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In this chapter, we present some preliminary materials which will be used through-
out the book. The first section set the stage for the introduction of spectral methods.
In Sections 1.2~1.4, we present some basic properties of orthogona polynomials,
which play an essentia role in spectral methods, and introduce the notion of gen-
eralized Jacobi polynomials. Since much of the success and popularity of spectral
methods can be attributed to the invention of Fast Fourier Transform (FFT), an algo-
rithmic description of the FFT is presented in Section 1.5. In the next two sections,
we collect some popular time discretization schemes and iterative schemes which
will be frequently used in the book. In the last section, we present a concise error
analysis for several projection operators which serves as the basic ingredients for the

error analysis of spectral methods.
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1.1 Somebasicideas of spectral methods

Comparison with the finite element method
Computational efficiency

Fourier spectral method

Phase error

Finite Difference (FD) methods approximate derivatives of afunction by local argu-
ments (such as/(z) ~ (u(xz+h) —u(x — h))/2h, where h isasmall grid spacing) -
these methods are typically designed to be exact for polynomials of low orders. This
approach is very reasonable: since the derivative is alocal property of afunction, it
makes little sense (and is costly) to invoke many function values far away from the
point of interest.

In contrast, spectral methods are global. The traditional way to introduce them
starts by approximating the function as a sum of very smooth basis functions:

N
u(@) ~ 3 aydy(a),
k=0

where the & () are polynomials or trigonometric functions. In practice, there are
many feasible choices of the basis functions, such as:

@ () = e™** (the Fourier spectral method);

O (z) = Ti(x) (T (z) are the Chebyshev polynomials; the Chebyshev spec-
tral method);

O (z) = Li(z) (Li(x) are the Legendre polynomials; the Legendre spectral
method).

In this section, we will describe some basic ideas of spectral methods. For ease
of exposition, we consider the Fourier spectral method (i.e. the basis functions are
chosen as ¢/#*). We begin with the periodic heat equation, starting at time 0 from
uo(z):

Up = Ugpg, (1.1.1)

with a periodic boundary condition u(z,0) = wy(z) = ug(z + 27). Since the exact

solution « is periodic, it can be written as an infinite Fourier series. The approximate
solution «!V can be expressed as afinite series. It is

N—

uN (z,t) = Z a(t)e*, x € [0,2m),
k=0

—_
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where each ay(t) isto be determined.

Comparison with the finite element method

We may compare the spectral method (before actually describing it) to the finite
element method. One difference is this. the trial functions 7, in the finite element
method are usually 1 at the mesh-point, 2, = kh with h = 27 /N, and O at the other
mesh-points, whereas e*? is nonzero everywhere. That is not such an important
distinction. We could produce from the exponentials an interpolating function like
Tk, Which is zero at all mesh-points except at = =

1 N 1

Fi(z) = — sin —(z — xy) cot = (x — xy), Neven, (112
N 2 2
1 . N 1

Fy(z) =  Sin E(x — xp) Csc 5(3: — ), N odd. (1.1.3)

Of courseit isnot a piecewise polynomial; that distinction is genuine. A consequence
of this difference is the following:

Each function Fj, spreads over the whole solution interval, whereas 7, is zero
in al elements not containing x;. The stiffness matrix is sparse for the finite
element method; in the spectral method it isfull.

The computational efficiency

Since the matrix associated with the spectral method is full, the spectral method
seems more time-consuming than finite differences or finite elements. In fact, the
spectral method had not been used widely for along time. The main reason is the
expensive cost in computational time. However, the discovery of the Fast Fourier
Transform (FFT) by Cooley and Tukey!*3 solves this problem. We will describe the
Cooley-Tukey agorithm in Chapter 5. The main idea is the following. Let wy =
e27rz‘/N and
2k .. 2mjk

N + 2sin N

(fN)jk:w%“:cos 0<j, k<N-1.

Then for any N-dimensional vector vy, the usual N2 operations in computing F vy
arereduced to N log, N. The significant improvement can be seen from the follow-
ing table:

N N2 Nlog,N N N2 Nlog,N
16 256 64 256 65536 2048
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32 1024 160 512 262144 4608
64 4096 384 1024 1048576 10240
128 16384 896 2048 4194304 22528

TheFourier spectral method

Unlike finite differences or finite elements, which replace the right

-hand side

uz, by differences at nodes, the spectral method uses «), exactly. In the spectral
method, thereisno Axz. The derivatives with respect to space variables are computed

explicitly and correctly.

The Fourier approximation «V is a combination of oscillations ¢+«
guency N — 1, and we simply differentiate them; hence

N N
ut = uxx
becomes
N-1 N-1
al(t)e*® = ax(t)(ik)?e™.
k=0 k=0

Since frequencies are uncoupled, we have d, (t) = —k?ax(t), which gives
a(t) = e*ay(0),

where the values a;, (0) are determined by using theinitial function:

1

G

2m
ax(0) / uo(z)e"*2d.
0

Itis an easy matter to show that

lu(x,t) — u (z,t)] =

Z ak(o)eilme—th

oo
k=N

o0
<max|ax(0)| Z ek

k=N
0 2
< max |u0(x)|/ e " du.
0<e L2 N

Therefore, the error goes to zero very rapidly as N becomes reasonably

up to fre-

large. The
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convergence rate is determined by the integral term

J(t,N) = / e dy = , | Zerfe(VEN),
N At

where erfc(X) is the complementary error function (both FORTRAN and MAT-
LAB have this function). The following table lists the value of J(¢, N) at severa
values of ¢:

N J(0.1, N) J(0.5, N) J(1, N)

1 1.8349e+00 3.9769e-01 1.3940e-01
2 1.0400e+00 5.7026e-02 4.1455e-03
3 5.0364e-01 3.3837e-03 1.9577e-05
4 2.0637e-01 7.9388e-05 1.3663e-08
5 7.1036e-02 7.1853e-07 1.3625e-12
6 2.0431e-02 2.4730e-09 1.9071e-17
7 4.8907e-03 3.2080e-12 3.7078e-23
8 9.7140e-04 1.5594e-15 9.9473e-30

In more general problems, the equation in time will not be solved exactly. It needs a
difference method with time step At, as Chapter 5 will describe. For derivatives with
respect to space variables, there are two ways:

(1) Stay with the harmonics e** or sin kx or cos kz, and use FFT to go between
coefficients a;, and mesh values u™¥ (z;, t). Only the mesh values enter the difference
eguation in time.

(2) Usean expansion U = > Uy (t)Fy.(z), where Fy(z) is given by (1.1.2) and
(1.1.3), that works directly with values Uy, at mesh points (where Fj, = 1). Thereis
a differentiation matrix D that gives mesh values of the derivatives, Dy, = F(x;).
Then the approximate heat equation becomes U; = D2U.

Phase error

The fact that z-derivatives are exact makes spectral methods free of phase error.
Differentiation of the multipliers ¢** give the right factor ik while finite differences
lead to the approximate factor i K:

gik(z+h) _ gik(z—h)
2h

sin kh

1Ke™", N

When kh is small and there are enough mesh points in a wavelength, K is close
to k. When kh islarge, K is significantly smaller than k. In the case of the heat
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equation (1.1.1) it means a slower wave velocity. For details, we refer to Richtmyer
and Morton!'3! and LeVeque 19U, |n contrast, the spectral method can follow even
the nonlinear wave interactions that lead to turbulence. In the context of solving high
Reynolds number flow, thelow physical dissipation will not be overwhelmed by large
numerical dissipation.

