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Abstract. In this paper, the Kinetic Flux Vector Splitting (KFVS) scheme is extended to
solving the shallow water equations with source terms. To develop a well-balanced scheme
between the source term and the flow convection, the source term effect is accounted in the flux
evaluation across cell interfaces. This leads to a modified gas–kinetic scheme with particular
application to the shallow water equations with bottom topography. Numerical experiments
show better resolution of the unsteady solution than conventional finite difference method and
KFVS method with little additional cost. Moreover, some positivity properties of the gas–kinetic
scheme is established.
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1. Introduction

The study of wave motion in shallow water leads to a system of conservation laws.
If the shallow water is over a wavy bottom, then the system will involve geometrical
source terms. The one–dimensional problem is governed by the following equation:{

ht + (hu)x = 0,

(hu)t + (hu2 + 1
2Gh2)x = −Gha′(x),

(1.1)

where G is the gravitational constant, h is the height of the water above the
wavy bottom characterized by the function a(x) and u is the velocity. In or-
der to accurately capture the numerical solutions for the above equations, many
approaches have been proposed, see, e.g., [1, 3, 4, 5, 7, 9].

For steady state solutions, the equilibria of the system (1.1) satisfy

hu ≡ h−u−, (1.2)

u2

2
+ (h + a(x))G ≡ u2

−
2

+ (h− + a−)G, (1.3)
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where h− = lim
x→−∞h(x) > 0 , u− = lim

x→−∞u(x) , and a− = lim
x→−∞ a(x) ≥ 0 . If

the function a(x) is smooth and

sup
x

|a(x) − a−| � 1, (1.4)

then the above algebraic system has smoothly varying solutions with h > 0 and
sign(u) = sign(u−) . In [3], Greenberg and LeRoux noticed that the development
of schemes that preserve such equilibria are desirable. They also observed that for
scalar equation which can be regarded as model problem (1.1), the standard cell
averaging schemes such as the Godunov or Lax–Friedrichs (LxF) schemes can not
preserve such equilibria. For a general hyperbolic equations with source term,

Wt + F (W )x = G(W ),

in order to preserve the similar equilibria the flux function and the source term
have to be well balanced, such as

F (W )x = G(W ).

Numerically, a well balanced finite volume method should satisfy

(Fj+ 1
2
− Fj+ 1

2
)

∆x
= G(Wj).

In order to make the above equation valid generally, the flux function at the
cell interface has to reflect the source term effects. In [4] Jin proposed a simple
numerical method for capturing the steady solution of hyperbolic systems with
geometrical source terms. One application of his method is for the shallow water
equations. Due to the simple nature of the shallow water equations, the source
term G(Wj) can be specifically formulated using the cell interface values so that
the above equilibria are satisfied exactly. For more general source terms, such
as the isothermal gas inside a gravitational field, LeVeque [5] designed a more
general scheme by constructing an equilibrium initial condition at each time step
for the Riemann solution. For the steady state calculation, this method has been
successfully applied to both the shallow water equations and the isothermal gas
flow in a gravitational field. In both LeVeque and Jin’s methods, the schemes
are nicely designed based on the requirement of preserving the equilibria for the
shallow water equations.

In this work, we will design a well balanced scheme for the shallow water
equations, aiming to obtain accurate approximations for both unsteady and steady
flow situations. It is not easy to construct such a scheme when source terms are
presented. For example, if the wary bottom a is approximated as a simple jump
at a cell interface, see Fig.1, the source term effect on the fluid inside each cell
is zero, but its effect on the cell interface flux has to be accounted. To solve
the Riemann problem in Fig.1 is very difficult. However, a physically reliable
scheme for both steady and unsteady calculations, which may also preserve the
total energy (kinetic + potential) for the shallow water equations, can not avoid
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Figure 1. Riemann problem for the shallow water equations with the source term

solving such a Riemann problem. From a gas-kinetic point of view, the particles
need to overcome the potential barrier ∆ψ = G(aj+1 − aj) at a cell interface in
order to move from one cell to another one. In other words, only these particles
with enough kinetic energy can pass through the interface. For the mass flux,
the number of particles leaving (receiving) from cell j through the interface j +
1
2 is equal to the particles receiving (leaving) from cell j + 1 . However, for
the momentum flux, the situation is different. At the cell interface j + 1

