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Abstract. It is demonstrated that spectral methods can be used to improve the accu-
racy of numerical solutions obtained by some lower order methods. More precisely,
we can use spectral methods to postprocess numerical solutions of initial value differ-
ential equations. After a few number of iterations (say 3 to 4), the errors can decrease
to a few orders of magnitude less. The iteration uses the Gauss-Seidel type strategy,
which gives an explicit way of postprocessing. Numerical examples for ODEs, Hamil-
tonian system and integral equations are provided. They all indicate that the spectral
processing technique can be a very useful way in improving the accuracy of the nu-
merical solutions. In particular, for a Hamiltonian system accuracy is only one of the
issues; some other conservative properties are even more important for large time sim-
ulations. The spectral postprocessing with the coarse-mesh symplectic initial guess can
not only produce high accurate approximations but can also save a significant amount
of computational time over the standard symplectic schemes.

AMS subject classifications: 35Q99, 35R35, 65M12, 65M70
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1 Introduction

We begin by considering a simple ordinary differential equation with given initial value:

y′(x)= g(y;x), 0< x≤T, (1.1)

y(0)=y0. (1.2)
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There have been many numerical methods for solving (1.1)-(1.2), see, e.g., [9, 10]. How-
ever, most of the existing methods have an algebraic rate of convergence, i.e., O(hα), with
α=1 for the Euler method, and α=4 for the RK4 method.

A natural question is can we obtain exponential (spectral) rate of convergence for
solving problem (1.1)-(1.2)? For boundary value problems, the answer is positive and
well known, see, e.g., [2, 4, 14]. However, for the initial value problem (1.1)-(1.2), spectral
methods are not attractive due to the following reasons: The problem (1.1)-(1.2) is a local
problem, so a global method (such as spectral method) will require larger storage (need
to store all data in a fixed interval) and computational time (need to solve a linear system
or a nonlinear system in case that F in (1.1) is nonlinear). These disadvantages makes the
use of the spectral approach for problem (1.1)-(1.2) less attractive.

The motivation of this article is to propose a spectral postprocessing technique which
uses the numerical solutions of a lower order method to serve as starting value of the
spectral methods. Then we take a few Gauss-Seidel type iterations for a well designed
spectral method. This postprocessing procedure will help us to recover the exponential
rate of convergence with little extra computational resource. In particular, there is no
need of solving a linear system or a nonlinear system in case that F in (1.1) is nonlinear.
Moreover, the method is found extremely stable for the initial value problem (1.1)-(1.2).

2 Spectral postprocessing for initial value ODEs

2.1 Spectral postprocessing for an ODE equation

Assume the size of [t0,T] is not too big; otherwise a trick in Section 2.2 will be used. In
this case, we introduce the linear coordinate transformation

x=
T−t0

2
s+

T+t0

2
, −1≤ s≤1, (2.1)

and the transformations

Y(s)=y

(

T−t0

2
s+

T+t0

2

)

, G(Y;s)= g

(

Y;
T−t0

2
s+

T+t0

2

)

. (2.2)

Then problem (1.1)-(1.2) becomes

Y′(s)=G(Y;s), −1< s≤1; (2.3)

Y(−1)=y0. (2.4)

2.1.1 Chebyshev collocation approach

Let {sj}N
j=0 be the Chebyshev-Gauss-Lobatto points: sj =cos(πj/N) ,0≤ j≤N. We project

G to the polynomial space PN :

G(Y;s)=
N

∑
j=0

G(Yj;sj)Fj(s), (2.5)
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where Fj is the j-th Lagrange interpolation polynomial associated with the Chebyshev-
Gauss-Lobato points. Since Fj∈PN , it can be expanded by the Chebyshev basis functions:

Fj(s)=
N

∑
m=0

αmjTm(s). (2.6)

Assume (2.6) is satisfied in the collocation points {si}N
i=0, i.e.,

Fj(si)=
N

∑
m=0

αmjTm(si), 0≤ i≤N, (2.7)

which gives (see (1.3.17) of [14])

αmj =
2

Nc̃m

N

∑
i=0

1

c̃i
Fj(si)cos

(

imπ

N

)