Exercise 1.1

Problem 1 Consider the linear heat equation (1.1.1) with homogeneous Dirich-
let boundary conditions u(—1,¢) = 0 and u(1,¢t) = 0. If the initia condition is
u(z,0) = sin(mx), then the exact solution of this problem is given by u(x,t) =
et sin(7x). It hasthe infinite Chebyshev expansion

u(z,t) =Y bp(t)Tn(),
n=0
where 1
by (t) = aJn(w)e*ﬂ%,

witheg =2and¢, =1ifn > 1.

a Cadculate

1 1 '
In () :/1 an(x) sin(7x)dx

by some numerical method (e.g. Simpson’s rule)®;

b. Plot J,(7) against n for n < 25. This will show that the truncation series
converges at an exponentia rate (a well-designed collocation method will do the
same).

1.2 Orthogonal polynomials

Existence

Zeros of orthogonal polynomials

Polynomial interpolations

Quadrature formulas

Discrete inner product and discrete transform

@ Hint: (a) Noticethat J,, (7) = 0 when n iseven; (b) acoordinate transformation like x = cos 6
may be used.
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Orthogonal polynomials play afundamental role in the implementation and analysis
of spectral methods. It is thus essential to understand some general properties of
orthogonal polynomials. Two functions f and ¢ are said to be orthogonal in the
weighted Sobolev space 2 (a, b) if

b
(. 9) = (f, 9w = / w(@)f(2)g(x)de = 0,

wherew isafixed positive weight function in (a, b). It can be easily verified that (-, -)
defined above is an inner product in I2 (a, b).

A sequence of orthogonal polynomials is a sequence {p,}:°, of polynomials
with deg(p,,) = n such that

(pi» pj) =0 for i #j. (1.2.2)

Since orthogonality is not altered by multiplying a nonzero constant, we may nor-
malize the polynomial p,, so that the coefficient of 2™ isone, i.e.,

pal) =" +alhz" " o all,

Such apolynomia is said to be monic.

Existence

Our immediate goal is to establish the existence of orthogonal polynomials. Al-
though we could, in principle, determine the coefficients ag.”) of p, in the natura
basis {27} by using the orthogonality conditions (1.2.1), it is more convenient, and
numerically more stable, to express p, 11 in terms of lower-order orthogonal polyno-
mials. To this end, we need the following general result:

Let {p,}>°, beasequence of polynomials such that p, isexactly of degreen.
If
q(z) = ans”™ + an_12" ' + - + ag, (1.2.2)

then ¢ can be written uniquely in the form

q(x) = bppn + bp—1pn—1 + -+ - + bopo. (1.2.3)

In establishing this result, we may assume that the polynomials {p, } are monic.
We shall prove thisresult by induction. For n = 0, we have

q(z) = ap =agp -1 = agpo(x).
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Hence we must have by = ag. Now assume that ¢ has the form (1.2.2). Since p,, is
the only polynomial in the sequence p,,, pn_1,- - - , po that contains 2™ and since p,
is monic, it follows that we must have b, = a,,. Hence, the polynomia ¢ — a,,p,, is
of degree n — 1. Thus, by the induction hypothesis, it can be expressed uniquely in
the form

q — QnPn = bnflpnfl + -+ bOpO;
which establishes the result.

A consequence of this result is the following:

Lemma 1.2.1 If the sequence of polynomials {p,}5°, is monic and orthogonal,
then the polynomial p,,+; is orthogonal to any polynomial ¢ of degree n or less.

We can establish this by the following observation:

<pn+17 Q> = bn<pn+17 pn> + bn—l(pn-ﬁ-lv pn—1> + -+ b0<pn+17 p0> = 07
where the last equality follows from the orthogonality of the polynomials {p, }.

We now prove the existence of orthogonal polynomials®. Since p, is monic and
of degree zero, we have
po(z) = 1.
Since p; ismonic and of degree one, it must have the form

pi(z) =2 — .
To determine oy, we use orthogonality:

0= (p1, po) = /abw(x)xdx . /abw(a:)dx.

Since the weight function is positive in (a, b), it follows that

o = / ' (@) / / ' (@),

Ingeneral weseek p,, .1 intheformp;, 1 = xp,—an 1190 —Bnr1Pn—1—Vn+1Pn—2—
---. Asin the construction of p;, we use orthogonality to determine the coefficients
above. To determine oy, 1, write

0= <pn+17 pn> = <$Pm pn> - Oén+1<Pm pn> - ﬁnJrl <pn717 pn> — .

@ The procedure described here is known as Gram-Schmidt orthogonalization.
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By orthogonality, we have

b b
/ zwpAda — a1 / wpdz = 0,
a a

which yields

b b
Qpt1 = / :pridx// wp?dz.
a a

For (3,11, using the fact (p,+1, pn—1) = 0 gives

b b
Bn+1 = / xwpnpnldx// wpi_ldx.
a a

The formulas for the remaining coefficients are similar to the formulafor 4..1; €.g.

b b
Vil = / xwpnpngdx// wpi_de.
a a

However, there is a surprise here. The numerator (xp,, p,—2) can be written in the
form (p,, zp,—2). Since xp,_o is of degree n — 1 it is orthogonal to p,. Hence
Ynt1 = 0, and likewise the coefficients of p,_3, p,—4, €tC. are al zeros.

To summarize:

The orthogonal polynomials can be generated by the following recurrence:

Po = 17
pr=a—ar (1.2.4)

Pn+1 = (x - anJrl)pn - ﬁn+1pn—1, n = 17

where
’ 2 b,

Oén+1—/ xwpndx// wp;,dx and Bn+1_/
a a a

The first two equations in the recurrence merely start things off. The right-hand
side of the third equation contains three terms and for that reason is called the three-
term recurrence relation for the orthogonal polynomials.

b b
xwpnpn_ldw// wpi_ldw.
a
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Zeros of orthogonal polynomials

The zeros of the orthogonal polynomials play a particularly important rolein the
implementation of spectral methods.

Lemmal.2.2 Thezerosof p,,; arereal, smple, and liein the open interval (a,b).
The proof of thislemmais|eft as an exercise. Moreover, one can derive from the
three term recurrence relation (1.2.4) the following useful result.