2 , the
momentum flux at j + 1

2 for cell j is not equal to the momentum flux at j + 1
2

for cell j+1 , because the particles will get decelerated or accelerated after crossing
the interface. Furthermore, some particles may be bounced back if they do not have
enough kinetic energy to overcome the potential barrier. Even though the bounced
particles have no contribution to the mass flux, they do have contribution to the
momentum flux. The correct capturing of the source term effect on flux function
not only depends on the capturing of all the above physical process happened
around a cell interface, but also on the mathematical tractability to describe these
process. Since the numerical formulation involved in the above process is extremely
difficult, only a modified Kinetic Flux Vector Splitting (KFVS) scheme is developed
in this paper. The scheme is numerically compared with the conventional KFVS
scheme based on operator splitting, where the source term effect is absent in the
flux evaluation.

For comparison, we briefly describe the simplest cell averaging scheme, namely
the Lax–Friedrichs (LxF) scheme, for the system (1.1). A semi-explicit LxF scheme
for (1.1) takes the form
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hn+1
j =

1
2
(hn

j+1 + hn
j−1) −

∆tn
2∆x

(
(hu)n

j+1 − (hu)n
j−1

)
,

(hu)n+1
j =

1
2

(
(hu)n

j+1 + (hu)n
j−1

)
− ∆tn

2∆x

(
(hu2 +

1
2
Gh2)n

j+1

−(hu2 + 1
2Gh2)n

j−1

)
− ∆tnGa′(xj)hn+1

j ,

(1.5)

where ∆x and ∆tn are the mesh sizes in space and time directions respectively,
and

hn
j =

1
∆x

∫ xj+1/2

xj−1/2

hn(x) dx, (hu)n
j =

1
∆x

∫ xj+1/2

xj−1/2

(hu)n(x) dx, (1.6)

where xj+1/2 = (j + 1/2)∆x . The CFL condition is

∆tn
∆x

=
r

max
j

(|un
j | +

√
Ghn

j

) , (1.7)

where the constant r satisfies 0 < r ≤ 1 . In our computations, we choose
r = 0.9 . We also enforce zero Neumann boundary conditions for u and h at the
artificial boundaries: ux = hx = 0 for sufficiently large |x| .

2. Kinetic schemes

In this section, we will develop a new numerical scheme by extending the existing
kinetic flux vector splitting approach. The key idea is to include the source term
effect and to well balance the source term and the flow convection.

2.1. The case without source term effect on the flux

To begin with, we consider the shallow water equations without the source term
(i.e. a(x) ≡ 0 ): {

ht + (hu)x = 0,

(hu)t + (hu2 + 1
2Gh2)x = 0.

(2.1)

The (local) Maxwellian distribution for (2.1) is given by

g = h

(
λ

π

)1/2

e−λ(v−u)2 , (2.2)

where λ is defined by

λ =
1

Gh
. (2.3)
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The connection between the Maxwellian distribution function and the macroscopic
flow variables is (

h
hu

)
=

∫ ∞

−∞

(
1
v

)
g dv. (2.4)

The fluxes for the corresponding variables are(
Fh

Fhu

)
≡

(
hu

hu2 + 1
2Gh2

)
=

∫ ∞

−∞
v

(
1
v

)
g dv. (2.5)

We now construct a collisionless Boltzmann scheme by using (2.5) and the kinetic
flux–splitting technique. The idea of the construction of the scheme is similar
to that used by Pullin [6] who studied the compressible Euler equations. We
assume that the initial data (h0(x), u0(x)) are piecewise constant over the cell
Ij = (xj− 1

2
, xj+ 1

2
) (see (1.6)). Let

gj ≡ g(xj , t, v) = hj

(
λj

π

)1/2

e−λj(v−uj)
2
, (2.6)

be a Maxwellian distribution in the cell Ij , where λj = 1/Ghj . For the collision-
less scheme, the initial Maxwellian inside each cell is

g0(x) = gj , x ∈ Ij , (2.7)

where x = xj+1/2 is the boundary between cell Ij and Ij+1 . In the evolu-
tion stage, the initial data is propagated according to the collisionless Boltzmann
equation, which is

gt + vgx = 0.

