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Numerical solutions have been obtained for steady uniform flow past a rotating

circular cylinder. Results are presented for Reynolds numbers, based on the diameter

of the cylinder, 5 and 20 and the rotational parameters, � , in the range of
��� � ��� .

To avoid the difficulties in satisfying the boundary conditions at large distances from

the cylinder a new numerical technique is introduced. Further, series expansion

solutions are obtained which are valid at small values of � , but the results are found

to be applicable over a wide range of values of � . The calculated values of the drag

and lift coefficients and the general nature of the streamline patterns are in good

agreement with the most recent time-dependent calculations performed by Badr and

Dennis. c
�

1990 Academic Press, Inc.

1. INTRODUCTION

Fluid flow past a circular cylinder which is in steady motion, or has been started
from rest, in a viscous fluid has long been of interest both experimentally and the-
oretically (see, e.g., [1-8]). In the present work we shall consider the asymmetrical
flow of a viscous fluid which is generated by rotating a circular cylinder in a uni-
form stream of fluid. There are two basic parameters in the problem, namley, the
Reynolds number, defined as �	��
��������� where � is the coefficient of kinematic
viscosity of the fluid, � the unperturbated main stream speed (in the positive � di-
rection), � the radius of the cylinder, and the rotational parameter ��
���������� ,
which is a dimensionless measure of the speed of rotation, where ��� is the angular
velocity of the rotating cylinder. When �
! the motion is symmetrical about
the direction of translation and this situation has previously received a consider-
able amount of attention, e.g., Dennis and Chang [9] and Fornberg [6, 7] who
both provide a comprehensive list of references. The problem of the flow past a
rotating cylinder is of fundamental interest for several reasons, e.g., in boundary
layer control on aerofoils [10] and the lift force experienced by the cylinder is an
example of the Magnus effect and this has been used for lift enhancement [11].
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Although there are numerous computations in existence of two-dimensional
symmetrical flows, both steady and unsteady, about various shapes of cylinders
in an unbounded fluid, very little theoretical and numerical work has been re-
ported on either the steady or unsteady flow past a rotating circular cylinder. The
earliest numerical solutions of the Navier-Stokes equations at non-zero values of
� were given by Thoman and Szewczyk [12]. They obtained numerical results for
Reynolds numbers

��� �	� ���  �� and rotational parameters  � � ���
and they

compared their results with the experimental results of Swanson [13] and Prandtl
and Tietjens [14]. Lyul’ka [15] studied the problem for Reynolds numbers, � � =0,
2, 10, 15, 20, and the values of the rotational parameter in the range of  � � �	�

.
The problem was formulated in terms of the stream function 
 and the vorticity
� and the time dependent form of the governing equations were solved until the
steady-state solution was obtained. Badr and Dennis [16] examined the boundary
layer growth over the cylinder surface and the formation of the non-symmetrical
wake at the rear of the cylinder by considering the time-dependent viscous flow
past a rotating circular cylinder. In their numerical method the stream function 

and vorticity � were expressed in terms of a complete Fourier series with coef-
ficients depending on space and time and the variations with time of �� and ���
were obtained.

There has only been a few numerical calculations performed for the case of
steady flow past a rotating circular cylinder by employing the steady-state Navier-
Stokes equations. Ta Phuoc Loc [17] obtained results for �	� 
 �

and 20 by
solving the Navier-Stokes equations numerically within a finite region surround-
ing the cylinder subject to a boundary condition on the perimeter of the domain
which he states is consistent with the external flow. However, it is found that even
in the symmetrical flow situation his results for the drag coefficient are substan-
tially higher than the recent, and most accurate, results obtained by Fornberg [6,
7]. This may be due to the use of a computational region which is too small and
the form of the approximation of his outer boundary condition. Ingham [18] re-
considered the numerical solution for the same parameters as investigated by Ta
Phuoc Loc using several “possible” boundary conditions at a finite but sufficiently
large distance from the cylinder. The calculated stream patterns were similar to
those of Ta Phuoc Loc but there were considerable discrepancies in the lift and
drag coefficients between the results. Moreover, Ingham’s lift coefficients �� vary
considerably with the form of external boundary condition assumed, particularly
for � 
  �� � . This effect is also present in the drag coefficient �� albeit to a lesser
effect. It should be pointed out here that the sign of equation (17) of Ingham’s
paper (p. 354) is in error and this should read, ����� 
�� � ��� ���������� � ���"!$#&%('*)�+-,/.(, .
Thus the results presented by Ingham will be inaccurate and all of the signs for
his values of ����� are corrected in this paper.

