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Asymptotic and numerical methods are used to highlight different types of
dynamical behaviors that occur for the motion of a localized spike-type
solution to the singularly perturbed Gierer–Meinhardt and Schnakenberg
reaction-diffusion models in a one-dimensional spatial domain. Depending on
the parameter range in these models, there can either be a slow evolution of
a spike toward the midpoint of the domain, a sudden oscillatory instability
triggered by a Hopf bifurcation leading to an intricate temporal oscillation in
the height of the spike, or a pulse-splitting instability leading to the creation
of new spikes in the domain. Criteria for the onset of these oscillatory and
pulse-splitting instabilities are obtained through asymptotic and numerical
techniques. A moving-mesh numerical method is introduced to compute these
different behaviors numerically, and results are compared with corresponding
results computed using a method of lines based software package.

1. Introduction

Since the pioneering work of Turing [1], there have been many studies of
instabilities of spatially homogeneous patterns in two-component reaction-
diffusion systems. The criterion for the onset of instabilities of these spatially
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homogeneous patterns, and the associated weakly nonlinear theory describing
the evolution of small disturbances, has largely been explored. However, in the
singularly perturbed limit, many reaction-diffusion systems can give rise to
spike-type patterns whereby one of the components of the system becomes
spatially localized at certain points in the domain. In different contexts,
these types of solutions are also referred to as pulses (cf. [2]) or spots (cf.
[3]). In contrast to spatially homogeneous solutions, the instabilities and the
dynamics of these localized patterns are not nearly as well understood. In
this paper, we use asymptotic and numerical methods to highlight different
types of dynamical behaviors and instabilities that occur for the motion of a
localized spike-type solution to the singularly perturbed Gierer–Meinhardt and
Schnakenberg reaction-diffusion models in a one-dimensional spatial domain.

The Gierer–Meinhardt (GM) model, introduced in [4], is a reaction-diffusion
system of activator-inhibitor type. It has been widely used to model localization
processes in nature, such as cell differentiation and morphogenesis (cf. [5, 6]),
and the formation of sea-shell patterns (cf. [3]). In dimensionless form, the
GM model can be written as

at = ε2axx − a + a p

hq
, −1 < x < 1, t > 0, (1a)

τht = Dhxx − h + ε−1 am

hs
, −1 < x < 1, t > 0, (1b)

ax (±1, t) = hx (±1, t) = 0; a(x, 0) = a0(x), h(x, 0) = h0(x). (1c)

Here a, h, 0 < ε � 1, D > 0, and τ ≥ 0, represent the activator concentration,
inhibitor concentration, activator diffusivity, inhibitor diffusivity, and reaction-
time constant, respectively. The parameters D and τ are assumed to be constant.
The usual assumption on the exponents (p, q, m, s) (cf. [4]) are that they
satisfy

p > 1, q > 0, m > 1, s ≥ 0, with ζ ≡ qm

(p − 1)
− (s + 1) > 0.

(2)

A typical exponent set is (p, q, m, s) = (2, 1, 2, 0). The nondimensionalization
of the dimensional GM model, which results in (1), is summarized in the
Appendix.

The Schnakenberg model [7] is another well-known two-component
reaction-diffusion system. In the absence of diffusion, the kinetics for this model
are such that spatially homogeneous patterns can exhibit Hopf bifurcations
leading to temporal oscillations. When the ratio of the diffusion coefficients
in the model is suitably large, spike-type solutions to this model are also
possible (cf. [8, 9]). In this limit, and with the nondimensionalization procedure
summarized in the Appendix, the Schnakenberg model can be written in
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dimensionless variables as

ut = ε2uxx − u + vu2, −1 < x < 1, t > 0, (3a)

τvt = Dvxx + 1
2 − ε−1vu2, −1 < x < 1, t > 0, (3b)

ux (±1, t) = vx (±1, t) = 0; u(x, 0) = u0(x), v(x, 0) = v0(x). (3c)

For the case τ = 0, there have been several recent studies of the stability of
equilibrium spike-type solutions to the GM model (1) and the Schnakenberg
model (3). The stability of symmetric multi-spike equilibria and the existence
and stability of asymmetric multi-spike equilibria for the GM model have been
analyzed using formal asymptotic techniques in [10] and [11], respectively.
A rigorous framework for these stability analyses is given in [12]. Similar
results for the existence and stability of symmetric and asymmetric multi-spike
equilibria for (3) when τ = 0 have been obtained in [9] and [8].

There are only a few stability results for the case where τ > 0. The difficulty
with the analysis in this case is that oscillatory instabilities may emerge for
certain ranges of τ . This was anticipated in [13] where numerical results were
shown at two different values of τ for the oscillatory motion of a boundary
spike for the shadow GM model obtained by taking the limit D → ∞ in (1).
For τ > 0, and D sufficiently large, the stability of a one-spike solution to (1)
was analyzed rigorously in [14] under the condition that the exponents (p, q,
m, s) in the model are such that ζ → 0+ in (2). For the shadow GM model,
a combination of rigorous and formal asymptotic and numerical techniques
were used in [15] to determine the conditions for the onset of oscillatory
stabilities of an equilibrium one-spike solution to the shadow GM model in N
spatial dimensions.

For the case τ = 0 and D = O(1), the dynamics of a collection of spikes
for the GM model have been analyzed in [16] by deriving equations of motion
for the slow evolution of the centers of the spikes. It was shown asymptotically
and numerically in [16] that a collection of spikes will move slowly in time,
but can experience a sudden instability whereby one of the spikes collapses
monotonically to zero on an O(1) time scale. The stability and dynamics of
spike solutions with τ > 0 and D = O(1) has not been considered previously.

There are two main purposes of this paper. The first goal is to highlight
the different types of behaviors associated with the dynamics of a localized
spike-type solution for (1) and (3). Two key parameters in the analysis are the
reaction-time constant τ and the diffusivity D. Asymptotic methods are used
as a guide to provide a partial analysis of the range of behaviors seen. For
the case τ = 0, there will be a slow evolution of the center of the spike
toward the midpoint of the domain. The motion occurs on a long time-scale
of order O(ε−2). An asymptotic differential equation for the motion of the
center of the spike is derived. For other ranges of the parameter τ , a spike can
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move slowly in the domain, but then at some point during the slow evolution
develop a sudden and very intricate oscillatory motion in its height that occurs
on an O(1) time-scale. This type of oscillatory instability, which is initially
triggered through a Hopf bifurcation, has not been observed previously. By
deriving a nonlocal eigenvalue problem, and then by studying this problem
numerically, we show that this instability will occur when τ > τ 0, where
τ 0 depends on D and on the location, x0, of the spike at a given time. The
values for τ 0 are computed numerically for (1) and (3). For other ranges of the
parameters, a pulse-splitting instability can occur for (1), and for a certain
generalized form of the basic model (1). Although we do not give a detailed
account of pulse-splitting instabilities for (1), we give a prediction for the
critical value of D below which pulse-splitting instabilities occur. For the
well-known Gray–Scott model, pulse-splitting instabilities and traveling waves
have been explored in considerable detail in [2, 18–22] (see also the references
therein). They were also predicted to occur for the GM model when D in (1b)
is sufficiently small (cf. [23]).

These various dynamical behaviors of spike motion highlight potential
difficulties associated with the numerical solution to (1) and (3) using only
a moderate number of spatial meshpoints. There are several key challenges.
Since a spike is localized in space, there is a need for a fine spatial grid near
the core of the spike. This spatial grid needs to adapt to the slow change in
the location of the spike as it moves across the domain. In addition, since
a spike can exhibit a fast oscillatory instability in its height, an accurate
long-time integration is needed in order to capture the slow drift of the
center of the spike in the presence of an O(1) time-scale oscillation of
the height of the spike. Pulse-splitting instabilities, whereby new spikes are
created, provide a severe challenge as they require that new computational
meshpoints be generated to follow each new spike. In our one-dimensional
spatial domain it is possible to largely overcome these difficulties by using a
very large number of equidistantly spaced spatial meshpoints and stringent
tolerances on the adaptive time-stepping control for a method of lines based
PDE solver from the NAG library [24]. Although this type of brute force
approach is possible in one space dimension, it is computationally inefficient
and, from practical purposes, infeasible in more than one space dimension,
where similar types of dynamical behavior for spike solutions are likely to
occur.

In this light, the second goal of this paper is to introduce a moving-mesh
numerical method to compute a spike-type solution for (1) and (3) using only
a moderate number of meshpoints. Numerical results from this moving-mesh
method and from a software routine in the NAG library are shown. Work
is in progress to extend the moving-mesh method to two space dimensions.
A different type of moving-mesh method, described in [25], has been used
previously for the Gray–Scott model in [2].
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The outline of this paper is as follows. In Section 2 we introduce a
moving-mesh numerical method for computing a spike-type solution for (1)
and (3). In Section 3, for the case τ = 0 in (1) and (3), we study both
asymptotically and numerically the slow, regular motion of a spike toward the
midpoint of the domain. In Section 4, asymptotic analysis is used to determine
the conditions on τ for which an oscillatory instability in the height of the
spike is triggered. Numerical computations are shown for values of τ both
near, and well beyond, this critical value. These computations highlight the
various types of oscillatory instabilities. In Sections 5 and 6 pulse-splitting
instabilities are shown for (1) and for a generalization of (1).