Theorem 1.2.1 The zeros {z; };?:0 of the orthogonal polynomial p, ., arethe eigen-
values of the symmetric tridiagonal matrix

[ a0 VD1
VB a1 ViR
Apy1 = : (1.2.5)
Bn-1 an-1 VDBn
VBn  an |

where .
aj=-L for j>0; fj=—"— for j>1, (1.26)

(lj aj,laj

with {ag, bi, cr} being the coefficients of the three term recurrence relation (cf.
(1.2.4)) written in the form:

Pe+1 = (ax — br)pr — ckpe—1, k= 0. (1.2.7)

Proof The proof is based on introducing

bn ) = bn\T),
(z) e (z)
where ~,, is defined by
o= 1 m2 1 =1 (128)
We deduce from (1.2.7) that

.G [ b . I [t - .
Tp; = -J ]—pjfl 4 _]pj + — ]—ijrlv 720, (129)
Vi aj i

a; a; j
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with p_; = 0. Owing to (1.2.6) and (1.2.8), it can be rewritten as
zpj(z) = /Bibj-1(x) + ojpj(x) + /Bj+1hj+1(z), j = 0. (1.2.10)
Wenow takej = 0,1,--- ,ntoformasystem
2P(2) = Ap1P(x) + v/ Bur1hn i1 (2)En, (1.2.11)

where P(z) = (fo(x), p1(z), - ,pn(z))T and E, = (0,0,---,0,1)T. Since
Pnti(zj) =0, 0 < j < n,theequation (1.2.11) at x = x; becomes

Hence, the zeros {x; };P:O are the eigenvalues of the symmetric tridiagonal matrix
Apia. O
Polynomial inter polations

Let us denote
Py = {polynomials of degree not exceeding N }. (1.2.13)

Given aset of pointsa = xp < z1--- < zny = b (weusualy take {z;} to be zeros
of certain orthogonal polynomials), we define the polynomial interpolation operator,
Iy : C(a,b) — Py, associated with {x;}, by

Inu(z;) = u(z;), j=0,1,--- N. (1.2.14)

The following result describes the discrepancy between a function « and its polyno-
mial interpolant Iyu. Thisis a standard result and its proof can be found in most
numerical analysis textbook.

Lemma1.2.3 If zg,x1, - ,xn aredistinct numbers in the interval [a,b] and u €
CN*[a, b], then, for each z € [a, b], there exists a number ¢ in (a, b) such that

u(NJrl)(C) N
(Ni_i_ 0 kl;IO(x — ), (1.2.15)

u(z) — Iyu(z) =
where I yu isthe interpolating polynomial satisfying (1.2.14).

It iswell known that for an arbitrary set of {x;}, in particular if {x;} are equally
spaced in [a, b], the error in the maximum norm, max,¢q4) [u(z) — Iy ()|, may
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not converge as N — +oo even if u € C*[a, b]. A famous example is the Runge

function )

1@ =gy

z e [-1,1], (1.2.16)

see Figure 1.1.

0.8

0.6 +

04

=021

0.4 F

-1 -08-06-04-02 0 02 04 06 08 |
Figure1.1 Rungefunction f and the equidistant interpolations I 5 f and Io f for (1.2.16)

The approximation gets worse as the number of interpolation points increases.

Hence, it is important to choose a suitable set of points for interpolation. Good
candidates are the zeros of certain orthogonal polynomials which are Gauss-type
quadrature points, as shown below.

Quadrature formulas

We wish to create quadrature formulas of the type

b N
| f@l@ids = 3" Aufn).
a n=0

If the choice of nodes y, 1, - ,v» IS made a priori, then in general the above
formulais exact for polynomials of degree < N. However, if we are free to choose
the nodes ~,, we can expect quadrature formulas of the above form be exact for
polynomials of degree up to 2N + 1.

There are three commonly used quadrature formulas. Each of them is associated
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with a set of collocation points which are zeroes of a certain orthogonal polynomial.
Thefirst is the well-known Gauss quadrature which can be found in any elementary
numerical analysis textbook.

Gauss Quadrature Letxg,zq, - ,xy bethezeroesof pyi. Then, thelinear
system
N b
Zpk(xj)wj = / pr(z)w(x)dz, 0< k<N, (L.217)
j=0 a
admits a unique solution (wy, w1, - -+ ,wn), withw; > 0for j =0,1,--- , N. Fur-
thermore,
N b
Zp(xj)wj :/ p(z)w(z)dx, foral pe Piygg. (1.2.18)
=0 a

The Gauss quadrature is the most accurate in the sense that it is impossible to find
xj,w; such that (1.2.18) holds for al polynomias p € Ry2. However, by Lemma
1.2.1 this set of collocation points {z;} does not include the endpoint a or b, so it
may cause difficulties for boundary value problems.

The second is the Gauss-Radau quadrature which is associated with the roots of
the polynomial
q(x) = pny1(z) + apn (), (1.2.19)

where « isaconstant such that ¢(a) = 0. It can be easily verified that ¢(z)/(x —a) is
orthogonal to all polynomials of degree less than or equal to N — 1 in IZ (a, b) with
@(x) = w(x)(x — a). Hence, the N roots of ¢(z)/(x — a) aredl real, smpleand lie
in(a,b).

Gauss-Radau Quadrature Letxy = a and x1,---,xn be the zeroes of
q(x)/(x — a), where g(x) is defined by (1.2.19). Then, the linear system (1.2.17)
admits a unique solution (wp, w1, - -+ ,wn)" Withw; > 0 for j = 0,1,--- , N. Fur-
thermore,

N b

Zp(xj)wj = / p(z)w(z)dz, foral pe Py. (1.2.20)
=0 a

Similarly, one can construct a Gauss-Radau quadrature by fixing 2y = b. Thus, the
Gauss-Radau quadrature is suitable for problems with one boundary point.

The third is the Gauss-Lobatto quadrature which is the most commonly used in
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spectral approximations since the set of collocation pointsincludes the two endpoints.
Here, we consider the polynomial

q(x) = pns1(z) + apn(z) + Bpn—1(x), (1.2.22)

where « and 3 are chosen so that ¢(a) = ¢(b) = 0. One can verify that ¢(z)/((z —
a)(x — b)) is orthogonal to al polynomials of degree less than or equal to N — 2 in
L2(a,b) with @ (z) = w(z)(x — a)(x — b). Hence, the N — 1 zeroes of ¢(z)/((x —
a)(x — b)) areall real, smpleand liein (a, b).

Gauss-Lobatto Quadrature Letxg=a,zy =bandxq, - ,xn_1 bethe
(N —1)-rootsof ¢(z)/((z — a)(xz — b)), where ¢(z) isdefined by (1.2.21). Then, the
linear system (1.2.17) admits a unique solution (wy, w1, - -+ ,wn)*, withw; > 0, for
j=0,1,---, N. Furthermore,

N b
Zp(xj)ouj = / p(z)w(z)dx, foradl pe Poy_;. (1.2.22)

§=0 @

Discrete inner product and discrete transform

For any of the Gauss-type quadratures defined above with the points and weights
{zj,w; };VZO, we can define adiscrete inner product in Ca, b] and its associated norm
by:

N 1
(U, U)N,w = Z u(xj)v(xj)wj, HUHN,w = (’LL, u)]a\ﬂw? (1223)
=0

and for u € Cla, b], we can write

N
w(z;) = Inu(z;) = Zﬂkpk(xj). (1.2.24)
k=0

One often needs to determine {4, } from {u(x;)} or vice versa. A naive approach is
to consider (1.2.24) as alinear system with unknowns {4 } and use a direct method,
such as Gaussian elimination, to determine {7, }. This approach requires O(N?)
operations and is not only too expensive but al so often unstable due to roundoff errors.
We shall now describe a stable O(N?)-approach using the properties of orthogonal
polynomials.