=
2

Nc̃m c̃j
cos

(

jmπ

N

)

,

where c̃0 = c̃N =2 and c̃m =1 for 1≤m≤N−1. Using the above result and (2.3)-(2.6) gives

Y(si)=y0+
2

N

N

∑
j=0

N

∑
m=0

G(Yj;sj)
1

c̃m c̃j
cos

(

jmπ

N

)

∫ si

−1
Tm(s)ds. (2.8)

Using the relation

2Tn(x)=
1

n+1
T′

n+1(x)− 1

n−1
T′

n−1(x),

we finally obtain the following numerical scheme

Yi =y0+
N

∑
j=0

ωijG(Yj;sj), (2.9)

where

ωij =
1

Nc̃j

N

∑
m=0

1

c̃m
cos

(

jmπ

N

)[

1

m+1
Tm+1(si)−

1

m−1
Tm−1(si)+

2(−1)m

m2−1

]

. (2.10)

It is noticed that Tm±1(si)=cos((i(m±1)π/N).

2.1.2 Legendre collocation approach

Let {xj}N
j=0 be the Legendre-Gauss-Lobatto points, i.e., x0=−1,xN =1 and xj (1≤ j≤N−1)

be the roots of L′
N(x). We expand Fj(s) in (2.5) by

Fj(s)=
N

∑
m=0

βmjLm(s). (2.11)
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Assuming the above equation holds at the collocation points {xj}N
j=0, we have (see, e.g.,

(1.3.30) of [14]) that

βmj =
1

N+1

N

∑
i=0

Fj(xi)
Lm(xi)

LN(xi)
=

1

N+1

Lm(xj)

LN(xj)
. (2.12)

Using the relation

Ln(x)=
1

2n+1

(

L′
n+1(x)−L′

n−1(x)
)

, (2.13)

and (2.11)-(2.12), we obtain the following numerical scheme

Yi =y0+
N

∑
j=0

wjiG(Yj,xj), (2.14)

where

wji =
1

N+1

N

∑
m=0

Lm(xj)

LN(xj)

1

2m+1

[

Lm+1(xi)−Lm−1(xi)
]

. (2.15)

It is known that the size of the domain [t0,T] of (1.1) has an impact on the convergence of
the method. In particular, it involves computations of too many points in formulas (2.9)
and (2.14), even for the points very close to t0. To fully utilize the advantage of the initial
value problems, it is reasonable to partition the integration interval into sub-intervals
with smaller size, as will be demonstrated in Section 2.2.

It is pointed out that the methods in Section 2.1.2 are the Labatto IIIA methods, see,
e.g., [5].

2.1.3 Numerical examples

Our first example is a linear problem with exact solution.

Example 2.1. Consider a simple example

y′ =y+cos(x+1)ex+1, x∈ (−1,1],

y(−1)=1.
(2.16)

The exact solution of the above problem is y=(1+sin(x+1))exp(x+1).

We use the first order explicit Euler method to solve the problem first (with a fixed
mesh size h = 0.1). Then we use the spectral postprocessing formula (2.14) to update
the solutions using the Gauss-Seidel type iterations. The maximum error after using the
Euler method is about 0.6663; however, after 6 iterations, the error is reduced to 10−10

with about 14 collocation points. The result can be seen from Fig. 1 (a).
We then use the 2nd-order Runge-Kutta method to obtain the initial value. The max-

imum error after using RK2 is about 0.0157. After 6 iterations, the error is reduced to
10−12 with about 14 collocation points. The result can be seen from Fig. 1 (b).

Finally, we use the 4th-order Runge-Kutta method to obtain the initial value. The
maximum error after using RK4 is about 1.45∗10−6. After 6 iterations, the error is reduced
to 10−14 with about 14 collocation points. The result can be seen from Fig. 1 (c).
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Figure 1: Example 2.1: errors vs Ns for spectral postprocessing method (2.14), with (a): Euler, (b): RK2, and
(c): RK4 solutions as the initial data.