2. The moving-mesh method

In this section, we describe the moving mesh numerical method used to
approximate the solution to (1). A similar discretization scheme is used to
compute solutions to (3).

Let −1 = x0 < x1 < · · · < x N = 1 be a partition of [−1, 1]. A natural way to
discretize (1) is to use the central differencing in space to handle the diffusion
terms and to use a method of line approach to deal with the time derivatives.
One of the difficult issues is how to handle the boundary conditions. There are
several ways to deal with the nonreflecting boundary conditions in (1c). For
example, by using Taylor expansions with the given boundary conditions we
can determine numerically the boundary values at x = ±1. Then the method
of line equations are set up at x = x1, . . . , x N−1. However, our numerical
experiments have shown that this approach in general leads to wrong solutions:
in most cases the numerical solutions for the activator concentration diffuse to
zero at a finite time.

It is found that an appropriate numerical scheme for the GM model (1) has
to satisfy the two compatibility conditions∫ 1

−1
at dx +

∫ 1

−1
a dx =

∫ 1

−1

a p

hq
dx, (4a)

τ

∫ 1

−1
ht dx +

∫ 1

−1
h dx = ε−1

∫ 1

−1

am

hs
dx . (4b)

With this in mind, we propose the following numerical scheme for solving (1).
Let the approximations to the activator and inhibitor concentrations at the grid
point xi be defined by {A(t)i}N

0 and {H (t)i}N
0 , respectively. On a nonuniform

mesh, we introduce the discretizations

δx (δx A(t))i = 2

xi+1 − xi−1

(
A(t)i+1 − A(t)i

xi+1 − xi
− A(t)i − A(t)i−1

xi − xi−1

)
,

i = 1, . . . , N − 1, (5a)
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δx (δx A(t))0 = A(t)1 − A(t)0

(x1 − x0)2
, δx (δx A(t))N = A(t)N−1 − A(t)N

(xN − xN−1)2
. (5b)

The approximate solutions A(t) and H (t) are made to satisfy the following
semi-discrete equations, for i = 0, . . . , N and t > 0:

(A(t)i )t = ε2δx (δx A(t))i − A(t)i + A(t)p
i

H (t)q
i

, (6a)

τ (H (t)i )t = Dδx (δx H (t))i − H (t)i + ε−1 A(t)m
i

H (t)s
i

, (6b)

A(0)i = a0(xi ), H (0)i = h0(xi ). (6c)

We now generate the moving mesh based on the equidistribution principle in
one dimension as introduced by de Boor [26]. Let x ∈ [−1, 1] and ξ ∈ [0, 1]
denote the physical and computational coordinates, respectively. The mesh
x(ξ ) is defined in terms of a differentiable mesh transformation from [0, 1] to
[−1, 1]. The underlying strategy for determining x(ξ ) is to require
equidistribution of a positive monitor function, say M(a, ax), so that∫ x

0
M dy = ξ

∫ 1

0
M dy, ξ ∈ [0, 1]; x(0) = −1, x(1) = 1. (7)

The above integral form was proposed in [27].
Roughly speaking, the role of the monitor function is to cluster more grid

points in the regions where the monitor has the largest values. A popular class
of monitor function depends on the gradient of the physical solution to be
adapted; see, e.g., [28]. However, for problems with finitely many peaks, a
typical choice for the monitor function (cf. [29, 30]) is

M(a(x, t)) =
√

1 + ca2(x, t), (8)

where c > 0 is a user-prescribed parameter, chosen depending on the character
of the physical solution. In the computations below we take M as given in (8)
with c = 1.

Suppose that a uniform mesh is given to the computational domain by
{ξ i}N

0 . We denote the corresponding mesh in x by {xi}N
0 . For a chosen monitor

function M(a(x , t)), the equidistribution principle (7) can be expressed in the
discrete form:∫ xi+1

xi

M(a(y, t)) dy =
∫ xi

xi−1

M(a(y, t)) dy, i = 1, . . . , N − 1. (9)

Using the mid-point rule leads to the following system:

M(a(xi+1/2, t))(xi+1 − xi ) = M(a(xi−1/2, t))(xi − xi−1), i = 1, . . . , N − 1,

(10)
with x0 = −1 and xN = 1.
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We now describe the procedure for solving the semi-discrete system (6). From
the initial condition a0 we first generate the initial adaptive mesh by solving
the linear system (10)—in this case the monitor function is given explicitly.
We then map the initial value of the activator and inhibitor concentrations to
the initial adaptive mesh at t = 0. Then, once the approximate solution {Ai,
H i}N

0 on the adaptive moving mesh is known at t = tn > 0, the activator
concentration and inhibitor concentrations are then computed at t = tn+1 by
means of an explicit fourth-order Runge–Kutta method on the mesh {xi(tn)}N

0 .
This high order time integration scheme is needed to capture oscillatory
instabilities. We generate the mesh at next time step by solving the linearized
system (10) with Mi+1/2 and Mi−1/2 computed by the value of A(tn). We then
map the activator concentration A(tn+1) on the previous mesh to the present
mesh by using first-order linear interpolation. In the special case where τ = 0
in (6b) we first compute H (tn+1) on the present mesh from the solution to (6b)
using the known values of A(tn+1).

3. The dynamics with a zero reaction-time constant

In this section we consider the evolution of a one-spike solution to the GM
model (1) and the Schnakenberg model (3) when τ = 0. For the case τ = 0,
the dynamics of a one-spike solution to (1) for ε � 1 was analyzed in [10]. In
Section 3.2 we derive an analogous result for the dynamics of a one-spike
solution to (3). The asymptotic results for the location of the spike as a function
of time are compared with corresponding numerical results computed using the
moving-mesh method of Section 2 and the NAG library routine D03PCF [24].

3.1. The GM model

For ε � 1, the method of matched asymptotic expansions was used in [10] to
derive the following asymptotic result for the dynamics of a one-spike solution
to (1):

PROPOSITION 1 (From [10]): For 0 < ε � 1 and τ = 0, the dynamics of a
one-spike solution to (1) are characterized by

a(x, t) ∼ ac ≡ H γ w
(
ε−1[x − x0(t)]

)
, (11a)

h(x, t) ∼ hc ≡ H Gm[x ; x0(t)] /Gm[x0(t); x0(t)], (11b)

where γ ≡ q/(p − 1), and the spike location x0(t) satisfies the differential
equation

dx0

dt
∼ − ε2q

(p − 1)
√

D

(
tanh

[
D−1/2(1 + x0)

] − tanh
[
D−1/2(1 − x0)

])
. (11c)
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Here w(y) is the unique, positive solution to

w′′ − w + w p = 0, −∞ < y < ∞;

w → 0 as |y| → ∞; w′(0) = 0, w(0) > 0. (11d)

In (11b), Gm(x ; x0) is the Green’s function satisfying

DGmxx − Gm = −δ(x − x0), −1 < x < 1; Gmx (±1; x0) = 0,

(11e)

and the constant H (t) is defined in terms of Gm by

H ≡
[

1

bmGm(x0; x0)

]1/ζ

, bm ≡
∫ ∞

−∞
[w(y)]m dy, (11f )

where ζ is defined in (2).

Experiment 1. To illustrate the moving-mesh method for solving (1), we
take ε = 0.03, D = 1, τ = 0, and the exponent set (p, q, m, s) = (2, 1, 2, 0).
We take the spike to be located at x = 0.6 initially. The initial profiles for a
and h are chosen to have the form in (11a) and (11b) respectively, so that

a0(x) = 3H

2
sech2

(
ε−1

2
[x − x0(0)]

)
, H = [6Gm(x0; x0)]−1 , (12)

with x0(0) = 0.6.
In Figures 1 and 2, we plot the numerical solution to (1) based on our

moving-mesh method with N = 100 meshpoints. In Table 1 we compare the
asymptotic and numerical results for x0(t) with the moving-mesh results for
N = 100 and N = 200 meshpoints. The asymptotic result is obtained by
integrating (11c) with x0(0) = 0.6. To compare with these results, we solve (1)

Figure 1. Plots of a (solid curve) and h (dashed curve) at different times.
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Figure 2. Plots of a (solid curve) and h (dashed curve) at different times.

for this parameter set using the NAG library code D03PCF [24] with N =
2000 equally spaced meshpoints and strict tolerances on the time-stepping.
The results, which should be very close to the true solution, are shown in the
fourth column of Table 1. Notice that the moving-mesh method with N = 200
gives a rather close approximation to the results from the NAG routine.