A direct consequence of Gauss-quadrature is the following:
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Lemmal.2.4 Letxy,xy,---,2zy bethe zeros of the orthogonal polynomial py 1,
and let {w;} be the associated Gauss-quadrature weights. Then

N
Zpi(wn)pj(wn)wn =0, if i#£j5<N. (1.2.25)
n=0

We derive from (1.2.24) and (1.2.25) that

N N N
Z w(a;)pi(z)w; = > inpr(a;)pi(@s)w; = t(pr pr) . (1.2.26)

j=0 7=0 k=0

Hence, assuming the values of {p;(z})} are precomputed and stored asan (N +1) x
(N + 1) matrix, the forward transform (1.2.24) and the backward transform (1.2.26)
can be performed by a simple matrix-vector multiplication which costs O(N?) oper-
ations. We shall seein later sections that the O(N?) operations can be improved to
O(N log N) if specia orthogona polynomials are used.

Exercise 1.2

Problen 1 Letw(xz) =1and (a,b) = (—1,1). Derive the three-term recurrence
relation and compute the zeros of the corresponding orthogonal polynomial R (x).

Problem 2 ProveLemmal.2.2.

Problemn 3 ProveLemmal.2.4.

1.3 Chebyshev and L egendre polynomials

Chebyshev polynomials

Discrete norm and discrete Chebyshev transform
Legendre polynomias

Zeros of the Legendre polynomials

Discrete norm and discrete L egendre transform

The two most commonly used sets of orthogonal polynomials are the Chebyshev and
L egendre polynomials. In this section, we will collect some of their basic properties.

Chebyshev polynomials

The Chebyshev polynomias {7,,(x)} are generated from (1.2.4) with w(z) =
(1 —22)72, (a,b) = (—1,1) and normalized with T;,(1) = 1. They satisfy the
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following three-term recurrence relation

n = T Tnf ) 2 17
Toa(2) = 2T (o) = Toa(@), s
To(z) =1, Ti(z) ==,
and the orthogonality relation
1 1
/ Ty (2)T;(2)(1 — 22) " 2dx = C’;”a,q, (1.3.2)
-1

wherecy = 2 and ¢, = 1 for k£ > 1. A unique feature of the Chebyshev polynomials
istheir explicit relation with a trigonometric function:

T, (x) = cos (n cos™! :):) , n=0,1,---. (1.3.3)

One may derive from the above many specia properties, e.g., it follows from (1.3.3)
that

2T, = —T —T > 2
n(x) n+1 n+1( ) n—l nfl(x)v n ) (134)

Ty(z) =Ti(x), 2Ti(z)= §T2'(1’)-

One can aso infer from (1.3.3) that 7,,(x) has the same parity as n. Moreover, we
can derive from (1.3.4) that

n—1 1 n—2 1

= — T/ (x —n(n? - E)Ti(z). (1.35
Z o (), Z ” (n )Ty (). (1.3.5)
k:+nodd k:+neven

By (1.3.3), it can be easily shown that

T (x)| <1, T ()| < n?, (1.3.68)
T, (£1) = (£1)",  Th(x1) = (£1)" n? (1.3.6b)
2T (2)Th(x) = Topgn (2) + T (), m > n. (1.3.6¢)

The Chebyshev polynomials {7},(x)} can aso be defined as the normalized eigen-
functions of the singular Sturm-Liouville problem

(\/1 - x2T,g(g;))' + 1k2 Te(x) =0, aze(-1,1). (1.3.7)

— X
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We infer from the above and (1.3.2) that

1 2
/ Ti(2)T)(z)V1 — 22dz = "”f’; s, (1.3.8)

-1

i.e. the polynomias {7} (x)} are mutually orthogonal with respect to the weight
function w(z) = V1 — z2.

Animportant feature of the Chebyshev polynomialsisthat the Gauss-type quadra-
ture points and weights can be expressed explicitly as follows®

Chebyshev-Gauss:
25+ 1)m s .
Chebyshev-Gauss-Radau:
s 21y 27 .
=1 = = = I1<j< N
=L TN T YTON T YT ANt J
(1.3.10)
Chebyshev-Gauss-L obatto:
ro=1, znx=-1, woszzﬁ, mj:cos%, wj—%, 1<j<N-1
(1.3.11)

Discrete norm and discrete Chebyshev transform

For the discrete norm || - || v, associated with the Gauss or Gauss-Radau quadra-
ture, we have ||u||n. = |lull, for @l v € Py. For the discrete norm || - ||
associated with the Chebyshev-Gauss-L obatto quadrature, the following result holds.

Lemmal.3.1 For all u € Py,

lull e, < lullve < V2ulls - (13.12)

Proof Foru = 3", @ Tk, we have

N
9 CLTr
lull3, = Zuz’“T. (1.3.13)
k=0

On the other hand,

@ For historical reasons and for simplicity of notation, the Chebyshev points are often ordered
in descending order. We shall keep this convention in this book.
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o CLT
ullyy = Z g + AR ATN TN N (13.14)

The inequality (1.3.12) follows from the above results and the identity

N
_ 4 2, _
(Tn, TN) N = ZO oy s im=m (1.3.15)
]:
wherecy = ¢y =2and ¢, =1forl <k <N —1. O

Let {&}1Y,, be the Chebyshev-Gauss-Lobatto points, i.e. & = cos(in/N), and
let » be a continuous function on [—1, 1]. We write

N
(gz —INufz Zuka gz Zﬂkcos(kiﬂ/N)v izoala"'aN-
k=0

(1.3.16)
One derives immediately from the Chebyshev-Gauss-quadrature that
i = 203" Lu(e) cos (ki /). (13.17)
uk_ckN 3 j)cos (kym 3.

The main advantage of using Chebyshev polynomials is that the backward and for-
ward discrete Chebyshev transforms (1.3.16) and (1.3.17) can be performed in
O(N log, N) operations, thanks to the Fast Fourier Transform (FFT), see Section
1.5. The main disadvantage is that the Chebyshev polynomials are mutually orthogo-
nal with respect to asingular weight function (1 — xz)*% which introduces significant
difficulties in the analysis of the Chebyshev spectral method.

L egendre polynomials

The Legendre polynomials { L, (z)} are generated from (1.2.4) with w(z) = 1,
(a,b) = (—1,1) and the normalization L,(1) = 1. The Legendre polynomials
satisfy the three-term recurrence relation

Lo(z) =1, Li(z) ==z,

(1.3.18)
(n+1)Lpti(z) = 2n + DaLly(z) — nlp—1(z), n>1,
and the orthogonality relation
1
/ Li(a)Ly(2)dz = —— 8y, (1.3.19)
1 k+3

The Legendre polynomials can aso be defined as the normalized eigenfunctions of
the singular Sturm-Liouville problem
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(1= 2L (2)) +nn+ )Ly(x) =0,  ze(-1,1), (1.3.20)
from which and (1.3.19) we infer that
! k(k+1
/ Li(x)L(x)(1 — 2*)dx = %%, (1.3.21)

i.e. the polynomias {L; (z)} are mutually orthogonal with respect to the weight

function w(z) =1 — 22

Other useful properties of the Legendre polynomials include:

[ @t = g L@ - L@,z (3229
In(@) = 5 (L () = Ly (0)); (1.3.220)
Lo(£1) = (£1)", Ll (1) = %(ﬂ)”*ln(n +1); (1.3.22c)
L (z) = S (2k + 1)Ly (2): (1.3.22d)
ket odd
L!(z) = Sf <k+%>0un+1y—Mk+1»LMm. (1.3.22¢)
part
k+n even

For the Legendre series, the quadrature points and weights are

Legendre-Gauss:. x; arethe zeros of L1 (z), and

2
(1 = a)[Liy 4 ()]

Legendre-Gauss-Radau: z; arethe N 4 1 zerosof L y(z) + Ly11(x), and

0<j<N. (1.3.23)

w; =

2 1 1- 2,
_ 1<j<N. 1324
S A A S S VR P ER (13249

wo =

Legendre-Gauss-Lobatto: 2o = —1,zy = 1, {x,}}_;" arethe zerosof Ly (x), and

2 1
N(N +1) [Ly(z;)]?