Although there is some agreement amongst these numerical results, they are not
entirely consistent in their conclusions. For example, the investigators of [15-18]
predict that ��� is in direct proportion with � for � � 
��� and small values of
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� but the constants of proportionality show considerable discrepancies. Also at
this Reynolds number the numerical results of [15, 18] suggest that � � increases
as � increases but this was disputed by [16, 17]. Since there exists a substantial
difference in many properties in the published results and the reasons for this
have not been fully understood, even for small values of � , the problem requires
considerable further attention.

Analytically, Glauert [19, 20] considered the steady flow for high � � and both
large and small values of � on the basis of boundary-layer theory and was able to
correlate the circulation round a countour at the edge of the boundary-layer with
� . Wood [21] and Moore [3] obtained results generally consistent with those of
Glauert from their steady-state theoretical work. It was shown by Moore [3] that
the effect of the uniform stream can be regarded as a small perturbation of the
rotational flow due to the cylinder, and that a uniformly valid first approximation
to the flow fluid can be obtained in this way. Moreover, a uniformly valid second
approximation to the velocity distribution was found when �	� ��� ��� . In all of
the investigations it was possible to determine the lift on the cylinder, which was
found to increase with � and this is agreement with all the published numerical
results.

In obtaining numerical solutions for the problem under investigation here dif-
ficulties arise in the determination of the boundary conditions at large distances.
This problem has been discussed in detail by several authors (see, e.g., [6, 18,
22]). Even in the symmetrical flow situation Fornberg [6] realised the importance
of using the most appropriate form of the boundary condition to be applied at large
distances from the circular cylinder. Dennis [22] investigated the steady asymmet-
rical flow past an elliptical cylinder using the method of series truncation to solve
the Navier-Stokes equations with the Oseen approximation throughout the flow.
He found that by considering the asymptotic nature of the decay of vorticity at
large distances that for asymmetrical flows it is not sufficient merely that the vor-
ticity shall vanish far from the cylinder but it must decay rapidly enough. This
problem does not arise in the case of symmetrical flows because the leading term
in the asymptotic expansion for the vorticity is identically zero. It is clear that
in the case of asymmetrical flows it is more difficult to obtain the most appropri-
ate form of the boundary condition which is to be applied at large distances from
the cylinder. Ingham [18] investigated the problem of fluid flow past a rotating
circular cylinder using three ”possible” boundary conditions and the central dif-
ference approximation throughout. The boundary condition which was refered to
as problem I is consistent with the work of Fornberg [6] who obtained accurate
numerical results in the symmetrical flow. His problem II corresponds to the work
of Ta Phuoc Loc [17] and there are many discrepancies between the results of the
problems I and II. It is therefore found that although several methods for approx-
imating boundary conditions for steady flow past a rotating cylinder have been
proposed, it is not clear which of these approaches is the most appropriate one,
especially in view of the results for � � and � � obtained.
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To avoid the difficulties in satisfying the boundary conditions at large distances
from the cylinder a new numerical technique is introduced in this paper. In order
to avoid numerical errors introduced by approximating the location of the outer
boundary condition exact boundary conditions at infinity are obtained and used
in the calculations whereas in most of the previous numerical work the boundary
conditions have been applied at a specific station. The numerical results indicate
that the lift coefficient ��� is directly proportional to � for small values of � and
therefore a series expansion with respect to � is considered.

2. BASIC EQUATIONS AND THE BOUNDARY CONDITIONS

The origin is fixed at the centre of the cylinder and the positive � -axis is in the
same direction as that of translation. The steady flow of an incompressible fluid in
a fixed two-dimensional Cartesian form can be described by the non-dimensional
equations,

� ����� � �� � ����� �
� �
�	�

	 � � 
  
� (2.1)

	 � � 
 � ��� (2.2)

where � is the scalar vorticity and � is the stream function. It is required to solve
Eqs. (2.1) and (2.2) subject to the boundary conditions

� 
  
�
� ��� 
�� ��� on

 
 � �� � ,�� ����� (2.3)

� ����� +���� ,��
�

� �� , � ' )�+-,�� as

 � � �  � ,�� � ��� (2.4)

where �  � ,�� are the polar coordinates which are chosen such that , 
  coin-
cides with the positive � -axis. For the convenience of numerical computation, we
introduce the perturbation stream function 
���
 
��!�"�

Filon [23] showed that the asmptotic form for the stream function at large dis-
tances from the cylinder and outside the wake region is


"# � �%$�� 
� �

� ���
� � � ,&�'� �(� �)# 
�  � � �  � ,�� ���/� (2.5)

