 401-424.

[25] L. A. YNa AND C. H. WANa, Global solutions of the Cauchy problem for a nonhomogeneous
quasilinear hyperbolic system, Comm. Pure Appl. Math., 33 (1980), pp. 579-597.

D
ow

nl
oa

de
d 

02
/1

3/
21

 to
 1

24
.1

6.
14

8.
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s