0<j<N. (1.3.25)

wj =
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Zeros of Legendre polynomials

We observe from the last subsection that the three types of quadrature points for
the Legendre polynomials are related to the zeros of the L1, Ly+1 + Ly and L'y,

Theorem 1.2.1 provides a smple and efficient way to compute the zeros of or-
thogonal polynomials, given the three-term recurrence relation. However, thismethod
may suffer from round-off errors as N becomes very large. As a result, we will
present an alternative method to compute the zeros of Lg\’,”) () numerically, where
m < N istheorder of derivative.

We start from the left boundary —1 and try to find the small interval of width
H which contains the first zero z;. The idea for locating the interval is similar to
that used by the bisection method. In the resulting (small) interval, we use Newton's
method to find the first zero. The Newton's method for finding aroot of f(z) = 0is

apy1 = o — flax)/f (2r). (1.3.26)

After finding the first zero, we use the point z + H as the starting point and repeat
the previous procedure to get the second zero . Thiswill give us al the zeros of
Lg\’,”) (x). The parameter H, which isrelated to the smallest gap of the zeros, will be
chosen as N—2.

The following pseudo-code generates the zeros of Lg\’,”) ().

CODE LGauss.1l

Input N, €, m %e is the accuracy tolerence

H=N"2; a=-1

For k=1 to N-m do

$The following is to search the small interval containing

a root
b=a+H
while LU (a)*L{" (b) > o
a=b; b=a+H
endwhile

$the Newton’s method in (a,b)
x=(a+b) /2; xright=b
while |x-xright|>e
xright=x; X=X—L%W(X)/LX?+U(X)
endwhile
z (k) =x
a=x+H %move to another interval containing a root
endFor
Output z (1), z(2),---,z(N-m)
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In the above pseudo-code, the parameter ¢ is used to control the accuracy of the
zeros. Also, we need to use the recurrence formulas (1.3.18) and (1.3.22b) to obtain
L () which are used in the above code.

CODE LGauss.2
$This code is to evaluate Lgnkx).
function r=Legendre(n,m,x)
For j=0 to m do
If j=0 then
s(0,3)=1; s(1,j)=x
for k=1 to n-1 do
s(k+1,3)=((2k+1) *x*s (k,j) -k*s(k-1,73))/ (k+1)
endfor
else s(0,3j)=0
if j=1 then s(1,j)=2
else s(1,3)=0
endif
for k=1 to n-1 do
s(k+1,3j)=(2k+1)*s(k,j-1)+s(k-1,73)
endfor
endIf
endFor
r=s(n,m)

As an example, by setting N = 7,m = 0 and e = 10~® in CODE LGauss.1,
we obtain the zeros for L;(z):

2 -0.94910791 25 0.40584515
2o -0.74153119 26 0.74153119
23 -0.40584515 27 0.94910791
24 0.00000000

By setting N = 6, = 1 and e = 107% in CODE LGauss.1, we obtain the
zerosfor L (x). Together with Z; = —1 and Z; = 1, they form the Legendre-Gauss-
L obatto points:

Z1 -1.00000000 Zs 0.46884879
Zy -0.83022390 Zg 0.83022390
Zs -0.46884879 Zn 1.00000000
Zy 0.00000000

Discrete norm and discrete Legendre transform

Asopposed to the Chebyshev polynomials, the main advantage of Legendre poly-
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nomialsis that they are mutually orthogonal in the standard IZ-inner product, so the
analysis of Legendre spectral methods is much easier than that of the Chebyshev
spectral method. The main disadvantage is that there is no practical fast discrete
Legendre transform available. However, it is possible to take advantage of both
the Chebyshev and Legendre polynomials by constructing the so called Chebyshev-
L egendre spectral methods; we refer to [41] and [141] for more details.

Lemmal.3.2 Let |||y bethediscrete normrelative to the Legendre-Gauss-Lobatto
quadrature. Then

lulle < |lully < V3|ulz2, foral ue Py. (1.3.27)

Proof Settingu = Y5, ix Ly, we have from (1.3.19) that |[ul2, = S, 2i}/(2k
+1). On the other hand,

lullF = Z ka +UN(LN7LN)
The desired result (1.3.27) follows from the above results, the identity

(LNaLN)N = LN((L‘j)2u.Jj = 2/]\77 (1328)

\
11>

and the fact that < 3 <353 O

2N+1 2N+1

Let {x; }o<i<n be the Legendre-Gauss-Lobatto points, and let v be a continuous
function on [—1, 1]. We may write

w(z;) = Inu(xj) ZUkLk: (). (1.3.29)

We then derive from the L egendre-Gauss-L obatto quadrature points that the discrete
Legendre coefficients @, can be determined by the relation

N
U = N— ZU(xj)LN((L‘j), k=0,1,---,N. (1330)

Thevalues { L;(x;)} can be pre-computed and stored asa (N +1) x (N+1) matrix by
using the three-term recurrence relation (1.3.18). Hence, the backward and forward
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discrete Legendre transforms (1.3.30) and (1.3.29) can be performed by a matrix-
vector multiplication which costs O(N?) operations.

Exercise 1.3

Problem1 Prove (1.3.22).

Problem 2 Derive the three-term recurrence relation for { I + Ly 1} and use the
method in Theorem 1.2.1 to find the L egendre-Gauss-Radau points with N = 16.

Problem 3 Prove (1.3.30).

1.4 Jacobi polynomials and generalized Jacobi polynomials

Basic properties of Jacobi polynomials
Generalized Jacobi polynomials

An important class of orthogonal polynomials are the so called Jacobi polynomials,
which are denoted by Job (z) and generated from (1.2.4) with

wx)=01—-2)*1+2z)’ fora, 3> -1, (a,b) = (—1,1), (1.4.2)
and normalized by ( )
aBqy T(n+a+l

JP(1) = 771!1“(04 1) (1.4.2)

where I'(z) is the usual Gamma function. In fact, both the Chebyshev and Legen-
dre polynomials are special cases of the Jacobi polynomials, namely, the Chebyshev
polynomials T,,(z) correspond to a = 3 = —3 with the normalization 7,,(1) = 1,
and the Legendre polynomials L, (x) correspond to a = 3 = 0 with the normaliza-
tion L, (1) = 1.

Basic properties of Jacobi polynomials

We now present some basic properties of the Jacobi polynomias which will be
frequently used in the implementation and analysis of spectral methods. We refer to
[155] for a complete and authoritative presentation of the Jacobi polynomials.