Since the stream function and vorticity equations are both elliptical in nature
we should supply one condition for each of the variables at infinity rather that use
directly conditions (2.3) and (2.4). It was found that the choice of the boundary
condition for the vorticity � is not as sensitive as that for the stream function

 (see, [6, 7, and 18]). Hence many authors have paid particular attention to
boundary conditions for 
 at large distances from the cylinder. The question of
the most appropriate boundary condition for 
 is very involved. Actual physical
information has to be supplied through the outer boundary and it will propagate
immediately to the interior. The use of a large distance

 
  *
, at which the outer
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boundary condition is enforced together with inappropriate boundary values does
not give reasonable accuracy, even in the case of ��
  and small values of �	� .
Usually authors have used one of four possible boundary conditions for 
 , namely

(a) The Oseen approximation. Dennis [22] investigated the steady asymmetrical
flow past an elliptical cylinder by solving the Navier-Stokes equations with this
method. However, even in the symmetrical flow situation Fornberg [6] showed
that this boundary condition can be expected to be accurate at most at very small
values of the Reynolds number. He plotted 
 and � as a function of

 *
and

displayed the maximum vorticity on the body surface also as a function of
 *

.
The results indicated quite significant errors even for Reynolds numbers as small
as 2.

(b) Ta’s method. When solving the problem as investigated in this paper Ta
Phuoc Loc used the boundary condition


�
 � +�����, * � � $�� �  * �(� at
 
  * �  � , � ���/� (2.6)

This expression being the sum of the potential solution for the uniform flow past
the circular cylinder with no rotation and the viscous solution for the rotation
of the circular cylinder with no uniform flow. There appears to be no rigorous
mathematical justification of condition (2.6) and hence the numerical results with
this boundary condition cannot be expected to be accurate. In fact, it was seen that
even in the symmetrical flow situation Ta’s result for �� are about 10% too high.

(c) First term approximation. In the symmetrical situation it is known that out-
side the wake region that the value of 
 for large values of


will tend to a linear

function in , and that 
 satisfies a Laplace’s equation in


and , . The use of
the free stream, i.e., imposing 

  at some finite values

 *
, is very crude and

simple. Nevertheless, this has been used in many previous studies even when
 *

has been taken relatively small (see, e.g., [24-31]). However, Fornberg [6] con-
cluded from his calculations that very large errors are introduced by using this
approximation. In the case of asymmetrical flow, Ingham [18] used this condition
in order to study the accuracy and came to a similar conclusion as that reached
by Fornberg. In particular, the results of � � given by this method appeared very
inaccurate.

(d) Normal derivative constant. If we use an exponential scaling in the radial
direction, i.e.,

 
 � ! , from (2.5) we have, outside the wake region,


 # � � �

� �
� ���
� � � , � � �(�  � ,�� � ��� � � � � (2.7)

which yields that
� 
� � # � �

� � �  � ,�� � ��� � � � � (2.8)
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In the symmetrical flow situation, we have � �
  and Fornberg investigated
the condition of “normal derivative zero,” i.e.,

�� 
�� � � 
  . This condition is
easy to supply (for instance, it requires no evaluation of �� which is required for
the Oseen approximation). Fornberg showed that on implementing this condition
he could obtain accurate solutions for Reynolds numbers up to about 40. Thus,
Ingham employed the “normal derivative constant” approximation, i.e.,

�� 
�� � � 

� ��� � � . This method uses more terms in the asymptotic expansion for 
 at large
values of

�*
than those of (b) and (c), as discussed above, and one may expect

that the results obtained are more accurate. However, it remains to be seen if yet
more terms are required in order to obtain very accurate solutions.

(e) Exact boundary condition. Because of the importance of the choice in using
the most appropriate boundary condition for 
 at large distances from the cylinder
we now investigate a method which avoids making this decision. We note from
the asymptotic expression (2.5) that


��  �  as
 � � � (2.9)

Hence we introduce the transformations

� 
 � �  � � 
� , � ��� (2.10)

and � �  � ,�� 
 
 �  � ,�� � �� i.e.,
� � � ��� � 
 � 
 � � ��� � � (2.11)

Thus we have
���  on

� 
  (i.e.,
 
 � ) and this requires no approximation

for 
 on the outer boundary.