2.2 Spectral postprocessing for Hamiltonian systems

As an application, we apply in this section the spectral postprocessing technique for the
Hamiltonian system:

dp

dt
=∂qH(p,q),

dq

dt
=−∂pH(p,q), t0≤ t≤T,

(2.17)

with the initial value p(t0)=p0, q(t0)=q0. First we review some traditional methods such
as Runge-Kutta method and symplectic method for (2.17) (see [8,11,12]). These methods
are explicit and easy for implementation. We denote pn ≈ p(tn) and qn ≈q(tn).

• 4th-order explicit Runge-Kutta: method

p1 =
(∂H

∂q

)

qn
, q1 =−

(∂H

∂p

)

pn
, p2 =

(∂H

∂q

)

qn+ ∆t
2 q1

, q2 =−
(∂H

∂p

)

pn+ ∆t
2 p1

;

p3 =
(∂H

∂q

)

qn+ ∆t
2 q2

, q3 =−
(∂H

∂p

)

pn+ ∆t
2 p2

, p4 =
(∂H

∂q

)

qn+ ∆t
2 q3

, q4 =−
(∂H

∂p

)

pn+ ∆t
2 p3

;

pn+1 = pn +
∆t

6
(p1+2p2+2p3+p4), qn+1 =qn+

∆t

6
(q1+2q2+2q3+q4). (2.18)
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• 4th-order explicit symplectic method:

p1 = pn+c1τ
(∂H

∂q

)

qn
, q1 =qn−d1τ

(∂H

∂p

)

p1

, p2 = p1+c2τ
(∂H

∂q

)

q1

;

q2 =q1−d2τ
(∂H

∂p

)

p1

, p3 = p2+c3τ
(∂H

∂q

)

q2

, q3 =q2−d3τ
(∂H

∂p

)

p2

;

pn+1 = p3+c4τ
(∂H

∂q

)

q3

, qn+1 =q3−d4τ
(∂H

∂p

)

pn+1
, (2.19)

where c1 = 0,c2 = c4 = α,c3 = β,d1 = d4 = α/2,d2 = d4 = (α+β)/2; or c1 = c4 = α/2,
c2 = c3 =(α+β)/2, d1 =d3 =α,d2 = β,d4 =0. Here α=(2− 3

√
2)−1, β=1−2α.

Since the Hamiltonian system needs large time evolution to reach a stable state, we parti-
tion the time interval [t0,T] into some sub-intervals of length 2. This partition makes the
spectral collocation and time marching easier. Set tk=t0+2k and Ik=[tk,tk+1]. So problem
(2.17) becomes

dp

dt
=∂qH(p,q),

dq

dt
=−∂pH(p,q), t∈ Ik,

p(tk)= pk, q(tk)=qk.
(2.20)

Integrating (2.20) leads to a system of integral equation

p(t)= pk +
∫ t

tk

∂qH(p,q)ds, q(t)=qk−
∫ t

tk

∂pH(p,q)ds. (2.21)

Assume that we already have a coarse solution obtained from some difference schemes
(say Runge-Kutta method or symplectic methods). Assume (2.21) holds at the Legendre
or Chebyshev collocation points:

p(tkj)= pk+
∫ tkj

tk

∂qH(p,q)ds, q(tkj)=qk−
∫ tkj

tk

∂pH(p,q)ds, (2.22)

where tkj=(tk+1)+θj,0≤j≤N. Here θj∈[−1,1] are the Legendre or Chebyshev collocation
points. The corresponding spectral scheme for the above system can be obtained by
following the approach (2.9)-(4.1) or (2.14)-(2.15).

2.2.1 Numerical Examples

Example 2.2. Consider the Hamiltonian problem (2.17) with H(p,q) = (p2+q2)/2 and
p(t0)=sin(t0),q(t0)=cos(t0). This system has an exact solution (p,q)=(sint,cost).

We take T = 1000 in our computations. Since the exact solution of (p,q) is known,
the maximum errors can be computed after obtaining the numerical solutions. Table 1(a)
presents the maximum error in t ∈ [0,1000] using both the RK4 method (2.18) and the
symplectic method (2.19).
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Table 1: Example 2.2. (a): the maximum errors obtained by RK4 and the symplectic method; (b): spectral
postprocessing results using the RK4 (2.18) (∆t = 0.1) as the initial data in each sub-interval [tk,tk +2]; (c):
same as (b), except that RK4 is replaced by the symplectic method (2.19). Here N denotes the number of
spectral collocation points used.