The three-term recurrence relation for the Jacobi polynomialsis:
Teb (@) = (apg e = 03P TP () = P T (), no> 1,

1.4.3
Jg’ﬁ(x)zl, Jla’ﬁ(x):%(a+ﬁ+2)x+%(a—ﬁ), ( )
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where
ap_ Cnta+B+1)2n+a+p+2)
ap™ = 2(77, + 1)(n +a+ 08+ 1) ’ (1.4.49)
a8 (82— a?)(2n+a+B+1)
b = 2n+1)(n+a+B+1)2n+a+B)’ (1.4.4b)
B (n+a)(n+B)2n+a+ B +2) (1449

" (n+1l)(n+a+p+1)2n+a+p)

The Jacobi polynomials satisfy the orthogonality relation

/1 Jg’ﬁ(ﬂc)J%”g(x)(l —z)*(1+ x)’gdx =0 forn # m. (1.4.5)
-1

A property of fundamenta importance is the following:

Theorem 1.4.1 The Jacobi polynomials satisfy the following singular Sturm-
Liouville problem:

(1—2)" %1+ :1:)*ﬁdi {(1 —z)t1+ x)ﬁJFl%Jgﬁ(x)}

i

+nn+1+a+3)J%x)=0, -1<z<l.

Proof We denote w(z) = (1 — 2)*(1 + 2)”. By applying integration by parts twice,
wefind that for any ¢ € P,,_1,

L d "’ ! dJy’d

/la{(l—x)aﬂ(l—l—:):)ﬁﬂw}qﬁdx——/1w(1—:):2) T d—id:):
1 2

_/ J;;ﬂ{[—(a+1>(1+x)+(ﬁ+1>(1_x>]%+(1—x2)ﬂ}wdx_o.

1 d$2

Thelast equality follows from the fact thatffl1 JPpw(z)de = 0forany ¢ € P,_;.
An immediate consequence of the above relation isthat there exists A such that

d

0 {(1 — ac)o‘+1(1 + :):)ﬂH%Jg”g(:):)} = )\Jg”g(:):)w(:):).

To determine )\, we take the coefficients of the leading term 22+2*# in the above
relation. Assuming that J3*7 () = kna™ + {lower order terms}, we get k,n(n+1+
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a+ 3) =k, A, whichimpliesthat A = n(n + 1+ a + 3). O

From Theorem 1.4.1 and (1.4.5), one immediately derives the following result:
Lemmal.4.l For n # m,

! dJi? dg’

The above relation indicates that %Jf{’ﬂ forms a sequence of orthogonal polyno-

mials with weight w(z) = (1 — z)**1(1 + 2)7*+!. Hence, by the uniqueness, we
find that -2 .77 is proportional to J2*"#*!. In fact, we can prove the following
important derivative recurrence relation:

Lemmald4.2 Fora,0 > —1,

1
ud¥(x) = (n+a+ 4+ DI @), O (14.7)

Generalized Jacobi polynomials

Sincefor a < —1 and/or 5 < —1, the function w®? isnot in LY(I) so it cannot
be used as a usual weight function. Hence, the classical Jacobi polynomials are only
defined for o, 3 > —1. However, as we shall see later, it is very useful to extend the
definition of J%*? to the cases where o and/or 0 are negative integers.

We now define the generalized Jacobi polynomials (GJPs) with integer indexes
(k,1). Let usdenote

—(k+1) if k1<-1,
ng :=no(k,l) =< —k if k<—-1,1> -1, (1.4.8)
- if &>-—1,1<-1,
Then, the GJPs are defined as

1—2) k1 +a2) T ) if kol < -1,
(I -2 -0

Tty =< (1 —a) kT M (2) if k<—1,1>-1, n>ng.
1+ 2)~ Il (@) if k>—1,1<—1,
(1.4.9)

It is easy to verify that Ji' € P,.

We now present some important properties of the GJPs. First of all, it is easy
to check that the GJPs are orthogonal with the generalized Jacobi weight ! for all
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integersk and [, i.e.,

1
/ Iy (@) ! ()™ () de = 0, Vn £ m. (1.4.10)
1

It can be shown that the GJPs with negative integer indexes can be expressed as
compact combinations of Legendre polynomials.

Lemma 143 Letk,l > 1andk,l € Z. There exists a set of constants {a; } such
that

L) = Y aLix), n>k+l (1.4.11)
j=n—k—l

As some important special cases, one can verify that

Jnflﬁl — M(LrﬁQ - Ln>’

2n —1

2n — 2 o —3 o —3
P R Gl )} ( L, =3, g a3 Ln)7

2n —3 2n—1 2n—1

(14.12)

J71772:2(n—2)(L +2n—3L I _2n—3L>
n on—3 \ gy e g )
0y An—1)(n—2) 2(2n — 3) o —5
5 = (L - 223y L)
" 2n—3)2n -5\ Tap =1 TP a1

It can be shown (cf. [75]) that the generalized Jacobi polynomials satisfy the deriva-
tive recurrence relation stated in the following lemma.

Lemmal4.4 For k,l € Z, we have

OpJF () = CRLIN | (2), (1.4.13)
where
2n4+k+1+1) if k1< -1,
. -n if k<—-1,1>-1,
Com =19 -n it k> -1,1< 1, (1.4.14)
1 .
§(n+k:+l+1) if k1> —1.

Remark 1.4.1 Since w®? ¢ L'(I) fora < —1and 3 < —1, it isnecessary that the
generalized Jacobi polynomials vanish at one or both end points. In fact, an important
feature of the GIPsisthat for k,1 > 1, we have
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g l1y=0, i=0,1,--- ,k—1;

. 1.4.15
ol (=1) =0, j=0,1,---,I-1. (1419

Thus, they can be directly used as basis functions for boundary-value problems with
corresponding boundary conditions.

Exercise 1.4
Problem 1 Prove (1.4.12) by the definition (1.4.9).

Problem 2 ProvelLemmal.4.4.

1.5 Fast Fourier transform

Two basic lemmas
Computational cost

Tree diagram

Fast inverse Fourier transform
Fast Cosine transform

The discrete Fourier transform

Much of this section will be using complex exponentials. We first recall Euler’s
formula; ¢ = cos@ + isin®, wherei = /—1. It is also known that the functions
E}, defined by

Ep(z) = e*®, k=041, (15.1)

form an orthogonal system of functionsin the complex space [0, 27], provided that
we define the inner-product to be

1 2

(f,9) = 5= f(z)g(z)dx.

_277'0

This means that (Ey, E,,) = 0 when k # m, and (Ey, Fy) = 1. For discrete values,
it will be convenient to use the following inner-product notation:

1 N-1
(frov =5 > f) gy, (15.2)
5=0

where
zj=2mj/N, 0<j<N-1 (L5.3)

The above is not a true inner-product because the condition (f, f)x = 0 does not
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imply f = 0. Itimpliesthat f(z) takes the value O at each node ;.

The following property isimportant.