With transformation (2.10), the flow region � � �  � � �  � , � � � � is
transformed into a finite rectangular region of the � � �	� � plane �  � � � � �  �� � � � . Substituting from (2.10) and (2.11) in (2.1) and (2.2), we obtain

� �
� �
�

� � � � � �� � � �	� � � � �

�
� � �� � � � �

� �� � '*)�+ � �
� ����� � � �

�
� �� � +���� � �
��� ���

� �
� �

�
�� � � �� � �

� � � �
� �

� � �� � � � ��� � �� ��� 
  � (2.12)

� � � � �� � �
� � �

� �
� � �� � � � � �

� �
� �

� � � 
 � ��� (2.13)

with  � � � �
,  � � � � . The boundary conditions (2.3) and (2.4) become� 
�� + ��� � �
� �����(� � � � � � 
 ��� on

� 
 � �  � � � � � (2.14)� 
  
� � 
  � on
� 
  
�  � � � � � (2.15)
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and since the solution is periodic we also require that� � � � � � 
 � � � �  �(� � � � � � � 
 � � � �  �(�  � � � � � (2.16)

3. NUMERICAL METHOD

In order the obtain numerical solutions of Eqs. (2.12)-(2.16), the region of inte-
gration  � � � �

,  � � � � is covered by a square mesh of size
�

and central
finite difference approximations to the differential equations (2.12) and (2.13) are
employed. In practice, a mesh system is set up such that the mesh size in both
�

and � directions is
� 
 � ��� , where � is a predescribed positive integer. In

view of the periodic conditions (2.16), an extra line of computation � 
 � � �
for

 � � ���
is introduced. Then we have ��� � � ��� ��� � � � mesh points, where� 
 � � � �

. The mesh points � �	� �	�	
*� �  ��� � � �  �� � � ) are � � � �  � � . If
subscripts 0, 1, 2, 3, and 4 denote quantities at the grid points � � � �	��� � , � � � �	����� � � ,
� � � � � ����� � , � � � �	��� � � � , and � � � � � �	��� � , respectively, then Eqs. (2.12) and (2.13)
may be written in finite difference form, using central difference throughout, as� �

�
� �

� � � �� �
� �� � ���� � � 
 �

� � � ��
� % � � �

� �
�
� � � � �

�
� �

� � � ��
� �

� � �
� � �

� � � � � � � � �� � �� � � � (3.1)� �
�
� �

� � � ���� � � 
 � �
� � � �� � �&� � � ����� � � � % �

� �
�
��� � � � �	��� � � � �

� � �
� � � ��

� � � � � �	��� � � � � � � �
� � � � � � �	��� � � � � �

(3.2a)

with

� � � � �	��� � 
 � � � � � � � � � � �� � � � � � � � � � + ��� � �
��� ����� � � � � � ���� �(� (3.2b)� � � � �	��� � 
 � � � � � � � � �	��� � � � � � � � �� � � � � � '*)�+ � � ����� ��� � � � � � �� �(� (3.2c)

where ��� � � � � � are defined as� � 
 � �
� � � � � �	��� �(� � � 
��

� �
� ��� � � �	��� � � (3.3)

We now briefly outline how the boundary conditions (2.14)-(2.16) can be im-
plemented:

Boundary condition for �
On

� 
  
�  � � � ��� � 
  
�  �� ��� � � ��
 
  � (3.4)
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On
� 
� 
�  � � � � � � 
 � �  �  � � ; in this case we use (2.14) to obtain

the vorticity using the second-order accurate finite difference approximation

� � 
 
 � � � 
 � � ��� % 
 � � � � �
�
�
� � � �

�
� � � � ��� % 
 � � � � �� � � � � � � � (3.5)

On � 
 � � � �  � � � � �  � � � � �  
 � � � ��� 
 � � % � (3.6)

On � 
  
�  � � � � �  � � � � �  
  � � � ��
 � ��� � % � (3.7)

Boundary conditions for
�

On
� 
  
�  � � � ��� � 
  �  �� ��� � � ��
 
  � (3.8)

On
� 
 � �  � � � ��� � 
 � �  �� ��� � � � 
 
�� + ��� � �
�	
 � ��� � (3.9)

On � 
 � � � �  � � � � �  � � � � �  
 � � � ��� 
 � � % � (3.10)

On � 
  
�  � � � � �  � � � � �  
  � � � ��
 � ��� � % � (3.11)

The resulting finite-difference equation were solved iteratively as described by
Ingham [18].