3.2. The Schnakenberg model

We now consider the evolution of a one-spike solution for (3). The adaptive
moving-mesh numerical method for this problem is similar to that described in
Section 2 for the GM model. To compare with results from the numerical
method, we use the method of matched asymptotic expansions for ε � 1 to

Table 1
Comparison of the Asymptotic and Numerical Results for the Center

x0(t) of the Spike for Experiment 1

x0(t) x0(t) x0(t) x0(t)
t (ASY) (MM, N = 200) (MM, N = 100) (NAG)

100 0.55338 0.555 0.55 0.5506
400 0.43577 0.425 0.43 0.4272
800 0.31891 0.305 0.33 0.3064

1200 0.23441 0.215 0.23 0.2207
1800 0.14834 0.135 0.15 0.1353
3000 0.05975 0.055 0.07 0.0512

Here N is the number of mesh points and MM denotes moving-mesh.
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derive a differential equation for the center of a spike for a one-spike solution
to (3). We obtain the following result:

PROPOSITION 2: For 0 < ε � 1 and τ = 0, the dynamics of a one-spike
solution to (3) are characterized by

u(x, t) ∼ uc ≡ V −1w
(
ε−1[x − x0(t)]

)
, (13a)

v(x, t) ∼ vc ≡ Gs[x ; x0(t)] − Gs[x0(t); x0(t)] + V . (13b)

Here w is the solution to (11d) with p = 2. The spike location x0(t) and the
constant V satisfy

dx0

dt
∼ −

(
ε2

6D

)
x0, V = b2, (13c)

where b2 is defined in (11f ). In (13b), Gs(x ; x0) is the modified Green’s
function satisfying

DGsxx + 1
2 = −δ(x − x0), |x | ≤ 1;

Gsx (±1; x0) = 0;
∫ 1

−1
Gs(x ; x0) dx = 0. (13d)

It can be calculated explicitly as

Gs(x ; x0) = − 1

4D

(
x2 + x2

0

) + 1

2D
|x − x0| − 1

6D
. (13e)

We now derive the result (13) using the method of matched asymptotic
expansions. In the analysis two expansions are needed: an inner expansion
near the core of the spike and an outer expansion away from the core. In the
inner region, near x = x0, we introduce new variables by

y = ε−1 [x − x0(τ )] , ṽ(y) = v(x0 + εy),

ũ(y) = u(x0 + εy), τ = ε2t, (14a)

and expand

ṽ(y) = ṽ0(y) + εṽ1(y) + · · · , ũ(y) = ũ0(y) + εũ1(y) + · · · . (14b)

We substitute (14) into (3) and collect powers of ε. The leading order problem,
on −∞ < y < ∞, is

ũ′′
0 − ũ0 + ṽ0ũ2

0 = 0; ṽ′′
0 = 0. (15)

The solution is

ũ0(y) = V −1w(y), w(y) ≡ 3

2
sech2

(
y

2

)
, ṽ0 = V . (16)
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Here w(y) is the solution to (11d) when p = 2, and V = V (τ ) is a function to
be determined. At next order, we obtain that ũ1 and ṽ1 satisfy

ũ′′
1 − ũ1 + 2wũ1 = −w2

V
ṽ1 − x ′

0

w′

V
, −∞ < y < ∞, (17a)

Dṽ′′
1 = 1

V
w2, −∞ < y < ∞, (17b)

with ũ1 → 0 exponentially as |y| → ∞. In (17a), x ′
0 ≡ dx0/dτ . The right-hand

side of (17a) must be orthogonal to the solution w′ of the homogeneous
problem for (17a). From this solvability condition, we obtain

x ′
0 = −

∫ ∞
−∞ w2w′ṽ1 dy

V
∫ ∞
−∞ [w′]2 dy

. (18)

If we integrate (18) by parts twice, and use the facts that ṽ′′
1 and w are even

functions, we get

x ′
0 = 1

6V

( ∫ ∞
−∞ [w(y)]3 dy∫ ∞
−∞ [w′(y)]2 dy

) [
lim

y→+∞ ṽ′
1 + lim

y→−∞ ṽ′
1

]
. (19)

In the outer region away from the core of the spike, u is exponentially small
and v = O(1). We thus expand v = v0 + · · ·, where v0 satisfies

Dv′′
0 + 1

2 − ε−1v0u2 = 0, −1 < x < 1; v′
0(±1) = 0. (20)

Since u is localized near x = x0, the ε−1 term in (20) can be approximated as
a Dirac mass. This gives

Dv′′
0 + 1

2
− b2

V
δ(x − x0) = 0, −1 < x < 1; v′

0(±1) = 0, (21)

where b2 is defined in (11f ). The problem (21) must satisfy a solvability
condition, as seen by integrating the differential equation in (21) across the
interval −1 < x < 1. This condition yields that

V = b2 ≡
∫ ∞

−∞
[w(y)]2 dy. (22)

With w(y) as in (16), we calculate that V = 6. The solution to (21) is

v0(x) = Gs(x ; x0) + v̄, (23)

where v̄ is a constant to be found, and Gs is the modified Green’s function
satisfying (13d). The solution to (13d) is simply (13e).

Next, we match the inner and outer solutions. This requires that

v0(x0) = V = 6, and lim
y→+∞ ṽ′

1 + lim
y→−∞ ṽ′

1 = v0x (x0+) + v0x (x0−). (24)
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Figure 3. Plot of u at different times from the numerical solution to (3) with D = 1.0, τ =
0, and ε = 0.03. The solid curve is at t = 0, the dashed curve is at t = 2190, and the heavy
solid curve is at t = 6108.

Thus, setting v0(x0) = 6 in (23), we obtain that v̄ = −Gs(x0; x0) + 6.
Substituting v̄ into (23) we obtain (13b) above. Finally, we substitute (13b)
into the second equation of (24). Then, from (19), we obtain a differential
equation for the spike location

dx0

dτ
∼ 1

36

( ∫ ∞
−∞ [w(y)]3 dy∫ ∞
−∞ [w′(y)]2 dy

) [
Gsx

(
x+

0 ; x0
) + Gsx

(
x−

0 ; x0
)]

. (25)

Using (13e) for Gs, τ = ε2 t , and the form for w in (16) to calculate the ratio
of the two integrals in (25), we obtain the result (13c) for the dynamics of a
one-spike solution to (3). This completes the derivation of Proposition 2.

Experiment 2. We take τ = 0, ε = 0.03, and D = 1.0 in (3). We take the
initial location of the spike to be x0(0) = 0.25. The initial profiles for u and v

are as given in (13a) and (13b), respectively. In Figure 3, we plot the numerical
solution to (3) at three different times computed using our moving-mesh
method with N = 200 meshpoints. In Table 2 we compare the asymptotic
and numerical results for x0(t) with the moving-mesh results for N = 200
meshpoints. The asymptotic result is obtained by integrating (13c) with x0(0) =
0.25. In the fourth column we again show the results obtained using the NAG
library code D03PCF [24] with N = 2000 meshpoints and strict tolerances on
the time-stepping. For this example, the asymptotic result is very close to the
values computed from the NAG routine. The moving-mesh method with N =
200 meshpoints also performs well.
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Table 2
Comparison of the Asymptotic and Numerical Results for the

Center x0(t) of the Spike for Experiment 2

t x0(t) (ASY) x0(t) (MM, N = 200) x0(t) (NAG)

204 0.242466 0.2412 0.2425
486 0.232423 0.2311 0.2324
864 0.219612 0.2206 0.2196

1314 0.205277 0.2011 0.2053
1884 0.188455 0.1812 0.1885
2274 0.177746 0.1710 0.1778

Here N is the number of mesh points and MM denotes
moving-mesh.

4. Oscillatory dynamics with a nonzero reaction-time constant

In this section we study the stability, on an O(1) time-scale, of one-spike
quasi-equilibrium profiles for the GM and Schnakenberg models with respect
to a nonzero reaction-time constant τ > 0. The spike is assumed to be located
initially at some point x0 ∈ (−1, 1). In Section 4.1 we formulate nonlocal
eigenvalue problems that determine the stability of these profiles for (1) and for
(3). From a numerical computation of these eigenvalue problems, in Section 4.2
we give some results for the critical value of τ at which an oscillatory instability
is triggered. This critical value of τ depends on x0 and on D. In Sections 4.3
and 4.4 we give some full numerical results for (1) and (3) showing oscillatory
instabilities for a spike at the origin and for a slowly drifting spike, respectively.

4.1. The nonlocal eigenvalue problems

We first formulate a nonlocal eigenvalue problem that determines the stability
on an O(1) time scale of the quasi-equilibrium profile for the GM model (1).