Lemmal5.1 Forany N > 1, wehave

1 if kK —misdivisible by IV,

0 otherwise. (1.54)

(B, Em)N = {

A 27-periodic function p(x) issaid to be an exponential polynomial of degree at most
n if it can be written in the form

p(z) = Z cpett = Z e Ex(x). (1.5.5)
k=0 k=0

The coefficients {c;} can be determined by taking the discrete inner-product of
(1.5.5) with E,,,. More precisdly, it follows from (1.5.4) that the coefficients @), ¢1,
- ,en—1 in(1.5.5) can be expressed as:

N—
> flz)e ™, 0<k<N -1, (1.5.6)
j=0

[y

1
Ci — N
where z; is defined by (1.5.3). In practice, one often needs to determine {q, } from
{f(x;)}, or vice versa. It is clear that a direct computation using (1.5.6) requires
O(N?) operations. In 1965, a paper by Cooley and Tukey [*3 described a different
method of calculating the coefficients ¢, 0 < & < N — 1. The method requires only
O(N logy, N) multiplications and O(N log, N) additions, provided N is chosen in
an appropriate manner. For a problem with thousands of data points, this reduces the
number of calculations to thousands compared to millions for the direct technique.

The method described by Cooley and Tukey has become to be known either as
the Cooley-Tukey Algorithm or the Fast Fourier Transform (FFT) Algorithm, and has
led to arevolution in the use of interpolating trigonometric polynomials. We follow
the exposition of Kincaid and Cheneyt® to introduce the algorithm.

Two basic lemmas

Lemma 1.5.2 Letp and g be exponential polynomials of degree NV — 1 such that, for
the points y; = 75 /N, we have

p(y25) = f(y25), q(y25) = f(y25+1), 0<j<N-1 (15.7)
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Then the exponential polynomial of degree < 2NV — 1 that interpolates f at the points
y;,0 < j < 2N — 1, isgiven by
1 iNz 1 iNz
P(x) = 5(1 + e )p(x) + 5(1 —e""")q(x — w/N). (1.5.8)

Proof Since p and ¢ have degrees < N — 1, whereas ¢V* is of degree N, it is clear
that P has degree < 2N — 1. It remains to show that P interpolates f at the nodes.
We have, for 0 < j < 2N —1,

Plyy) = 51+ En(y)p(s;) +

5 (1= En(y;))aly; — /).

Noticethat Ey (y;) = (—1)7. Thusfor even j, weinfer that P(y;) = p(y;) = f(y;),
whereas for odd j, we have

P(y;) = qly; — n/N) = q(y;j-1) = f(y;)-
This completes the proof of Lemma 1.5.2. O

Lemma 1.5.3 Let the coefficients of the polynomials described in Lemma 1.5.2 be
as follows:

N-1 N-1 IN—1
aE;,  q=)Y BB, P=) vkE
=0 j=0 =
Then,for0 < j < N —1,
1 1 . 1 1 .
7= 505+ 5¢ NG i = Sag - 5e TN, (159

Proof To prove (1.5.9), we will be using (1.5.8) and will require aformulafor ¢(z —
w/N):

N-1 N-1 N-1
g(x —w/N) = Z BiEj(x —7m/N) = Z ﬁ]e” z—m/N) _ Z ﬁje_”r]/NE (z).
7=0 7=0 7=0

Thus, from equation (1.5.8),

N-1
1 —iT)
P=33 {4+ Ex)a B + (1 — Bx)Bje ™V E; |
=0
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=2

{(a+ BN E; + (0 — Bje /M) By}

DN | =
<
I
=)

The formulas for the coefficients ; can now be read from this equation. This com-
pletes the proof of Lemma 1.5.3. O

Computational cost

It follows from (1.5.6), (1.5.7) and (1.5.8) that

| Nl B
aj =~ Y fwg)e >IN,
N &~
| Nl B
By = 2 Flaajsn)e 20/,
5=0
1 2N—-1 3
"= N Y fla)e N,
j=0

For the further analysis, let R(V) denote the minimum number of multiplications
necessary to compute the coefficients in an interpolating exponential polynomial for
the set of points {27j/N : 0 < j < N —1}.

First, we can show that
R(2N) < 2R(N) + 2N. (1.5.10)

Itisseenthat R(2.NV) isthe minimum number of multiplications necessary to compute
7v;, and R(N) is the minimum number of multiplications necessary to compute «;

or 3;. By Lemma 1.5.3, the coefficients ; can be obtained from «; and j3; at the
cost of 2NV multiplications. Indeed, we require N multiplications to compute%aj for

0 < j < N—1, and another N multiplications to compute (%e*ij“/N)ﬁj for0 <j <

N — 1. (Inthe latter, we assume that the factors e =%/~ have aready been made
available.) Since the cost of computing coefficients {c;} is R(N) multiplications,

and the same is true for computing {/3; }, the total cost for P isat most 2R(N) + 2N
multiplications. It follows from (1.5.10) and mathematical induction that R(2") <

m 2™. As aconsegquence of the above result, we see that if N is a power of 2, say
2™ then the cost of computing the interpolating exponential polynomial obeys the
inequality

R(N) < Nlogy N.
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The agorithm that carries out repeatedly the procedure in Lemma 1.5.2 is the fast
Fourier transform.

Tree diagram

The content of Lemma 1.5.2 can be interpreted in terms of two linear operators,
Ly and T},. For any f, let Ly f denote the exponential polynomial of degree N — 1
that interpolates f at the nodes 275 /N for 0 < j < N — 1. Let T;, be atrandation
operator defined by (7}, f)(x) = f(z + h). We know from (1.5.4) that

N-1
Lyf=Y <[ Ex>n B
k=0
Furthermore, in Lemma 1.5.2, P = Lonf,p = Lyf and q = LyT;/nf. The
conclusion of Lemmas 1.5.2 and 1.5.3 isthat L, f can be obtained efficiently from

Our goal now is to establish one version of the fast Fourier transform algorithm
for computing Ly f, where N = 2. We define

P = LonTopenf,  0<n<m, 0<k<2m" — 1. (1.5.11)

An aternative description of Pkf") is as the exponentia polynomial of degree 2" — 1
that interpolates f in the following way:

(n) ( 27) 2wk 27y .
(5 = (e S). o<

A straightforward application of Lemma 1.5.2 shows that

n 1 2"y n 1 2" n 7T
P @) = S (14 e )P+ S = TP, (- o) (1512)

We can illustrate in a tree diagram how the exponential polynomials F,ﬁ") are
related. Suppose that our objective isto compute

7

P =Lsf =Y _ < f, Ep>n Ey.
k=0

In accordance with (1.5.12), this function can be easily obtained from 1%2) and P1(2).
Each of these, in turn, can be easily obtained from four polynomials of lower order,
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and so on. Figure 1.2 shows the connections.

Figurel.2 Anillustration of atree diagram

Algorithm

Denote the coefficients of P™ by A,EZ’. Here0 <n < m,0 <k <2m ™ —1,
and0 < j < 2" — 1. Wehave

27 —1 27 —1
P (@)= Y AV E(x) = Y A,
§=0 j=0
By Lemma 1.5.3, the following equations hold:
(n+1) _ LT ) | —ijmjan 4(0)
Akj D) [Akj +emm/ Ak:+2mfn71,j] ’

(1) _ LT ) _ —ijmjan ()
Apjgan = B [Akj —e i/ Ak+2m*"*1,j} :

For a fixed n, the array A™ requires N = 2™ storage locations in memory
because 0 < kK < 2™ —1and0 < j < 2" — 1. One way to carry out the
computations is to use two linear arrays of length V, one to hold A™ and the other
to hold A1), At the next stage, one array will contain At and the other A("+2),
Let us call these arrays C and D. The two-dimensional array A™ is stored in C by
therule

CEk+j) =AY,  0<k<2"" -1, 0<j<2" 1.