The solution of the above equation is

g(xj+1/2, t, v) = g0(xj+1/2 − vt) =
{

gj , if v > 0,
gj+1, if v < 0.

(2.8)

Using the formula (2.5), we obtain the numerical fluxes(
Fh,j+1/2

Fhu,j+1/2

)
=

∫ ∞

0

(
v
v2

)
gj dv +

∫ 0

−∞

(
v
v2

)
gj+1 dv

= hj




uj

2
erfc(−√

λjuj) +
e−λju2

j

2
√

πλj

(
u2

j

2
+

1
4λj

)erfc(−√
λjuj) +

uje
−λju2

j

2
√

πλj




+hj+1




uj+1

2
erfc(

√
λj+1uj+1) − e−λj+1u2

j+1

2
√

πλj+1

(
u2

j+1

2
+

1
4λj+1

)erfc(
√

λj+1uj+1) − uj+1e
−λj+1u2

j+1

2
√

πλj+1


 (2.9)
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where the complementary error function is defined by

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt.

Like sine and cosine functions, erfc(x) , or its double precision derfc(x) , is a given
function in FORTRAN and MATLAB.

2.2. The case with source term effect on the flux

In this case, we have a non–zero bottom function a(x) . We define the potential
function as ψ(x) = Ga(x) . Similar to the above discussion, we have at the cell
interface xj+1/2 :

g0(x) =
{

gj , if x < xj+1/2,
gj+1, if x > xj+1/2,

and ψ0(x) =
{

ψj , if x < xj+1/2,
ψj+1, if x > xj+1/2.

(2.10)

In order to include the wary bottom effect on the flux, we have to consider two
cases.

Case I: ψj+1 > ψj . In this case, not all of particles with positive velocity v
can move to the right cell. The velocity of the particle should be large enough to
overcome the potential barrier. In this process, a certain amount of kinetic energy
will be transferred into the potential difference ψj+1−ψj . The minimum velocity
that enables the particle to move from j to j + 1 is

1
2
ṽ2

j = ψj+1 − ψj , or ṽj =
√

2(ψj+1 − ψj). (2.11)

The numerical mass flux is then given by

Fh,j+1/2 =
∫ ∞

ṽj

vgj dv +
∫ 0

−∞
vgj+1 dv

=
hjuj

2
erfc

(√
λj(ṽj − uj)

)
+

hj

2
√

πλj

e−λj(ṽj−uj)
2

+
hj+1uj+1

2
erfc(

√
λj+1uj+1) − hj+1

2
√

πλj+1

e−λj+1u2
j+1 . (2.12)

If we introduce the following notations

FL
hu,j+1/2 =

∫ ∞

ṽj

v2gj dv =
∫ ∞

0

v2gj dv − F ∗
hu,j+1/2, (2.13)

F ∗
hu,j+1/2 =

∫ ṽj

0

v2gj dv, (2.14)

FR
hu,j+1/2 =

∫ 0

−∞
v2gj+1 dv, (2.15)
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then the momentum flux is taken as

Fhu,j+1/2 = FL
hu,j+1/2 + FR

hu,j+1/2. (2.16)

By using the definition (2.6) for gj , we can find the explicit form for the integral
(2.14):

F ∗
hu,j+1/2 =

(
hj

4λj
+

hju
2
j

2

)[
erfc

(
− √

λjuj

)
− erfc

(√
λj(ṽj − uj)

)]

+
hjuj

2
√

λjπ

[
e−λju2

j − e−λj(ṽj−uj)
2
]
− hj ṽj

2
√

λjπ
e−λj(ṽj−uj)

2
. (2.17)

The explicit forms of the integrals in (2.13) and (2.15) have been given in (2.9).
Case II: ψj+1 < ψj . Similarly, we define in this case

ṽj =
√

2(ψj − ψj+1). (2.18)

The numerical mass flux is given by

Fh,j+1/2 =
∫ ∞

0

vgj dv +
∫ −ṽj

−∞
vgj+1 dv

=
hjuj

2
erfc(

√
λjuj) +

hj

2
√

πλj

e−λju2
j +

hj+1uj+1

2
erfc

(√
λj+1(ṽj + uj+1)

)

− hj+1

2
√

πλj+1

e−λj+1(ṽj+uj+1)
2
, (2.19)

and the momentum flux is

Fhu,j+1/2 = FL
hu,j+1/2 + FR

hu,j+1/2, (2.20)

where

FL
hu,j+1/2 =

∫ ∞

0

v2gj dv, (2.21)