For a fixed x0 ∈ (−1, 1), the quasi-equilibrium profile ac, hc for the GM
model is defined in (11). To study the stability of this profile, we let a = ac +
eλtφ, h = hc + eλtη, where φ � 1 and η � 1. Substituting into (1), we obtain
the eigenvalue problem

ε2φxx − φ + pa p−1
c

hq
c

φ − qa p
c

hq+1
c

η = λφ, −1 < x < 1, (26a)

Dηxx − (1 + τλ)η = −ε−1 mam−1
c

hs
c

φ + ε−1 sam
c

hs+1
c

η, −1 < x < 1, (26b)

φx (±1) = ηx (±1) = 0. (26c)
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We look for eigenvalues of (26) that are O(1) as ε → 0. The corresponding
eigenfunction is localized, and has the form

φ(x) ∼ �
[
ε−1(x − x0)

]
, (27)

where �(y) → 0 exponentially as |y| → ∞. Since ac and φ are localized near
x = x0, the problem (26b) for η reduces, for ε → 0, to

Dηxx − (1 + τλ)η = 0, −1 < x < 1; ηx (±1) = 0, (28a)

[η]0 = 0, [Dηx ]0 = −ω + sbm H ζ η(x0), (28b)

where

ω ≡ m H γ (m−1)−s
∫ ∞

−∞
wm−1� dy. (28c)

In (28b), we have defined [v]0 ≡ v(x0+) − v(x0−). Similarly, for ε � 1, the
problem (26a) in terms of � becomes

�′′ − � + pw p−1� − q H γ−1w pη(x0) = λ�, −∞ < y < ∞. (29)

By solving (28) explicitly, we can calculate η(x0) as

η(x0) = ω

Dθλβ(θλ; x0) + s H ζ bm
, (30)

where θλ ≡ √
(1 + τλ)/D, and the function β(ξ ; x0) is defined by

β(ξ ; x0) ≡ tanh [ξ (1 + x0)] + tanh [ξ (1 − x0)] . (31)

Next, we substitute bmHζ = [Gm(x0; x0)]−1, obtained from (11f ), into (30).
By calculating Gm(x0; x0) explicitly from (11e), we find [Gm(x0; x0)]−1 =√

Dβ(θ0; x0), where θ0 = D−1/2. Substituting the resulting expression for
η(x0) into (29), we obtain the following nonlocal eigenvalue problem:

PROPOSITION 3. Assume that 0 < ε � 1, τ ≥ 0, and x0 ∈ (−1, 1). Then, the
stability of the quasi-equilibrium profile (11a) and (11b) for the GM model (1)
is determined by the spectrum of the nonlocal eigenvalue problem

L0� − χmw p

(∫ ∞
−∞ wm−1� dy∫ ∞

−∞ wm dy

)
= λ�, −∞ < y < ∞, (32a)

� → 0, as |y| → ∞. (32b)

In (32), the local operator L0 and the multiplier χm are defined by

L0� ≡ �′′ − � + pw p−1�, (32c)
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and

χm = χm(z; x0) ≡ qm

[
s + √

1 + z

(
β(θλ; x0)

β(θ0; x0)

)]−1

. (32d)

Here the function β(ξ ; x0) is defined in (31), and

z ≡ τλ, θλ ≡ θ0

√
1 + z, θ0 ≡ D−1/2. (32e)

We now formulate a nonlocal eigenvalue problem that determines the
stability of a one-spike quasi-equilibrium profile for the Schnakenberg model
(3). Since the details of the analysis are similar to that given above for the GM
model, we simply outline the key steps in the derivation. For a fixed x0 ∈ (−1,
1), the quasi-equilibrium profile uc, vc for (3) is defined in (13). Substituting
u = uc + eλtφ and v = vc + eλtη, with φ � 1 and η � 1, into (3), we obtain
the eigenvalue problem

ε2φxx − φ + 2ucvcφ + u2
cη = λφ, −1 < x < 1, (33a)

Dηxx − τλη = 2ε−1ucvcφ + ε−1u2
cη, −1 < x < 1, (33b)

φx (±1) = ηx (±1) = 0. (33c)

We look for a localized eigenfunction of (33) in the form (27). In place of
(28), we now obtain

Dηxx − τλη = 0, −1 < x < 1; ηx (±1) = 0, (34a)

[η]0 = 0, [Dηx ]0 = η(x0)

V
+ 2

∫ ∞

−∞
w� dy. (34b)

Here V is defined in (22). From (33a), the eigenvalue problem for � becomes

�′′ − � + 2w� + V −2w2η(x0) = λ�, −∞ < y < ∞. (35)

By solving (34) explicitly, we can calculate η(x0). Substituting this formula
for η(x0) into (35), we obtain the following nonlocal eigenvalue problem
analogous to (32):

PROPOSITION 4. Assume that 0 < ε � 1, τ ≥ 0, and x0 ∈ (−1, 1). Then, the
stability of the quasi-equilibrium profile (13a) and (13b) for the Schnakenberg
model (3) is determined by the spectrum of the nonlocal eigenvalue problem

L0� − χsw
2

(∫ ∞
−∞ w� dy∫ ∞
−∞ w2 dy

)
= λ�, −∞ < y < ∞, (36a)

� → 0, as |y| → ∞. (36b)



56 W. Sun et al.

Here L0 and w satisfy (32c) and (11d), respectively, with p = 2. The multiplier
χ s is defined by

χs = χs(z; x0) ≡ 2[1 + 6
√

Dzβ(µλ; x0)]−1, z ≡ τλ, µλ ≡
√

z/D.

(36c)
In (36c), the function β(ξ ; x0) is defined in (31).

4.2. Numerical computations of the spectrum: Small-scale oscillations

In this section we determine, numerically, conditions for which a complex
conjugate pair of eigenvalues for (32) and (36) crosses into the unstable
right half-plane Re(λ) > 0 as τ is increased. For illustration purposes, in the
remainder of Section 4 our computations for the GM model (1) are done only
for the exponent set (p, q, m, s) = (2, 1, 2, 0). A much more detailed analysis
of the spectrum of the GM nonlocal eigenvalue problem (32) is given in [31].

We first reformulate (36) and (32). Let ψ(y) be the solution to

L0ψ = λψ + w2; ψ → 0 as |y| → ∞. (37)

Here w(y) = 3
2 sech2 (y/2). Then, the eigenfunctions of (32) and (36) can be

written as

φ = Jχψ, J ≡
∫ ∞
−∞ wφ dy∫ ∞
−∞ w2 dy

, (38)

where χ is either χm or χ s . We are only interested in eigenfunctions for which∫ ∞
−∞wφ dy �= 0. If

∫ ∞
−∞wφ dy = 0, then they must be the translation mode of

the local operator L0. This mode is w′, and it corresponds only to the zero
eigenvalue. Thus, from multiplying (38) by w and integrating, we obtain that
the eigenvalues of the nonlocal eigenvalue problems are the roots of g(λ) = 0,
where

g(λ) ≡ 1

χ
−

∫ ∞
−∞ wψ dy∫ ∞
−∞ w2 dy

. (39)

When D = ∞ and τ = 0, it was proved in [32] that Re(λ) < 0, except for the
translation mode φ = w′ where λ = 0.

We now look for a pure imaginary eigenvalue of the form λ = iλI . Without
loss of generality, we may assume that λI > 0. Along the imaginary axis, we
separate (39) and (37) into real and imaginary parts by writing

g = gR + igI , λ = iλI , ψ = ψR + iψI . (40)

From (39) and (37) we get

gR ≡ Re

(
1

χ

)
−

∫ ∞
−∞ wψR dy∫ ∞
−∞ w2 dy

, gI ≡ Im

(
1

χ

)
−

∫ ∞
−∞ wψI dy∫ ∞
−∞ w2 dy

, (41)
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where

L0ψR = −λI ψI + w p; L0ψI = λI ψR, (42)

with ψ R → 0 and ψ I → 0 as |y| → ∞.
The coupled system gR = 0 and gI = 0 gives two equations for λI and τ for

given values of D and x0. These critical values of τ and λI are labeled by τ 0

by λ0
I . Our numerical computations below determine the minimum value of

τ for which a complex conjugate pair of eigenvalues crosses into the right
half-plane. To compute τ 0 and λ0

I we solve the system (42) for ψ R and ψ I

numerically using COLSYS at each fixed λI . We then use Newton’s method to
locate the roots to gR = 0 and gI = 0, and we use Euler continuation to
calculate the dependence of τ 0 on x0 and on D. We have verified numerically
that these eigenvalues cross into the right half-plane as τ is increased
past τ 0.

In Figure 4(a) we plot τ 0 and λ0
I versus D for a spike of the GM model (1)

with (p, q , m, s) = (2, 1, 2, 0) that is located at the origin x0 = 0. When x0 = 0,
τ 0 is a monotonically decreasing function of D. It ranges from the value τ 0 ≈
2.749 when D � 1, to τ 0 ≈ 0.771 when D � 1. Thus, to obtain an oscillatory
instability as D is decreased, we must increase the value of τ . From Figure 4(a)
we see that the frequency λ0

I of small oscillations has a weak dependence on D
and is quite close to the value unity for the full range of D. Similarly, in
Figure 4(b) we plot τ 0 and λ0

I versus D for a spike of the Schnakenberg model
(3) that is located at the origin x0 = 0. Once again τ 0 is a decreasing function
of D, and τ 0 → 0.065 as D → ∞. However, in contrast to the GM model, τ 0

is unbounded as D → 0. This difference between the models results from
the fact that χm in (32d) is such that χ−1

m is independent of D for D � 1,
whereas for the Schnakenberg model with x0 = 0 we have from (36c) that
χ−1

s → 1
2 + 6

√
Dτλ for D � 1. Also note that τ 0 has already decreased to

its limiting value τ 0 ≈ 0.065 when D > 0.2. Thus, unless D is very small,
oscillatory instabilities in the Schnakenberg model will typically occur for
smaller values of τ than for the GM model with (p, q, m, s) = (2, 1, 2, 0).