If � and 	 are the lift and drag on the cylinder, the lift and drag coefficients are
defined by

� � 

� � ����� � ��� ��� 

	 � ���� � ��� (3.12)

and each consists of components due to the friction forces and the pressure. Hence

� � 
�� ��� � � ��� � ��� 
 ��� � � ����� � (3.13)

where

��� � 
 � �
� ��� ���

� � � �$!$#&% + ��� ,/.(, � � � � 
�� �
�	��� ���

� � � �$!$#&% '*)�+-,/.(, �
(3.14)

����� 
 �
�
��� ���
� �����$!$#&% '*)�+-,�.(, � � ��� 
 �

��� ���
� ��� �"!$#&% +�� � ,/.(, � (3.15)

where � is the nondimensional pressure on the cylinder. The non-dimensional ,
component of the Navier-Stokes equations on the cylinder reduces to

� �� , 
��
�

� �
� � �� � � !"#&% � (3.16)

The integrals in (3.14) are evaluated directly while those in (3.15) are evaluated
by integration by parts. Thus we obtain

����� 
�� �
� ��� ���

�
� � �� � � !$#&% +�� � ,/. ,�� � ��� 
 � �

� ��� ���
�

� � �� � � !"#&% '*)�+-,/.(,��
(3.17)
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Formulae (3.14) and (3.17) are calculated by means of a second-order accurate
finite-difference method and Simpson’s rule.

4. POWER SERIES SOLUTION FOR SMALL ROTATIONAL PARAMETER ( ����� )
To solve Eqs. (2.1) and (2.2) we assume expansions for 
 and � as powers of �

in the form


�
 
�� � � 
 % � � � 
 �
������� � (4.1)

� 
 � � � � � % � � � � �
������� � (4.2)

and using the transformation (2.11), we obtain� 
 � � � � � % � � � � � ������� � (4.3)

Substituting (4.2) and (4.3) in Eqs. (2.12) and (2.13) and equating coefficients of
successive powers of � , we obtain

� �
� �
�

	
 � # �
� � � 	 � � � � � �� � � �	� � � � �

�
	
 � # � � 	 � �

� � �� � � � �
� � 	� � ' )�+� � ����

� � �

�
� � 	� � +������ �
�� � � �

�	�
�

� � � � � 	� � �
� � � �

� �
� � � 	� � � � � � � � 	� � �	
  
� (4.4)

and

� � � � � 	� � �
� � �

� �
� � � 	� � � � � �

� � 	� �
� � � 	 
 � � 	 � (4.5)

with  � � � � �  � � � � � and � �  .
Using boundary conditions (2.14) and (2.15) the function

� 	 and � 	 must sat-
isfy � 	 
�� � +�� � � �
� ����� if � 
  

0 if ���
  �� on
� 
 � �  � � � � � (4.6a)

� � 	� � 
 � 1 if � 
 �
0 if ���
 � � on

� 
 � �  � � � � � (4.6b)

� 	 
  � on
� 
  
�  � � � � � (4.7a)

� 	 
  � on
� 
  
�  � � � � � (4.7b)

Substituting (4.2) into (3.14) and (3.17), we obtain

��� � 
	��� ���� � � � ��� %��� � � � � ��� � �� � ������� � � ��� 
���� ������ � � ��� %��� � � � � ��� � �� � ������� �
(4.8)

����� 
	��� ������ � � ��� %����� � � � ��� � ���� ������� � � ��� 
���� ������ � � ��� %����� � � � ��� � ���� ������� �
(4.9)
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where

��� 	 �� � 
�� �
� ��� ���

� � � 	 �"!$#&% +�� � ,/.(, � ��� 	 �� � 
 � �
� � � ���

� � � 	 �$!$#&%�' )�+-,/. ,��
(4.10)

� � 	 ���� 
�� �
� ��� ���

�

� � � 	� � � !$#&% + ����,�.(, � � � 	 ���� 
 � �
� � � ���

�

� � � 	� � � !$#&% '*)�+-,/.(, �
(4.11)

with � 
  
� � ��� � � � �
5. RESULTS

In order to compare the results obtained by the present numerical methods with
previously published results we concentrate on values of Reynolds number � ��
�

and 20 and the rotational parameter ��
  , 0.1, 0.2, 0.4, 0.5, 1,2, and 3 and
obtain solutions with mesh size

� 
 %% � � %% � � %
� � �

%� � , and %� � . All the final results
presented in this paper have been obtained using repeated

� � -extrapolation for
each value of � � and � .