(a) RK4 Symplectic
Max. Error CPU time Max. Error CPU time

∆t=10−1 blow up – 9.20e-03 0.16s

∆t=10−2 1.81e-0 1.60s 1.32e-06 1.52s

∆t=10−3 2.43e-2 12.02s 9.16e-11 10.60s

(b) iter step = 3 iter step =6
Max. Error CPU time Max. Error CPU time

N = 8 1.74e-2 1.796s 5.49e-07 1.828s

N = 10 1.74e-2 1.813s 5.49e-07 1.843s

N = 12 1.74e-2 1.828s 5.49e-07 1.859s

(c) iter step = 3 iter step =6
Max. Error CPU time Max. Error CPU time

N = 8 2.23e-5 1.797s 7.07e-10 1.843s

N = 10 2.17e-5 1.812s 6.83e-10 1.862s

N = 12 2.14e-5 1.860s 6.81e-10 1.906s

Table 1(b) shows the performance of the postprocessing procedure with initial data in
[tk,tk+2] generated by using RK4 (∆t=0.1). It is seen that with N =8 this postprocessing
improve the numerical errors the order to 10−2 (after 3 iterations) and finally to the order
to 10−7 (after 6 iterations). Without using the spectral iterations, the approximation is
blow up with ∆t=0.1.

If we use the symplectic scheme (2.19) with ∆t = 0.1 to produce the starting value in
each [tk,tk+2], then the accuracy of the spectral postprocessing is improved. It is observed
from Table 1(c) that with N = 8 this postprocessing changes the numerical errors from
0.0092 (no interaction) to the order to 10−5 (after 3 iterations) and finally to the order
to 10−10 (after 6 iterations). To reach the same accuracy of about 10−10, the symplectic
scheme without postprocessing requires about 5 times more CPU time.

In Fig. 2, we show the numerical errors against the number of spectral collocation
points using different number of iterations. Again it is observed that spectral accuracy is
recovered after a few postprocessing iterations. It is also seen that more accurate results
are obtained if the initial guess is given by the symplectic methods.

In the following example, we consider a problem proposed by Shen and Wang [16]
where a set of Fourier-like basis functions is constructed for Legendre-Galerkin method
and a new space-time spectral method is proposed.



786 T. Tang and X. Xu / Commun. Comput. Phys., 5 (2009), pp. 779-792

(a) 4 5 6 7 8 9 10
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Iter = 3
Iter = 5 
Iter = 7

(b) 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iter = 3
Iter = 5
Iter = 7

Figure 2: Example 2.2: errors vs Ns and iterative steps with (a): RK4 results and (b): symplectic results as the
initial data.
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Figure 3: Example 2.3: (a) errors vs Ns and iterative steps and (b) numerical solutions with multiple initial
values.

Example 2.3. In the following example, we take

H(p,q)=
1

2
q2− 2

3
q4− 1

2
p2.

The initial condition is chosen as p(t0)=2acos(2t0),q(t0)= asin(2t0),a=0.25t0 ∈ [0,π).
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Figure 4: Example 2.4: Model of Fermi, Pasta & Ulam from [9].

This system does not have an exact solution for p and q, but its Hamiltonian is con-
served in the sense that

H(p(t),q(t))≡H(p0,q0). (2.23)

Fig. 3 (a) shows the error between the exact solution and the numerical solution obtained
by the proposed spectral postprocessing method, where the exact solution is obtained by
using the 4th-order explicit symplectic scheme (2.19) with ∆t=10−4. Moreover, Fig. 3 (b)
gives the numerical solution of this system with multiple initial values, which is compa-
rable with the published results [16].