We now give a numerical confirmation of our results predicting the onset
of an oscillatory instability. To do so, we solve the GM model (1) and the
Schnakenberg model (3) numerically using the moving-mesh method of Sec-
tion 2. Results essentially identical to those displayed are obtained using the
NAG library routine D03PCF [24]. The initial condition for the GM model (1)
is taken to be a small, but localized, perturbation off of the equilibrium solution
ac and hc given in (11) with x0 = 0. More precisely, we took

a(x, 0) = ac

[
1 + 0.02 cos

(
πx

ε

)
e−x2/(2ε2)

]
, h(x, 0) = hc. (43)

A similar small perturbation off of the equilibrium solution uc and vc, given in
(13), is used in the numerical simulation of the Schnakenberg model (3).
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Figure 4. Plots of τ 0 (solid curve) and λ0
I (dashed curve) for (a) the GM model and (b) the

Schnakenberg model.

To illustrate small-scale oscillatory behavior for the GM model, in
Figure 5(a) we plot am ≡ a(0, t), referred to as the amplitude of the spike, as a
function of t for two values of τ when D = 1 and ε = 0.01. Numerically,
from the data used to generate Figure 4(a), we get that τ 0 = 1.343. Notice
from Figure 5(a) that, when τ = 1.3, the small oscillations generated by the
perturbation are damped out, whereas when τ = 1.35 the oscillations begin to
grow as t increases. Similarly, for the Schnakenberg model, in Figure 5(b) we
plot um ≡ u(0, t) as a function of t for two values of τ when D = 0.1 and ε =
0.01. The value predicted from the nonlocal eigenvalue problem is τ 0 = 0.0873.
From Figure 5(b) we observe that small oscillations are damped out when τ =
0.085 and they begin to grow when τ = 0.088. We have performed similar tests
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Figure 5. (a) Plots of am versus t for the GM model with τ = 1.3 (heavy solid curve) and τ

= 1.35 (dashed curve). (b) Plots of um versus t for the Schnakenberg model with τ = 0.085
(heavy solid curve) and τ = 0.088 (dashed curve).

for other parameter values to obtain confirming evidence of the oscillatory
instability that occurs when τ is increased beyond the critical value τ 0. The
resulting Hopf bifurcation is apparently subcritical as numerical evidence
suggests that the emerging small-scale periodic oscillations are unstable.

4.3. Large-scale oscillations: Spike at the origin

We now illustrate some large-scale oscillatory motions that occur for a spike
centered at the origin x0 = 0 when τ is well beyond the bifurcation value τ 0.
Starting from the initial condition (43), in Figures 6(a) and (b) we plot the
numerically computed spike amplitude am ≡ a(0, t) versus t for τ = 1.38 and
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Figure 6. Plots of am versus t for the GM model at two values of τ when D = 1.0 and ε = 0.01.

τ = 1.5. The parameters for the GM model are D = 1, ε = 0.01, and (p,
q , m, s) = (2, 1, 2, 0). The critical value τ 0 for these parameters is τ 0 =
1.343. Notice that when τ = 1.5, the amplitude of the spike exhibits a
few large oscillations for some range of t, but then eventually collapses to
zero. Similar spike collapse behavior occurs for larger values of τ . However,
when τ = 1.38 we observe a very intricate large-scale motion in the spike
amplitude. This type of motion, which persists for long time intervals, has not
been observed previously for (1). Although the spike remains at the origin, a
numerical solution requires small time-steps and an accurate time integration
scheme to capture the oscillations. The intricate oscillatory motion is not due
to numerical errors as it persists under grid refinement and was also verified
using the NAG library routine D03PCF [24]. A related oscillatory behavior was
found in [15] for the N-dimensional shadow GM problem obtained by taking
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Figure 7. Plots of um versus t for the Schnakenberg model with D = 0.10 and ε = 0.01 at
two different values of τ .

the limit D → ∞ in the multi-dimensional extension of (1). The qualitative
mechanism responsible for this behavior in the shadow system is given in [15].
The analysis of the oscillation shown in Figure 6 is an open problem.

Similar oscillatory behavior occurs for the Schnakenberg model when τ

is increased past the critical value τ 0. In Figures 7(a) and (b) we plot the
numerically computed spike amplitude um ≡ u(0, t) versus t for τ = 0.092
and τ = 0.10, when D = 1 and ε = 0.01. The critical value τ 0 is τ 0 =
0.0873. When τ is sufficiently beyond the value τ 0, the spike amplitude tends
to zero as t increases, such as in Figure 7(b) for τ = 0.10. However, as seen
in Figure 7(a), for intermediate values of τ such as τ = 0.092, the spike
amplitude exhibits a large-scale oscillatory motion persisting for long time
intervals, before it eventually collapses.
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4.4. Large-scale oscillations: Slowly drifting spikes

Next we consider instabilities that occur for quasi-equilibrium solutions where
the spike is initially located at some x0 ∈ (−1, 1). By symmetry τ 0 is an even
function of x0 and so we need only consider x0 ∈ (0, 1). From the numerical
procedure described in Section 4.2, we can calculate the dependence of τ 0 on
x0 ∈ (0, 1) for different values of D. In the remainder of this section we write
τ 0 = τ 0(x0). For different values of D, the results are shown in Figure 8(a) for
the GM model with (p, q, m, s) = (2, 1, 2, 0) and in Figure 8(b) for the
Schnakenberg model. The behavior of τ 0 as a function of x0 depends on the
value of D and is complicated. For D � 1, τ 0 is constant with respect to x0.

Figure 8. Plots of τ 0 versus x0 for the GM model and Schnakenberg model. (a) D = 1.0
(solid curve), D = 0.5 (dashed curve), and D = 0.1 (heavy solid curve). (b) D = 0.1 (solid
curve), D = 0.05 (dashed curve), and D = 0.025 (heavy solid curve).
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For larger values of D, we find that τ 0 is an increasing function of x0 (see the
curves in Figures 8(a) and (b) for D = 1.0 and D = 0.1, respectively). For
smaller values of D, the dependence of τ 0 on x0 is not monotone. The results
shown in these figures for x0 → 1 give the critical value τ 0 for a boundary
spike on an interval of length 2. This value is the same as the threshold for a
spike centered at the origin in a domain of length 4.

The dependence τ 0 = τ 0(x0) suggests that we look for sudden oscillatory
instabilities for slowly drifting spikes. In particular, for certain choices of τ

and the initial spike location x0(0), this dependence of τ 0 on x0 suggests that
at some point during the slow evolution of a spike, a sudden and very intricate
oscillatory motion in its height, occurring on an O(1) time-scale, can develop.
The four experiments below show precisely this feature. The numerical results
displayed below were computed using the NAG library software D03PCF [24]
with 2000 spatial meshpoints and stringent tolerances on the local accuracy
of each time-step. The phenomena persists under spatial grid refinement and
the usual numerical tests. The moving-mesh method performed adequately in
computing these intricate behaviors.

In each of the experiments below, the initial condition for the GM model (1)
was a perturbation of the form (43) of the quasi-equilibrium solution centered
at x0, with a similar form for the Schnakenberg model. The location x = x0(t)
of the maximum of either a for (1) or u for (3) is plotted together with the
maximum values am = a(x0, t) and um = u(x0, t).

Experiment 1 (GM Model)—Persistent oscillation: We take D = 1.0, ε = 0.03,
τ = 1.35, x0(0) = 0.6, and (p, q, m, s) = (2, 1, 2, 0). For D = 1.0, τ 0(x0) is a
monotonically increasing function of x0 for x0 > 0 (see Figure 8(a)). Key
critical values of τ 0(x0) are τ 0(0.6) = 1.477, τ 0(0) = 1.343 and τ 0(0.35) =
1.36. Since τ < τ 0(0.6), the spike is initially stable. It then slowly drifts toward
the origin. However, since τ (0) < τ it experiences a sudden instability before it
reaches the origin. Plots of the spike amplitude am(t) and spike location x0(t)
are shown in Figures 9(a) and (b), respectively. The oscillation for am, which is
shown on a shorter time interval than for x0 only for graphical purposes,
persists for a very long time interval. Recall that with the same parameter
values, but with τ = 0, the corresponding motion was computed previously in
Experiment 1 of Section 3.

Experiment 2 (GM Model)—Oscillation followed by collapse: We take D =
1.0, ε = 0.03, τ = 1.42, x0(0) = 0.6, and (p, q, m, s) = (2, 1, 2, 0). The only
difference between this and the previous experiment is that we have raised the
value of τ . In this case, the spike begins to drift slowly toward the origin,
but then collapses to zero. The numerical results are shown in Figures 10(a)
and (b), respectively. This example is qualitatively similar to the example of
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Figure 9. Plots of am and x0 versus t for Experiment 1 of Section 4.3.

Section 4.2 where, for a spike at the origin, the value of τ well exceeds the
Hopf bifurcation value τ 0.

Experiment 3 (Schnakenberg)—A delayed oscillatory collapse: We take D =
0.05, ε = 0.015, τ = 0.2, and x0(0) = 0.5. For this value of D, we obtain from
Figure 8(b) that τ 0(x0) is monotonically increasing. Key critical values of
τ 0(x0) are τ 0(0.5) = 0.22, τ 0(0.4) = 0.194, and τ 0(0.35) = 0.182. As shown in
Figures 11(a) and 11(b), the spike begins to drift toward the origin. It
then experiences a sudden instability, and then ultimately collapses. Notice,
however, that there is a delayed bifurcation effect in that the spike is able
to penetrate some distance into the unstable region before the instability is
triggered. This phenomenon occurs since the initial perturbation in the spike
amplitude has essentially completely died out before the spike enters the zone of
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Figure 10. Plots of am and x0 versus t for Experiment 2 of Section 4.3.

instability. Similar types of delayed bifurcation phenomena are well-known in
ODE models.