Most previous investigators have suggested that ��� is directly proportional to �
for small values of � although a more detailed comparison of these results shows
considerable discrepancies regarding the multiplicative constant. An investigation
of Eqs. (4.4) and (4.5) subject to the boundary condition (4.6) and (4.7) gives

� � � ���� 
	� � � ���� 
	� � � �� �  
� for � an even positive integer (5.1a)

TABLE I

The Series Expansion Results

�����	�
�� �����	�
� �����	�
 ���������� ��������� �������� �������
�� �������
� �������


(i) 2.152 1.875 4.027 2.047 0.589 2.636
�

0.102 0.013
�

0.089
(ii) 2.129 1.860 3.989 1.881 0.434 2.315

�
0.010 0.033 0.023

(iii) 2.115 1.845 3.960 2.014 0.499 2.513
�

0.062 0.029
�

0.033
(iv) 2.109 1.843 3.952 2.091 0.527 2.618

�
0.090 0.028

�
0.062

(v) 2.107 1.843 3.950 2.132 0.535 2.667
�

0.096 0.028
�

0.068
(vi) 2.111 1.848 3.959 1.748 0.310 2.058 0.062 0.030 0.092
(vii) 2.097 1.826 3.923 2.185 0.583 2.768

�
0.129 0.025

�
0.104

(viii) 2.104 1.841 3.945 2.153 0.549 2.702
�

0.112 0.026
�

0.086
(ix) 2.104 1.843 3.947 2.185 0.545 2.730

�
0.104 0.026

�
0.078

(x) 2.091 1.815 3.906 2.387 0.709 3.096
�

0.2I8 0.022
�

0.196
(xi) 2.106 1.845 3.951 2.145 0.541 2.686

�
0.108 0.026

�
0.082

(xii) 2.105 1.844 3.949 2.200 0.543 2.743
�

0.100 0.026
�

0.074
(xiii) 2.107 1.848 3.955 2.121 0.525 2.646

�
0.098 0.027

�
0.071

(xiv) 2.104 1.843 3.947 2.211 0.544 2.755
�

0.098 0.026
�

0.072
(xv) 2.104 1.843 3.947 2.222 0.546 2.768

�
0.098 0.026

�
0.072

Note Values of the lift coefficients
� � and the drag coefficients

� 
 estimated from various mesh sizes for ��� # �
.

Rows (i)-(v) give the numerical results for � # �
�����

�
�� !�

�
�"���

�# � , and �$ � , respectively. Rows (vi)-(ix) are the � � -
extrapolated results from (i) and (ii), (ii) and (iii), (iii) and (iv), and (iv) and (v), respectively. Similarly, rows (x)-(xii) are
extrapolated from (vi) and (vii), (vii) and (viii), and (viii) and (ix), respectively; rows (xiii)-(xiv) are extrapolated from
(x) and (xi), (xi) and (xii), respectively. Row (xv) is the � � -extrapolation from (xiii) and (xiv).
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and

��� � �� � 
	��� � ���� 
	��� � �� �  
� for � an odd positive integer. (5.1b)

Tables I and II show the variation of � ��� , � � � , � � , � ��� , ��� � , and ��� up to
second-order terms for � �
 �

and 20, respectively, and they illustrate how the� � -extrapolation has been performed with the final results that,

� ��� # ��� � ��� � � � � � � �
� ��� # � ��� � � � � � � � �
� ��# ��������� � � � � � � �

���
� for � ��
 � � (5.2a)

� ��� # ��� � � � � � � � � � �
� ��� # � � � � � � � � � � �
� ��# ��� � � � � � � � � � �

� �
� for � ��
 �� 
� (5.2b)

����� # ��� �  � �  �  �� � � � � � � � � �(�
��� � # � � � � � �  �  � � � � � � � � � �(�
��� # � �	� � � �  �  
� ��� � � � � � � � �

� �
� for � ��
 � � (5.2c)

����� # � � �� � �  � � ��� � � � � � � � �(�
��� � # ����� � �  �  ����� � � � � � � �(�
��� # � �	��� � �  � �  ���� � � � � � � � �

� �
� for � ��
�� 
� (5.2d)

It is observed that the values of � � decrease as � increases for both values
of � � considered, although the rate of decrease is smaller for � ��
 �

. This

TABLE II

The Series Expansion Results

� ���	�
�� � ���	�
� � ���	�
 � �������� � ������� � ������ � �����
�� � �����
� � �����


(i) 1.231 0.802 2.033 1.822 0.303 2.125 0.008 0.023 0.031
(ii) 1.210 0.796 2.006 1.946 0.305 2.251