Example 2.4. The Fermi-Pasta-Ulam Problem is a simple model for simulations in sta-
tistical mechanics which revealed highly unexpected dynamical behavior. Here we only
consider a modification presented in [9]. It consists of a chain of m mass points, connected
with alternating soft nonlinear and stiff linear springs, and fixed at the end points; see
Fig. 4. We can form a Hamiltonian system from this model [9]

H(y,x)=
1

2

2m

∑
i=0

y2
i +

ω2

2

m

∑
i=1

x2
m+i+

1

4

(

(x1−xm+1)
4

+
m−1

∑
i=1

(xi+1−xm+i+1−xi−xm+i)
4+(xm+x2m)4

)

, (2.24)

where xi (i = 1,··· ,m) represents a scaled displacement of i-th stiff spring, xm+i a scaled
expansion of the i-th stiff spring, and yi, ym+i their momenta, and ω is assumed to be
large. The initial values are 0 except x1(0)=1,y1(0)=1,xm+1(0)=ω−1,ym+1(0)=1.

The equations of motion are Hamiltonian system, so the total energy is exactly con-
served, i.e., H(y,x)= H(y(0),x(0)). Moreover, there is another interesting feature which
is the energy exchanged between stiff springs. Assume that the energy of the j-th stiff
spring is defined by

Ij(xm+j,ym+j)=
1

2
(y2

m+j+ω2x2
m+j). (2.25)

It is known that the total oscillatory energy I =∑
m
j=1 Ij remains close to a constant

I(y,x)= I(y(0),x(0))+o(
1

ω
),
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Figure 5: Example 2.4: the oscillatory energies I1, I2, I3 and I, with m=3, ω =10.
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Figure 6: Example 2.4: Maximum error by using (a) implicit midpoint scheme and (b) 4 postprocessing
iterations, with the initial guess given by the implicit midpoint with ∆t=10−2.

which can be seen from Fig. 5.

In the following numerical experiment we choose m =3, ω =10, and t∈ [0,80]. From
Fig. 6 we can see that the traditional implicit mid points method can only give us an
algebraic rate of convergence (about ∆t2), but base on this method we can improve the
errors from 10−2 (implicit mid points) to 10−5 (after 4 iterations).
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3 Spectral postprocessing for Volterra integral equations

In [15], Legendre spectral method is proposed and analyzed for Volterra type integral
equations:

u(x)+
∫ x

a
k(x,s,u(s))ds= g(x), x∈ [a,b] (3.1)

where the kernel k and the source term g are given. We will show that the spectral post-
processing technique introduced in this work can be used to speed up the convergence of
a standard method (such as the Trapezoidal method or a collocation method [3, 13, 17]).

Let {θi}Ns
i=0 be the zeros of Legendre polynomials of degree Ns+1, i.e., LNs+1(x). Then

the spectral collocation points are xs
i = (b−a)θi/2+(b+a)/2. We collocate (3.1) at the

above points:

u(xs
i )= g(xs

i )−
∫ xs

i

a
k(xs

i ,s,u(s))ds, 0≤ i≤Ns . (3.2)

Using the linear transform

s(θ)=
x−a

2
θ+

x+a

2
, si(θ)=

xs
i −a

2
θ+

xs
i +a

2
, −1≤ θ≤1 (3.3)

and the spectral approach of [15], we have

u(xs
i )= g(xs

i )−
xs

i −a

2

Ns

∑
k

k
(

xs
i ,si(θk),u(si(θk))

)

wk, (3.4)

where the weights {wj} and the detailed implementation of Eq. (3.4) can be found in [15].
We use the Trapezoidal method to obtain numerical solution for (3.1) on the even

distributed grid xd
i = a+ih/Nd, where h = (b−a)/Nd. This gives a set of approxima-

tion {u(xd
i )}

Nd

i=0. Here in order to calculate u(si(θk)), we do not use interpolation with

{u(xd
i )}

Nd

i=0 directly. Instead, we first use these {u(xd
i )}

Nd

i=0 to interpolate {u(xs
i )}Ns

i=0, then

we use {u(xs
i )}Ns

i=0 to interpolate u(si(θk)). This method takes the advantage that the
newly updated u(xs

i ) can be used immediately; i.e., we can use the Gauss-Seidel type
iterations.

Table 2: Example 3.1: the maximum point-wise error vs the number of spectral collocation points after 4
iterations.