Experiment 4 (Schnakenberg)—Persistent oscillation: We take D = 0.025,
ε = 0.01, τ = 0.459, and x0(0) = 0.25. For this value of D, we have
from Figure 8(b) that τ 0(x0) is monotonically decreasing on 0 ≤ x0 ≤ 0.25.
Key critical values are τ 0(0) = 0.497 and τ 0(0.25) = 0.459. Thus, for
this example, the initial spike location is chosen so that τ = τ 0. Hence a
small-scale oscillation should emerge initially. In Figures 12(a) and 12(b) we
plot um and x0 versus t. The spike moves toward the origin into a region of
stability where τ < τ 0(x0). Notice that the small-scale oscillation persists for a
very long time interval, but is slowly damped out as the spike approaches
the origin. The approach of the spike to the origin is monotonic. Again,
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Figure 11. Plots of um and x0 versus t for Experiment 3 of Section 4.3.

for graphical purposes only, we have plotted um on a shorter time interval
than x0.

Further numerical experiments have revealed three interesting qualitative
features of this type of oscillatory instability: (1) There is no significant
qualitative difference in the behavior between the GM model and the
Schnakenberg model with respect to these oscillations. (2) The spike always
appears to drift slowly toward the origin, rather than toward the boundary of
the domain. This occurs even if the function τ 0(x0) has a minimum at some
point x∗

0 in (0, 1), such as that shown in Figure 8(a) for the GM model where
for D = 0.50 we have x∗

0 ≈ 0.67. If we choose x0(0) > x∗
0 and τ > τ 0(x∗

0),
the spike will attempt to move to the origin through the unstable zone rather
than in the direction of the boundary where it would not experience a sudden



Numerical Challenges for Resolving Spike Dynamics 67

Figure 12. Plots of um and x0 versus t for Experiment 4 of Section 4.3.

instability. (3) The motion of the spike is monotonic toward the origin, but
its speed slows when there is an oscillatory instability in the height of the
spike (see the kink in the graph of Figure 9(b)). The derivation of an explicit
equation of motion of the spike for (1) and (3) when τ > 0, in a form similar
to that given in Propositions 1 and 2, is an open problem.

The type of intricate oscillatory instability observed above, which is initially
triggered through a Hopf bifurcation, has not been observed previously. In
[33] it was shown that the Gray–Scott model can exhibit various types of
chaotic pulse dynamics in certain parameter regimes when the two diffusion
coefficients in the model are of the same asymptotic order. The irregular
behavior observed above is significantly different in that it occurs for an O(1)
inhibitor diffusivity and an O(ε2) activator diffusivity.
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5. Pulse-splitting dynamics with small inhibitor diffusion

When D is sufficiently small, with D = O(ε2), pulse-splitting can occur in the
GM model (1) (cf. [20, 23]). For a certain range of the parameters, an initial
one-spike profile centered at the midpoint of the domain can split into two
spikes that travel toward the ends of the interval. Each of these spikes can
then in turn split again. The splitting process can continue until a sequence
of oscillations fills up the domain. Related pulse-splitting instabilities for the
Gray–Scott model were computed numerically in [17], and then analyzed in
detail in [2, 18, 19, 22]. In [22], a detailed mechanism for pulse-splitting
was put forth, with one key feature being that pulse-splitting is linked to the
disappearance of branches of homoclinic orbits.

For the GM model, pulse-splitting was observed in [20] in their analysis of
bifurcations of homoclinic stripe patterns in thin two-dimensional domains. It
was also predicted by [23]. Similar to the mechanism in the Gray–Scott model,
pulse-splitting in the GM model seems to be related to the disappearance of a
homoclinic orbit, which approximates the solution in the core of the spike, as
D is decreased below some critical value. It is beyond our scope here to give a
full account of pulse-splitting behavior for (1). Instead, we give a numerical
procedure to identity the critical value of D below which pulse-splitting should
occur. We then give an example to validate our prediction, and show that the
moving-mesh method of Section 2 is able to calculate the solution.

When D = O(ε2), the analysis leading to the quasi-equilibrium profiles
ac and hc in (11) is invalid. However, by letting D = O(ε2) in (11b) we
can determine the appropriate scalings for studying pulse-splitting behavior.
Setting D = O(ε2) in (11e), we calculate from (11f ) and (11b) that h =
O(ε1/ζ ) as ε → 0 near the core of the spike. Here ζ is given in (2). This
suggests the following rescaling in the spike core:

h = ε1/ζ h̃, a = εq/(p−1)ζ ã, D = ε2 D0, y = ε−1(x − x0). (44)

Substituting (44) into the steady-state form of (1), and dropping the tilde
notation, we obtain

ayy − a + a p/hq = 0, 0 < y < ∞, (45a)

D0hyy − h + am/hs = 0, 0 < y < ∞, (45b)

with the symmetry condition h′(0) = a′(0) = 0. We look for solutions to this
problem for which a → 0 as y → ∞ and h is bounded as y → ∞. To do so,
we compute solutions to (45) numerically on a large but finite domain 0 < y
< yr. We start from a large value of D0, where we have an initial point on the
solution branch given by the shadow solution a = H γ w(y) with γ = q/(p − 1)
and H ζ = yr [

∫ yr

0 wm dy]−1. Here w satisfies (11d). We then compute the
solution branch to (45) using the boundary value solver COLSYS [34] as D0
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Figure 13. Plots of a(0) versus D0 for the homoclinic orbit of (45) for different exponent sets.
The top curve is for (4, 2, 2, 0), the dashed curve is for (3, 2, 2, 0), the heavy solid curve
is for (3, 2, 3, 1), and the solid curve is for (2, 1, 2, 0). In each case, numerical evidence
indicates that the solution branch cannot be continued below the minimum value of D0 shown
on each curve.

is decreased. In each case, we found that the numerical procedure fails to
converge at some critical value D0 = Dc, where the homoclinic solution for a
and h disappears. In Figure 13 we plot the numerically computed value of a(0)
versus D0. For different exponent sets (p, q, m, s), the critical value Dc is
found to be

Dc = 7.171, (2, 1, 2, 0); Dc = 3.905, (3, 2, 2, 0), (46a)

Dc = 4.410, (3, 2, 3, 1); Dc = 0.886, (4, 2, 2, 0). (46b)

The results below were verified to be independent of yr, when yr > 15. An
estimate for Dc for the exponent set (2, 1, 2, 0) was obtained by another
approach in [20]. They found Dc = 1/.14 ≈ 7.143. In terms of the original
variables, the critical value of D is D = ε2 Dc. The results for Dc for the other
exponent sets have not been reported previously.

Qualitatively, the reason why the homoclinic orbit for a disappears as D0 is
decreased below some critical value is that when D0 is small, h decreases very
fast, and h may decrease faster than a for y � 1. Thus, the term ap/hq in
(45a) may grow as y → ∞. When this condition occurs, it certainly precludes
the existence of a homoclinic orbit. A simple-minded approach to get a
bound on Dc is to analyze the tail behavior for a and h as y → ∞. In this
tail region we assume that a � 1 and h � 1. We then introduce a small
parameter δ by a = δγ â and h = δĥ. The equation (45b) for h transforms to
D0ĥ yy − h̃ + δζ ãm/h̃s = 0. Since ζ > 0, we get that ĥ ∼ che−y/

√
D0 for some
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ch > 0 when δ � 1. The equation for â becomes

âyy − â + c−q
h â peqy/

√
D0 = 0. (47)

For y � 1, we let â = cae−σ y . Substituting this into (47) and ensuring that we
have exponential decay as y → ∞, we require that

σ 2 − 1 > 0, σ (1 − p) + q√
D0

> 0. (48)

The minimum conditions for decay is when we have equality in (48). Setting
σ = 1, we get the prediction that there is no homoclinic orbit if D0 < [q/(p −
1)]2. This simple-minded approach gives a bound on the critical value Dc but,
as seen from (46), this bound is not that close to the actual computed value.
However, this calculation in the tail region does give a qualitative explanation
why the homoclinic orbit ceases to exist as D0 is decreased. Furthermore, it
suggests that Dc should decrease as p increases. This is seen from the results
in (46).

Experiment. As an example, we choose ε = 0.03 and the exponent set (p, q,
m, s) = (2, 1, 2, 0). For these parameter values, we predict from (46) that
pulse-splitting will occur when D < 0.00645. To test this prediction, we take
D = 0.006 and τ = 0.05. The initial condition, with a spike at the origin,
is taken to be a small perturbation from the quasi-equilibrium solution ac

and hc, given in Proposition 1, evaluated at x0 = 0, D = 0.006, ε = 0.03,
and with (p, q, m, s) = (2, 1, 2, 0). The initial condition has the precise
form

a(x, 0) = ac

[
1 + 0.02 cos

(
πx

ε

)
e−x2/(2ε2)

]
, h(x, 0) = hc. (49)

We plot the initial condition in Figure 14(a). We then solve (1) numerically
using the moving-mesh method of Section 2. Since very similar results
are obtained from the NAG library routine D03PCF, we only display the
moving-mesh results.