�
0.021 0.027 0.006

(iii) 1.206 0.794 2.000 2.025 0.311 2.336
�

0.053 0.027
�

0.026
(iv) 1.203 0.794 1.997 2.113 0.322 2.435

�
0.093 0.027

�
0.066

(v) 1.202 0.794 1.996 2.151 0.326 2.477
�

0.110 0.027
�

0.083
(vi) 1.193 0.791 1.984 2.045 0.307 2.352

�
0.044 0.030

�
0.014

(vii) 1.201 0.791 l.992 2.127 0.319 2.446
�

0.094 0.027
�

0.067
(viii) 1.201 0.794 1.995 2.183 0.331 2.514

�
0.125 0.027

�
0.098

(ix) 1.201 0.794 1.995 2.200 0.331 2.531
�

0.132 0.027
�

0.105
(x) 1.204 0.791 1.995 2.164 0 324 2.488

�
0.117 0.026

�
0.091

(xi) 1.201 0.795 1.996 2.197 0.334 2.531
�

0.133 0.027
�

0.106
(xii) 1.201 0.794 1.995 2.208 0.331 2.539

�
0.135 0.027

�
0.108

(xiii) 1.200 0.795 1.995 2.201 0.335 2.536
�

0.134 0.027
�

0.107
(xiv) 1.201 0.794 1.995 2.209 0.331 2.540

�
0.136 0.027

�
0.109

(xv) 1.201 0.794 1.995 2.211 0.330 2.541
�

0.136 0.027
�

0.109

Note Values of the lift coefficients
� � and the drag coefficients

� 
 estimated from various mesh sizes for ��� # � �(see Table I).
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TABLE III
Variation of

���
and
���

with � for ���	��
 and 20 as Obtained by the Full Navier-
Stokes Solution (NS) and the Series Expansion Solution (SE)

� � # � � � # � �
� � � 
 � � � 


� NS SE NS SE NS SE NS SE

0 0.000 0.000 3.947 3.947 0.000 0.000 1.995 1.995
0.1 0.277 0.277 3.947 3.946 0.254 0.254 1.995 1.994
0.2 0.559 0.554 3.939 3.944 0.514 0.508 1.992 1.991
0.4 1.111 1.107 3.927 3.935 1.024 1.016 1.979 1.978
0.5 1.389 1.384 3.916 3.929 1.283 1.271 1.973 1.959
1 2.838 2.768 3.849 3.875 2.617 2.541 1.925 1.886
2 5.830 5.536 3.506 3.659 5.719 5.082 1.627 1.559
3 9.191 8.304 3.097 3.299 9.074 7.623 1.396 1.014

FIG. 1. The variation of
� � with � for � � # �

:  numerical solutions of the Navier-Stokes equations:
� � �

series solutions as given in Eq. (5.2); ——— from upper to lower curves the results obtained by Badr and Dennis, Ingham,
and Ta Phuoc Loc, respectively.
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is qualitatively in good agreement with the results of Badr and Dennis [16] and
Ta Phuoc Loc [17] but not those of Lyul’ka [15] and Ingham [18]. Further, the
accuracy to which the coefficients in the series solution for the drag coefficient
have been obtained is much greater than those for the lift coefficient.

In order to check the accuracy of the results presented above, the case of no
rotation is compared with the results obtained by previous investigators to this
problem. The most accurate results of Fornberg [7] suggest that � � 
 ���    � at
� � 
 �� and this should be compared with the present result of �� 
 � ����� �

.
However, at � � 
 �

we obtain � � 
 � ��� � � , ����� 
 ��� �  � , and ��� � 
 � � � � � ,
whereas Dennis and Chang [9] quote values of ��� 
 � � ��� �

, ����� 
 � � ��� � , and
��� � 
 � ��� � � which are about 4% higher. It is perhaps relevant to point out that,
in the case of intermediate values of the Reynolds number, the drag coefficients
estimated by [9] are always a few percent higher than those given by Fornberg [6].

The values of � � and � � as obtained by solving the full Navier-Stokes equa-
tions are given in Table III for �	� 
 �

and 20. The values quoted in this table

FIG. 2. The variation of
� � with � for ��� # � � :  numerical solutions of the Navier-Stokes equations:

� � �
series solutions as given in Eq. (5.2); ——— from upper to lower courves the results obtained by Badr and Dennis,
Lyul’ka, Ingham, and Ta Phuoc Loc, respectively.
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have again been obtained by using repeated
� � -extrapolation and the results are

very accurate at small values of � ( #  �� � � error) and become less accurate as �
increases but are still

� � � � � accurate at � 
 �
. Also shown in Table III are the

corresponding values as obtained using the series solution for small values of �
as given in Eqs. (5.2). It is observed that the range of validity of the series results
given in (5.2) is quite large with results at � 
  �� � being at most in error by 1%
whilst at � 
 �

it is 5% in error.
Figures 1 and 2 show the variation of � � as obtained by solving the full Navier-

Stokes equations for � �
 �
and 20, respectively, and  � � � � . Also shown

are the series expansion results as given in Eqs. (5.2) and those obtained by [15-
18]. The agreement between the full numerical solution and the series solution
for � � �

is excellent and there is also reasonable agreement with the results
of [16] but the results of [15, 17, 18] severely underestimate the value of the lift