FR
hu,j+1/2 =

∫ −ṽj

−∞
v2gj+1 dv :=

∫ 0

−∞
v2gj+1 dv − F ∗

hu,j+1/2. (2.22)

It is noted that all integrals in (2.21) and (2.22) can be expressed by the comple-
mentary error functions. In particular, we have

F ∗
hu,j+1/2 =

∫ 0

−ṽj

v2gj+1 dv =

(
hj+1

4λj+1
+

hj+1u
2
j+1

2

)[
erfc

(√
λj+1uj+1

)

−erfc
(√

λj+1(ṽj + uj+1)
)]

− hj+1uj+1

2
√

λj+1π

[
e−λj+1u2

j+1 − e−λj+1(ṽj+uj+1)
2
]

− hj+1ṽj

2
√

λj+1π
e−λj+1(ṽj+uj+1)

2
. (2.23)
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To conclude this section, the shallow water equations (1.1) will be solved by
the following schemes:


hn+1

j = hn
j +

∆tn
∆x

(Fn
h,j−1/2 − Fn

h,j+1/2),

(hu)n+1
j = (hu)n

j +
∆tn
∆x

(Fn
hu,j−1/2 − Fn

hu,j+1/2) − ∆tnGa′(xj)hn+1
j .

(2.24)

Our proposed gas-kinetic method is the scheme (2.24) with the fluxes (2.12),(2.16),
(2.19) and (2.20). On the other hand, the KFVS scheme refers to the scheme (2.24)
with flux (2.9).

Note that the scheme (2.24) is of semi–implicit type, which is similar to the
LxF scheme (1.5). The only difference for the schemes tested in this paper is about
how to evaluate the flux functions in the above equations at a cell interface.

3. Positivity–preserving analysis

For physical problems, some physical variables such as density and height of the
water should be able to preserve these positivity requirements. In the following,
we show that the water height h computed by the gas–kinetic scheme (2.24) is
always non–negative. The analysis is similar to an earlier work by Tang and Xu
[8], where the positivity-preserving analysis is made for the gas-kinetic schemes
for the compressible Euler equations.

To begin with, we first consider the case with flat bottom.

Lemma 3.1. If {hn
j } is non–negative, then {hn+1

j } is also non–negative provided
the CFL condition (1.7) is satisfied. Here {hn+1

j } is the solution of the scheme
(2.24) with numerical flux (2.9).

Proof. The equation (2.24) with numerical flux (2.9) can be written as

hn+1
j = A1h

n
j−1 + A2h

n
j + A3h

n
j+1, (3.1)

where

A1 = σ

∫ ∞

0

v

(
λj−1

π

)1/2

e−λj−1(v−uj−1)
2

dv,

A2 = 1 − σ

∫ ∞

−∞
|v|

(
λj

π

)1/2

e−λj(v−uj)
2

dv,

A3 = −σ

∫ 0

−∞
v

(
λj+1

π

)1/2

e−λj+1(v−uj+1)
2

dv.

Here σ = ∆tn/∆x .
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It is obvious that A1 ≥ 0 and A3 ≥ 0 . Next we show that A2 is also
non–negative under the CFL condition (1.7). Actually, we have

A2 = 1 − σ

2

[(
ujerfc(−

√
λjuj) +

e−λju2
j√

λjπ

)
−

(
ujerfc(

√
λjuj) − e−λju2

j√
λjπ

)]

= 1 − σ√
λj

[
βj − βjerfc(βj) +

1√
π

e−β2
j

]
, (3.2)

where βj =
√

λjuj , and we have used the identity erfc(x) + erfc(−x) = 2.
For convenience, we will omit subscript j in the following. Let Y (β) :=

β − βerfc(β) + 1√
π
e−β2

. If we have

Y (β)√
λ

≤ |β| + 1√
λ

≡ |u| +
√

Gh, (3.3)

then it can be shown that the coefficient A2 is non–negative under the CFL
condition (1.7), which will complete the proof of this lemma. The remaining task
is to verify the inequality (3.3), i.e.

|β| + 1 ≥ Y (β),

or equivalently
Z(β) := |β| + 1 − Y (β) ≥ 0.