For this parameter set, pulse-splitting does indeed occur. In Figure 14(b) we
plot the trajectories of the center of the spike as a function of time. The spike
at the origin splits into two spikes at around t = 49.5, and a further splitting
occurs at approximately t = 191.5. In Figure 15(a) we plot the solution at t =
60.5 just after the first splitting event. In Figure 15(b) we plot the solution at
t = 100.5. In Figure 16(a) we plot the solution at t = 200.5 just after the second
splitting event. The solution at t = 350.5 is shown in Figure 16(b). In Figure
17, where t = 1000, the solution has essentially reached an equilibrium. This
equilibrium solution more closely resembles a sinusoidal pattern for a and h
rather than a sequence of spikes. The existence and stability of these large
amplitude sinusoidal waves is an open problem.
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Figure 14. (a) Plots of the initial condition for a (solid curve) and for h (dashed curve). (b)
Plots of the resulting spike locations versus time. The parameter values are (p, q, m, s) = (2,
1, 2, 0), τ = 0.05, ε = 0.03, and D = 0.006.

The question of predicting how many splitting events will occur is presumably
very difficult and depends on the parameter values. Heuristically, if ε is very
small, spikes may become very well-separated after a splitting event provided
that they have not reached the end of the domain. Spikes that are isolated at
any time will have a tendency to split if D is below the critical value ε2 Dc.
The details of this mechanism, which we will not explore here, may be similar
to that in the Gray–Scott model.

We have performed similar pulse-splitting experiments with other parameter
values and exponent sets to test the predictions of (46). Pulse-splitting does
indeed seem to occur when D < ε2 Dc.
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Figure 15. Plots of a (solid curve) and h (dashed curve) at two different times. The parameter
values are (p, q, m, s) = (2, 1, 2, 0), τ = 0.05, ε = 0.03, and D = 0.006.

6. A generalized Gierer–Meinhardt model

There are many activator-inhibitor models that involve coupling the basic GM
model (1) to other differential equations that represent auxiliary chemical
concentrations. In this section we consider one such extension of (1) that has
been used in [3] to model sea-shell patterns. The generalized GM model
considered in Section 6.2 of [3] is the following system for a = a(x , t), h =
h(x , t), and c = c(t):

at = ε2axx − a + a p

hq
, −1 < x < 1, t > 0, (50a)
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Figure 16. Plots of a (solid curve) and h (dashed curve) at two different times. The parameter
values are (p, q, m, s) = (2, 1, 2, 0), τ = 0.05, ε = 0.03, and D = 0.006.

τht = Dhxx − µh + ε−1 am

hs
, −1 < x < 1, t > 0, (50b)

ct = κc

[ ∫ 1

−1
a(x, t) dx − c

]
, (50c)

ax (±1, t) = hx (±1, t) = 0, (50d)

a(x, 0) = a0(x), h(x, 0) = h0(x), c(0) = c0. (50e)

Here ε � 1, κc > 0, and D > 0 are constants. The exponents (p, q, m, s)
are again assumed to satisfy (2). Here c represents the concentration of a
hormone-like substance (see [3]). The coupling between h and c arises from
the dependence of µ on c. From p. 94 of [3] it has the form
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Figure 17. Plot of a (solid curve) and h (dashed curve) at t = 1000. This is very close to the
resulting equilibrium solution. The parameter values are (p, q, m, s) = (2, 1, 2, 0), τ = 0.05,
ε = 0.03, and D = 0.006.

µ = η/c, (51)

where η > 0 is a constant.
Since the solution to this problem will again have spikes that move across

the domain, we employ a moving-mesh numerical method similar to that
described in Section 2. The semi-discrete equation for the approximation of a
and h is the same as in (6). Using the trapezoidal rule, the approximate solution
C(t) for (50c) is required to satisfy the following semi-discrete equation, for
i = 0, . . . , N , t > 0:

C(t)t = κc

N−1∑
i=0

[A(t)i+1 + A(t)i ]

2
(xi+1 − xi ) − κcC(t), with C(0) = c0.

(52)

The numerical procedure is as follows. Using the same monitor function
as in Section 2, we first generate the initial mesh at t = 0. Then, once the
approximate solution {Ai, H i}n

0 on the adaptive moving-mesh is known at
t = tn > 0, the activator concentration is computed at t = tn+1 by means
of an explicit fourth-order Runge–Kutta method on the mesh {x(tn)i}n

0. We
then generate the adaptive moving-mesh at the next time-step by solving the
linearized system (10) with Mi+1/2 and Mi−1/2 computed by the value of A(tn).
We then map the activator concentration A(tn+1), H (tn) on the previous mesh
to the current mesh by a first-order linear interpolation. Next, we calculate the
hormone and inhibitor concentration C(tn+1), H (tn+1) on the current mesh in
terms of the known A(tn+1). The computational results shown below are done
using this method. These numerical results have been verified by comparing
them with corresponding results computed using the routine D03PCF of the
NAG library [24].
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There is no quantitative analysis of (50) in [3]. However, it is indicated on
p. 94 of [3] that the stability of the system should depend upon c through the
inhibitor decay rate µ, and that pulse-splitting behavior should be possible.
Our goal here is to illustrate a few of the different possibilities, and to give
some quantitative estimates on the parameter ranges where different behaviors
are observed.

The key parameters in the experiments below are η and κc. In each of our
experiments, we have taken D = 1.0, ε = 0.03, τ = 0.5, and the exponent set
(p, q, m, s) = (2, 1, 2, 0). In each case, the initial condition for a has three
peaks and is given by

a0(x) = 0.19sech2[ε−1(x − 0.6)] + 0.19sech2[ε−1(x + 0.6)]

+ 0.17sech2[ε−1x]. (53)

The initial condition for c is c0 = 0.01, while the initial condition h0(x) is the
solution to (50b) with τ = 0, a = a0(x), and c = c0. The initial condition for a
is plotted in Figure 18.

We first calculate an equilibrium k-spike solution ae(x), he(x), and ce, to
(50) for ε � 1. From Proposition 1 of [10], we have

ae ∼ H
k∑

j=1

w
[
ε−1(x − x j )

]
,

H ∼ 2
√

µD tanh

(
1

k

√
µ

D

) (∫ ∞

−∞
[w(y)]2 dy

)−1

, (54)

Figure 18. The initial condition a(x , 0).
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where w(y) = 3
2 sech2(y/2) and xj = −1 + (2 j − 1)/k for j = 1, . . . , k. In

terms of H , we have he(xj) = H . In (54), µ = η/ce, where ce satisfies

ce =
∫ 1

−1
ae(x, t) dx ∼ εk H

∫ ∞

−∞
w(y) dy. (55)

Substituting H from (54) into (55), and evaluating the two integrals, we obtain
a transcendental equation for ce given by

ce = 2εk

√
ηD

ce
tanh

(
1

k

√
η

ce D

)
. (56)

It is easy to see that this equation has exactly one root for ce. It is convenient
to introduce a new variable β by β = √

µ/k, where ce = η/µ. In terms of β,
when D = 1, then (56) becomes

β3 tanh β = η

2εk4
, µ = β2k2, (57)

where ε = 0.03.
We now recall some previous stability results for (50) when µ is constant

and τ = 0. From Proposition 11 of [10] we conclude that, when τ = 0 and µ

is constant, a k-spike equilibrium solution with k ≥ 2 is stable if and only if
D/µ < k−2[log(1 + √

2)]−2. Since D = 1, we can use (57) to predict that a
k-spike equilibrium solution to (50) with k ≥ 2 will be stable for τ = 0, when

β > log[1 +
√

2] = 0.881. (58)

In addition, if a k-spike equilibrium solution with k ≥ 2 is unstable for τ = 0
it will be unstable for τ > 0 (cf. [31]). However, if a k-spike equilibrium
solution is stable for τ = 0 it does not mean that we will have stability when
τ > 0. For multi-spike solutions, the critical bounds on D for τ > 0 are as yet
unknown. A one-spike equilibrium solution is stable for τ = 0 for any D > 0.
In Section 4 we determined the stability of a one-spike solution for (1) when
τ > 0. When µ is constant, we can introduce D̃ = D/µ and τ̃ = τ/µ, and
make a change of variables for a and h, as in the Appendix, to map (50a)
and (50b) to (1a) and (1b). This allows us to apply the stability conclusions
of Section 4. We predict that a one-spike solution for (50) will be stable
when

τ < µτ0. (59)

Here τ 0 is the value on the vertical axis in Figure 4(a) of Section 4 at the
value 1/µ along the horizontal axis. If (59) is satisfied, then there will be no
oscillatory instability for a one-spike equilibrium solution.
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Finally, from Section 5, we predict that pulse-splitting should occur when
D/µ < 7.171ε2, where D = 1. In terms of η, this condition becomes

η >
c

7.171ε2
. (60)

Pulse-splitting can occur quickly in time for (50) if κc is very large. When
κc � 1, then c relaxes quickly to c ≈ ∫

1
−1a(x , 0) dx . Using a(x , 0) in (53), we

calculate c ∼ 1.1ε. Using this value in (60), we predict that pulse-splitting will
occur quickly in time for ε = 0.03 when

η > 0.1534ε−1 ≈ 4.755. (61)

Qualitatively, this scenario suggests that as η is increased with κc = O(1),
then more spikes can become stable. However, if both κc and η are very large,
then pulse-splitting can occur. The system (50) is very complicated and certainly
difficult to analyze in precise terms since, as we have seen from Section 4, we
can also have oscillatory instabilities that suddenly arise during the evolution of
spikes when τ is large enough. For the experiments below, the effective value of
τ is small and so oscillatory instabilities do not occur. Therefore, the estimates
given above do provide some rough guidelines on the range of behaviors seen.