FIG. 3. Streamlines for ��� # � � . (a) � # � (the values of streamlines, starting from the top, are � # ��� � ,
0.3, 0.2, 0.1, 0.05; enclosed streamlines, starting from the centre, are � # � ��� � � � , � 0.002, 0); (b) � #���� % (the values
of streamlines, starting from the top, are � # ��� � , 0.4, 0.3, 0.2, 0.1, 0,

�
0.01,

�
0.02,

�
0.03,

�
0.04,

�
0.045,

�
0.05,�

0.06,
�

0.1,
�

0.2,
�

0.3,
�

0.4,
�

0.5); (c) � # ��� � (the values of steamlines, starting from the top, are � # % , 0.5, 0.3,
0.2. 0.15, 0.1, 0,

�
0.025,

�
0.05,

�
0.1,

�
0.15,

�
0.175,

�
0.2,

�
0.225,

�
0.25,

�
0.3,

�
0.5,
�

1; enclosed streamlines is
� # � ��� � � � ), (d) � # % (the values of streamlines, starting from the top, are � # ��� � , 0.3, 0.2, 0.1, 0,

�
0.05,

�
0.1,�

0.175,
�

0.2,
�

0.25,
�

0.3,
�

0.35,
�

0.4,
�

0.425,
�

0.45,
�

0.475,
�

0.5,
�

0.7,
�

1; enclosed streamlines, starting from
the inside, are � # � ��� � � ,

�
0.1); (e) � # � (the values of streamlines, starting from the top, are � # ��� � , 0.3, 0.1, 0,�

0.1,
�

0.2,
�

0.3,
�

0.4.
�

0.53,
�

0.55.
�

0.6,
�

0.65,
�

0.7,
�

0.75.
�

0.8,
�

0.85,
�

0.9,
�

1,
�

1.5,
�

2,
�

2.5; enclosed
streamlines, starting from the inside, are � # � ��� % ,

�
0.2,

�
0.3,

�
0.4,

�
0.53); (f) � # � (the values of streamlines,

starting from the top, are � # � , � 0.1,
�

0.2,
�

0.3,
�

0.5,
�

0.6,
�

0.8,
�

1,
�

1.063,
�

1.1,
�

1.15,
�

1.2,
�

1.25,
�

1.3,�
1.4,

�
1.5,

�
1.75,

�
2,
�

2.5,
�

3; enclosed streamlines, starting from the inside, are � # � ��� % ,
�

0.2,
�

0.3,
�

0.5,�
0.6,
�

0.8,
�

1).
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FIG. 3. ——Continued

coefficient. One of the reasons for this is that most of the previous results have
been obtained by using a coarse mesh size.

Despite the many discrepancies between all the previous results in the values of
� � and ��� there is reasonable agreement with other features of the flow, e.g., the
surface vorticity and therefore they are not presented in this paper. Figure 3 shows
the streamlines for � ��
 �� and � 
  , 0.1, 0.5, 1, 2, and 3. The streamlines
for � 
  can be compared with Dennis and Chang [9] and Fornberg [6] and
they are, graphically, indistinguishable. As expected the effect of rotation is to
substantially change the streamline pattern near the surface of the cylinder. In
the potential flow problem, closed streamlines near the cylinder will only exist if
� �  � � , but in the case of viscous flow, closed streamlines will always exist for
all nonzero values of � . These streamlines only exist very close to the cylinder
for small values of � , but as � increases they exist in larger and larger regions
as illustrated in Fig. 3. Further, as � increases, an increasing volume of fluid
is rotating with the cylinder. For � � 
 �

similar streamline patterns exist such
as for the case of � � 
 �� , except that at small values of � where no closed
streamlines exist behind the cylinder and hence these results are not presented in
this paper. For � ��
 �� the effects of rotation annihilate the closed streamline
region behind the cylinder and this contrast with the work of Ta Phuoc Loc [17]
who finds closed streamlines behind the cylinder for � up to 0.2.
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6. CONCLUSION

In this work we have developed a new numerical technique which avoids the dif-
ficulty in satisfying the boundary conditions at large distances from the cylinder.
The numerical solutions for the full Navier-Stokes equations have been obtained
for � � = 5 and 20 and rotational parameters in the range  � � � �

, while the
previous investigators present results only for  � � � �

. An alternative method
of solution, namely, a series expansion method, has also been considered and the
resulting finite-difference equations are solved using the new numerical technique.
Particular attention has been given to the quantities �� and ��� since they are very
sensitive to the method of solution. The agreement between the results calculated
by the two approaches is very satisfactory over a wide range of values of � .
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