N 6 8 10 12
error 1.13e-5 3.63e-7 1.32e-7 4.91e-8

N 14 16 18 20
error 1.88e-8 8.22e-9 4.03e-9 2.08e-9

Example 3.1. Consider Eq. (3.1) with k(x,s,u)=2tan(u)/(1+x2+s2),a=−1, b=1,g(x)=
arctan(x)+ln(1+2x2)−ln(2+x2). The exact solution of the above problem is u(x) =
arctan(x).
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Figure 7: Errors vs Ns and iterative steps: (a) for Example 3.1; and (b): for Example 3.2.

With Nd=200 in the Trapezoidal method (which means h=0.01), the maximum point-
wise error is 3.37∗10−3. We then use (3.4) to postprocess the data obtained by the Trape-
zoidal method. Table 2 shows the maximum point-wise error between the exact solution
and the approximated solutions after using 4 iterations. The errors against the number
of iteration are plotted in Fig. 7(a).

Example 3.2. Consider a two-dimensional second-kind Volterra equation

u(x,y)+
∫ x

a

∫ y

a
k(x,y,s,t,u(s,t))dtds= g(x,y), (x,y)∈ [a,b]2 , (3.5)

with

g(x,y)=sinπ(x+y)+
(x+1)(y+1)

1+x2+y2
− cos4π(x+y)+cos4πx+cos4πy−1

16π2(1+x2+y2)
,

k(x,y,s,t,u)=
8cosπ(s+t)u2

1+x2+y2
, a=−1, b=1.

This problem has a unique solution u(x,y)= sinπ(x+y). With Nd =50 (i.e., h=0.04),
the Trapezoidal method gives an error of 1.31∗10−3. With a spectral postprocessing (the
formula can be found in [15]), this error can be improved to the order of 10−10. Table
3 presents the results with various spectral collocation points after 4 spectral postpro-
cessing iterations. Fig. 7(b) shows the convergence rate versus the number of spectral
collocation points with four different iterations. Clearly, the accuracy has been improved
significantly after 4 or 6 iterations.
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Table 3: Example 3.2: the maximum point-wise error vs the number of spectral collocation points after 4
iterations.

N 6 8 10 12
error 1.50e-02 4.21e-04 4.87e-06 4.88e-08

N 14 16 18 20
error 5.65e-09 6.24e-10 2.81e-10 1.18e-10

4 Conclusion

In this work, we proposed a method for enhancing the accuracy of the numerical solution
to the initial value problems using the spectral postprocessing technique. The method
uses the Gauss-Seidel iteration idea, so the resulting method is explicit which is easy to
implement. The numerical experiments show that the postprocessing method is stable
and efficient. The future research along this direction includes theoretical analysis of the
proposed method and applications to more practical problems such as wave interaction
problems and Lotka-Volterra population system [1, 6].

One of the main points of this work is to demonstrate that with the spectral postpro-
cessing approach a significant amount of computational time can be saved while a high
accuracy can be achieved. For example, Table 1 shows that even for Hamiltanian systems
a non-symplectic method (neither the method (2.9) nor the method (2.14) are symplectic)
together with a coarse-mesh symplectic initial guess can reach an accuracy of O(10−10)
with less than 2 CPU seconds; while a straightforward symplectic method requires about
10 seconds.

In using the spectral postprocessing technique, the Gauss-Seidel procedure of the type

Y
(k+1)
i =y0+∑

j≤i

ωijG(Y
(k+1)
j ;sj)+∑

j>i

ωijG(Y
(k)
j ;sj), (4.1)

for the ODE problems (i.e., problems in Section 2); and

Y
(k+1)
i =y0+∑

j<i

ωijG(Y
(k+1)
j ;sj)+∑

j≥i

ωijG(Y
(k)
j ;sj), (4.2)

for the integral equations (i.e., problems in Section 3). The method (4.2) is easy to imple-
ment; but (4.1) needs some nonlinear solver if G is nonlinear. For the Volterra equations,
the very explicit iteration formula (4.1) can be used directly, which is found simple and
stable. The resulting formula requires a simple Newton iteration to deal with the term

Y
(k+1)
i −ωiiG(Y

(k+1)
i ;si). Since the initial guess of the iteration is already quite accurate,

the Newton iteration turns out to be very efficient; only one or two iterations will be
enough to guarantee the convergence.
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