Experiment 1. We take the parameter values κc = 0.1 and η = 1.0. From
(57) we calculate β = 0.698 when k = 3. Hence, from (58) we expect that
a three-spike equilibrium solution will be unstable when τ = 0, and, thus,
unstable when τ > 0. For k = 1, we calculate from (57) that β = 2.5645 and
µ = β2 ≈ 6.58. Then, from Figure 4(a) of Section 4 we calculate τ 0 ≈ 2.73
when D = 1/µ ≈ 0.152 along the x-axis of Figure 4(a). Thus, for τ = 0.5,
the inequality (59) is satisfied and a one-spike solution is stable. For k = 2,
we calculate β = 1.093 from (57). Thus, from (58), we have that a two-spike
equilibrium solution is stable when τ = 0. However, as mentioned above, we
can make no conclusion about the stability of this solution when τ > 0.

In Figures 19 and 20 and we show that an initial three-bump solution
undergoes a series of transitions eventually producing a one-spike solution.
The remaining spike then moves slowly toward the midpoint of the domain.

Experiment 2. In this example we show that, depending on the values of η

and kc, an initial condition with three peaks can be stabilized to an equilibrium
solution with either two or three spikes. In Figure 21(a) we exhibit the resulting
two-spike solution when kc = 100, η = 2.0, and t = 200. In Figure 21(b) we
exhibit the resulting three-spike solution for kc = 20, η = 4.3, and t = 500. In
each case, the numerics indicate that we have reached a stable equilibrium.

When η = 2.0, we calculate from (57) that β = 1.337 when k = 2, and β =
0.843 when k = 3. Thus, from (58) we conclude that a two-spike equilibrium
solution is stable when τ = 0, but that a three-spike equilibrium solution is
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Figure 19. Plots of a (solid curve) and h (dashed curve) for Experiment 1 at different times.

unstable when τ = 0 and also τ > 0. We can offer no conclusion on the
stability of the two-spike equilibrium solution when τ = 0.5. For a one-spike
solution, we calculate β = 3.221 from (57). We can again estimate the critical
value of τ for a Hopf bifurcation, to conclude that a one-spike solution is
stable when τ = 0.5. Finally, when η = 4.3, we calculate β = 1.022. Thus, a
three-spike equilibrium solution is stable when τ = 0. The numerical results
shown in Figure 21(b) indicate that it must be stable when τ = 0.5.

Although κc is large in each of these examples, the predicted threshold (61)
for pulse-splitting is not satisfied. Pulse-splitting behavior was not found in
these examples.

Figure 20. Plot of a (solid curve) and h (dashed curve) for Experiment 1 at t = 2000.
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Figure 21. Plots of a (solid curve) and h (dashed curve) for Experiment 2. For both plots we
have, numerically, reached an equilibrium.

Experiment 3. Finally, we show that pulse-splitting behavior can occur when
κc is very large and the criterion (61) is satisfied. We take kc = 10,000 and
η = 100. In Figure 22, we exhibit a pulse-splitting behavior when t = 70.
The splitting behavior is complete when t = 100 as shown in Figure 23(a).
Finally, in Figure 23(b) we show that the pattern reaches an equilibrium
solution, resembling a large amplitude sinusoidal wave with five maxima, when
t = 500.

Figure 22. Plot of a (solid curve) and h (dashed curve) for Experiment 3 at t = 70 showing
the pulse-splitting behavior.
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Figure 23. Plots of a (solid curve) and h (dashed curve) for Experiment 3 at two different times.
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Appendix. Nondimensionalizing the GM and Schnakenberg models

The dimensional Gierer–Meinhardt model is

AT = D1 Ayy − αA + β
Ap

Hq
, (A.1a)

HT = D2 Hyy − ξ H + σ
Am

H s
, (A.1b)

where α, β, ξ , and σ , are positive constants. The exponents (p, q, m, s) satisfy
(2). We assume that D2/D1 is large, and so we introduce a small parameter ε by

D2

D1
= ε−2 K0, (A.2)

where K 0 > 0 is O(1) as ε → 0. In this limit, (A.1) supports spike solutions
that are localized in A. We introduce dimensionless variables a, h, t and x, by

T = ωt, x = y/L, A = ε−νa a0a, H = ε−νh h0h, (A.3)
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where a0 and h0 are constants. Substituting (A.3) into (A.1), we get

1

ω
at = D1

L2
axx − αa + βενa(1−p)+νhq

(
a p−1

0

hq
0

)
a p

hq
, (A.4a)

1

ω
ht = D2

L2
hxx − ξh + σε−νam+νh (1+s)

(
am

0

hs+1
0

)
am

hs
. (A.4b)

To ensure that the amplitude of a spike is O(1) as ε → 0, we must make the
coefficients of ap/hq and am/hs be O(1) and O(ε−1) as ε → 0, respectively.
This condition yields that

νa = q

p − 1
ζ−1, νh = ζ−1, (A.5)

where ζ was defined in (2). To eliminate as many parameters as possible in
(A.4), we choose ω and L by ω = 1/α and L2 = D1ε

−2/α. The constants a0

and h0 are taken to be

h0 =
[

ξ

σ

(
β

α

) m
p−1

] 1
ζ

, a0 =
(

α

β

) 1
p−1

[
ξ

σ

(
β

α

) m
p−1

] q
(p−1)ζ

. (A.6)

Then, (A.4) becomes

at = ε2axx − a + a p

hq
, (A.7a)

τht = τε2

(
D2

D1

)
hxx − h + ε−1 am

hs
. (A.7b)

Finally, substituting (A.2) for D2/D1 into (A.7b), we obtain the dimensionless
system (1) where τ and D in (1) are defined by

τ ≡ α/ξ, D ≡ τ K0. (A.8)

The dimensional Schnakenberg model is

UT = D1Uyy − a1U + a2U 2V, (A.9a)

VT = D2Vyy + b1 − b2U 2V, (A.9b)

where a1, a2, b1, and b2 are positive constants. We assume that D2/D1 is
large, and so we introduce a small parameter ε by

D2

D1
= ε−3 K0, (A.10)

where K 0 > 0 is O(1) as ε → 0. Notice here that the scaling is different than in
(A.2) for the GM model. We introduce dimensionless variables u, v, t and x by

T = ωt, x = y/L, U = ε−1u0u, V = εv0v, (A.11)
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where u0 and v0 are constants. Substituting (A.11) into (A.9), we get

1

ω
ut = D1

L2
uxx − a1u + a2 (u0v0) u2v, (A.12a)

εv0

2ωb1
vt = εD2v0

2b1L2
vxx + 1

2
− b2

2b1ε

(
u2

0v0
)

u2v. (A.12b)

To eliminate as many parameters as possible in (A.12), we choose ω and L by
ω = 1/a1 and L2 = D1ε

−2/a1. We also take u0v0 = a1/a2. With this scaling,
(A.12) transforms to

ut = ε2uxx − u + u2v, (A.13a)

εa1v0

2b1
vt = a1v0 D2ε

3

2b1 D1
vxx + 1

2
− b2

2b1v0

(
a1

a2

)2

ε−1u2v. (A.13b)

We then choose v0 as

v0 = b ≡ b2

2b1

(
a1

a2

)2

. (A.14)

Finally, substituting (A.10) for D2/D1 into (A.13b), we obtain the dimensionless
system

ut = ε2uxx − u + u2v, (A.15a)

ετ0vt = Dvxx + 1
2 − ε−1u2v. (A.15b)

Here τ 0 and D are defined by

τ0 ≡
(

a1

2b1

)
b, D ≡ τ0 K0, (A.16)

with b given in (A.14).
Thus, when the coefficients a1, a2, b1, and b2, in (A.9) are O(1) as ε → 0,

the natural scaling for a spike solution to the Schnakenberg model (A.9) is
such that the v component has a slow time-dependence. This is quite different
from the GM nondimensionalization leading to (1). To incorporate the effect
of the τ term in (3b), we consider a related distinguished limit where τ 0 =
O(ε−1) in (A.15b) and D = O(1) as ε → 0. From (A.16) and (A.10), this
implies that K 0 = O(ε) and D2/D1 = O(ε−2) as ε → 0. When τ 0 = O(ε−1),
we obtain the system (3), where τ in (3b) is given by τ ≡ ετ 0.
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