Three cases will be considered.
• (i) If β = 0 , then we have Z(β) = 1 − 1√

π
> 0 .

• (ii) If β ∈ (0,∞) , then Z(β) can be represented as

Z(β) = 1 + βerfc(β) − 1√
π

e−β2
.

It follows from Z ′(β) = erfc(β) ≥ 0 and Z(0) > 0 that Z(β) ≥ 0 for all
β > 0 .
• (iii) If β ∈ (−∞, 0) , then Z(β) becomes

Z(β) = −2β + 1 + βerfc(β) − 1√
π

e−β2
.

In this case, we have Z ′(β) = −2 + erfc(β) ≤ 0. This result, together with
Z(0) > 0 , implies that Z(β) is also positive for β ∈ (−∞, 0) .

Therefore, the proof of this lemma is complete.
We can easily extend the results in Lemma 3.1 to the non–flat bottom case.

Lemma 3.2. If {hn
j } is non–negative, then {hn+1

j } is also non–negative provided
that the CFL condition (1.7) is satisfied. Here {hn+1

j } is the solution of (2.24)
with numerical flux (2.12) or (2.19).
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Proof. The first equation of (2.24) can be written as

hn+1
j = A1h

n
j−1 + A2h

n
j + A3h

n
j+1, (3.4)

where

A1 = σ

∫ ∞

α1

v

(
λj−1

π

)1/2

e−λj−1(v−uj−1)
2

dv,

A2 = 1 − σ

∫ ∞

α1

v

(
λj

π

)1/2

e−λj(v−uj)
2

dv + σ

∫ −α2

−∞
v

(
λj

π

)1/2

e−λj(v−uj)
2

dv,

A3 = −σ

∫ −α2

−∞
v

(
λj+1

π

)1/2

e−λj+1(v−uj+1)
2

dv.

Here α1 = 0 or vj with vj =
√

2(ψj+1 − ψj) , and α2 = 0 or −vj−1 with
vj−1 =

√
2(ψj−1 − ψj) . It is obvious that A2 ≥ A2. Thus under the CFL condi-

tion (1.7), A2 ≥ 0 . Similarly, we also have A1 ≥ 0 and A3 ≥ 0. Therefore hn+1
j

is non–negative, under the assumption of this lemma.

4. Numerical experiments

In this section, we present several numerical examples to test our gas–kinetic
scheme (2.24) with numerical flux (2.12) and (2.16) or (2.19) and (2.20) for the
shallow water equations with the source term. For comparison, numerical results
of the LxF scheme (1.5) and the conventional KFVS scheme (2.24) with numerical
flux (2.9) will be also included. In solving the hyperbolic conservation laws with
stiff source terms, the LxF scheme was employed by Chalabi and Qiu [2] also
for comparison purpose and it was observed that the LxF scheme provides shock
locations incorrectly.

In the first two examples, we consider the following a(x) :

a(x) =

{
0.3

(
cos

(
π(x − 1)/2

))30

, |x − 1| ≤ 1,

0, otherwise.
(4.1)

This bottom function is similar to that used in [3].

Example 4.1. Consider the equation (1.1) with the wavy bottom function (4.1)
and the initial condition

(h0(x), u0(x)) = (1 − a(x), 1). (4.2)

The initial data indicates that the initial total height is 1 and the initial velocity
is 1 everywhere. The computational domain used is (−1, 3) . For this example, the
equilibria governed by (1.2) and (1.3) exists and can be computed by MATLAB
(see solid lines in Figs. 2 (a)-(b).)
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(a) (b)

(c) (d)

Figure 2. Example 4.1: (a) Top solid curve is the exact solution for u and bottom solid
curve is for h + a , and numerical results are obtained by using the proposed gas-kinetic
scheme; (b) Same as (a) except by using the traditional KFVS scheme; (c) Ratio (4.3)
obtained by using the proposed gas-kinetic scheme; (d) Ratio (4.3) obtained by using
the KFVS scheme. The mesh sizes used are ∆x = 1

50
(’o’), 1

100
(’x’), and 1

200

(dashed line).

The results obtained by using the gas-kinetic method proposed in this work
and the conventional KFVS scheme with the mesh-refinement are shown in Fig.
2. The output data are h + a and the fluid velocity u at t = 6 , which are
compared with the exact solution (solid line). Since t = 6 is large enough, we can
consider that the flow almost reaches steady state at this time. From Figs. 2 (a)
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(a)

(b)

Figure 3. Example 4.2: (a) Exact solutions (solid line) and numerical solutions obtained
by using the gas-kinetic scheme with ∆x = 1

30
(“ � ”); (b) Same as (a) except that by

using the KFVS scheme.
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and (b), we can see that the gas-kinetic method has much less phase error than
the conventional KFVS scheme. We also plot in Figs. 2 (c) and (d) the following
ratio:

ratio(x, t) =
h(x)u(x, t)

h−u−
. (4.3)

It follows from (1.2) that this ratio should equal to 1 at steady state. The mesh–
refinement analysis in Fig. 2 for the above ratio indicates that the proposed
gas–kinetic scheme is more appropriate than the KFVS scheme in preserving the
unit ratio.

Figure 4. Equilibrium for Example 4.3.

Example 4.2. Consider the equation (1.1) with the wavy bottom function (4.1)
and the initial condition

(h0(x), u0(x)) =
{

(2 − a(x), 1), x < 1,
(0.35 − a(x), 0), x ≥ 1.

(4.4)

This is an unsteady flow calculation. The computational domain used is
(−10, 10) . In order to have a close look at the solution around the wary bot-
tom, we present the numerical solutions in part of the computational domain
−3 ≤ x ≤ 7 . The results from the gas-kinetic method and the KFVS scheme are
shown in Fig. 3, where the mesh size used is ∆x = 1

30 . The solid line shows the
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solution obtained using the LxF scheme with ∆x = 1
500 . It is observed that the

numerical result with the gas-kinetic scheme is slightly more accurate than that
with the KFVS scheme, in particular for the solution of the velocity u .

(a) (b)

Figure 5. Exact solution (solid line) and the numerical solutions for Example 4.3.
Numerical solutions are obtained by using (a): the gas–kinetic scheme proposed in this
work and (b): the traditional KFVS scheme, with ∆x = 1

10
(’o’) and 1

15
(’x’).

Example 4.3. This is also a steady state calculation with the initial condition
(4.2). The bottom shape is changed to

a(x) = 0.2e−(x+1)2/2 + 0.3e−(x−1.5)2 . (4.5)

The computational domain is (−10, 10) , and the left boundary condition is
u− = 1 and h− = 1 . The equilibria solution can be obtained exactly for this
problem, see Fig. 4. The numerical solutions for the fluid velocity and the total
height are shown in Fig. 5. Again, the advantage of the proposed gas-kinetic
scheme is demonstrated, due to the inclusion of the source term effect in a flux
evaluation.

Example 4.4. We consider a problem same as Example 4.3, except that the initial
fluid flow is assumed to be at rest.
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(a):

(b):

(c):

Figure 6. Example 4.4: The numerical solutions (solid lines) are obtained by using (a):
the gas-kinetic scheme, (b) the KFVS scheme, (c) the LxF scheme, with ∆x = 1

10
.
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(a) (b)

(c) (d)

Figure 7. Except with the use of the LxF scheme, the above figures are (a): same as Fig.
2 (a); (b): same as Fig. 2 (c); (c): same as Fig. 3 (a); and (d): same as Fig. 5 (a).
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This problem is also considered by Jin [4]. The steady state solutions obtained
by using the gas-kinetic scheme, the KFVS scheme and the LxF scheme are shown
in Fig. 6. All three schemes can obtain the correct steady state solution for h+a ,
but only the gas-kinetic method gives the most accurate approximation to the
exact solution u = 0 .

Finally, we plot in Fig. 7 the performance of the LxF scheme to Examples
4.1–4.3. The numerical experiments indicate that the LxF scheme requires much
smaller mesh size than that for the gas-kinetic scheme in order to obtain the same
solution resolution.

5. Conclusions

In this paper, the gas-kinetic flux vector splitting scheme is extended to solving the
shallow water equations with source term. Due to the inclusion of the source term
effect on the flux evaluation across cell interfaces, the proposed kinetic method
preserves the equilibria better than the conventional KFVS scheme. Moreover,
the positivity of the proposed kinetic scheme, which preserves the non-negative
water height, is established.
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