Itisnoted that if 0 < k, ¥ < 2™ ™ —1and0 < 7,5 < 2" — 1 satisfying 2"k + j =
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2"k + j', then (k, j) = (K, "). Similarly, thearray A1 isstored in D by therule
D™ k+j) =AUV, o<k<2mT o1 o< <2 o

Thefactors Z(j) = e~2™/N are computed at the beginning and stored. Then we use
the fact that
e—ijw/2” _ Z(ij—n—l).

Below isthe fast Fourier transform agorithm:

CODE FFT.1
% Cooley-Tukey Algorithm
Input m
N=2", w=e 27/N
for k=0 to N-1 do
z (k) =wk, c(k)=f (27k/N)
endfor
For n=0 to m-1 do
for k=0 to 2™ " !'-1 do
for j=0 to 2"-1 do
u=C (2"k+3) ; v=Z(§2m 1) *C (2"k+2m " 14+5)
D(2"T1k+9)=0.5% (u+v); D (2" k+j+27)=0.5% (u-v)
endfor
endfor
for j=0 to N-1 do
C(3)=D(3)
endfor
endFor
Output C(0), C(1), ---, C(N-1).

By scrutinizing the pseudocode, we can also verify the bound N log, N for the
number of multiplications involved. Notice that in the nested loop of the code, n
takes on m values; then k takes on 2*~"~1 values, and k takes on 2" values. In this
part of the code, there isreally just one command involving a multiplication, namely,
the one in which v is computed. This command will be encountered a number of
times equal to the product m x 27"~ x 27 = m2m~1, At an earlier point in the
code, the computation of the Z-array involves 2" — 1 multiplications. On any binary
computer, a multiplication by 1/2 need not be counted because it is accomplished
by subtracting 1 from the exponent of the floating-point number. Therefore, the total
number of multiplications used in CODE FFT.1is

m2™ 4 2™ — 1 < m2™ = Nlog, N.
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Fast inverse Fourier transform

The fast Fourier transform can also be used to evaluate the inverse transform:
| Nl ‘
dk:—Zg(xj)emj, 0<k<N-1.

N “4
7=0

Letj = N — 1 — m. Itiseasy to verify that

N—-1
1 .
di = e*m’“N E g(xN,l,m)eﬂkxm, 0<k<N-1.

m=0

Thus, we apply the FFT algorithm to get €%+ d;,. Then extra N operations give dj,. A
pseudocade for computing dy, is given below.

CODE FFT.2
% Fast Inverse Fourier Transform
Input m
N=2", w=e 2™/N
for k=0 to N-1 do
Z(k)=wk, C(k)=g(27(N-1-k)/N)
end
For n=0 to m-1 do
for k=0 to 2™ " !'-1 do
for j=0 to 2™-1 do
u=C (2"k+73) ; v=Z (32 "1y *C(27k+2" " 1+5)
D(2"1k+9)=0.5% (u+v) ; D(2" 1 k+j+2")=0.5% (u-v)
endfor
endfor
for j=0 to N-1 do
C(3)=D(3)
endfor
endFor
for k=0 to N-1 do
D(k)=2 (k) *C (k)
endfor
Output D(0), D(1), ---, D(N-1).

Fast Cosinetransform

The fast Fourier transform can also be used to evaluate the cosine transform:

N
ak:Zf(xj)cos(ﬂjk:/N), 0< k<N,
7=0
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where the f(z;) are real numbers. Let v; = f(z;) for0 < j < N andv; = 0 for
N +1<j<2N — 1. Wecompute

0<k<2N —1.

Since the v; are real numbersand v; = 0 for j > NN + 1, it can be shown that the real
part of A is

N
1
:ﬁfo] cos (mjk/N), 0<k<2N—1.
7=0

In other words, the following results hold: @, = 2NRe(A), 0 < k < N. By the
definition of the Ay, we know that they can be computed by using the pseudocode
FFT.1. When they are multiplied by 2V, we have the values of a.

Numerical examples

To test the the efficiency of the FFT algorithm, we compute the coefficients in
(1.5.6) using CODE FFT.1 and the direct method. A subroutine for computing the
coefficients directly from the formulas goes as follows:

CODE FFT.3
% Direct method for computing the coefficients
Input m
N=2m, W=e—27r1',/N
for k=0 to N-1 do
z (k) =w®, D(k)=£ (27k/N)
endfor
for n=0 to N-1 do

) +> N 'D (k) *Z (n)*

C(n)=u/N
endfor
Output <C(0), C(1), ---, C(N-1)

The computer programs based on CODE FFT.1 and CODE FFT. 2 arewritten
in FORTRAN with double precision. We compute the following coefficients:

=% Z cos(5a;)e i, 0<kE<N-1,
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where z; = 275 /N. The CPU time used are listed in the following table.

m N CPU (FFT) CPU (direct)
9 512 0.02 0.5
10 1024 0.04 2.1
11 2048 0.12 9.0
12 4096 0.28 41.0
13 8192 0.60 180.0

Thediscrete Fourier transform

Again let f be a27-periodic function defined in [0, 27]. The Fourier transform
of f(t) isdefined as
12 ,
H(s) = F{f(t)} = 5~ f(t)e "stde, (1.5.13)
T Jo

where s is a real parameter and F is called the Fourier transform operator. The
inverse Fourier transform is denoted by 71 {H (s)},

10 =7 ) = [ s

where F~1 is called the inverse Fourier transform operator. The following result is
important: The Fourier transform operator F isalinear operator satisfying

FLFM @)} = k)" F{f (1)}, (1.5.14)

where f(")(t) denotes the n-th order derivative of f(t). Similar to the continuous
Fourier transform, we will define the discrete Fourier transform below. Let the solu-
tion interval be [0, 27]. We first transform w(z, t) into the discrete Fourier space:

N—

H

u(wj, t)e” i, ——<k< =1, (1.5.15)

Jj=0

1 N N
N 2

where z; = 27j/N. Due to the orthogonality relation (1.5.4),

iNzleipxj [ 1 ifp=Nmm=041,£2 -,
otherwise,
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we have the inversion formula

N/2—-1
u(wg, )= > ak,t)e*,  0<j<N-1. (15.16)
k=—N/2

We close this section by pointing out there are many useful developments on fast
transforms by following similar spirits of the FFT methods; see e.g. [124], [126], [2],
[150], [21], [65], [123], [143].

Exercise 1.5
Problem1 Prove(1.5.4).

Problem 2 One of the most important uses of the FFT algorithm is that it allows
periodic discrete convolutions of vectors of length n to be performed in O(nlogn)
operations.

To keep the notation simple, let us consider n = 4 (the proof below carries
through in just the same way for any size). Use the fact that

1 1 1 1 ﬁo Uugp
1 w w? W ap | | wr
1 w? Wt Wb s | | ug |
1 w Wb W Uus U3

isquivalent to

S|
I S =
|
)
|
N
|
o
>

where w = ¢™/™ prove that the linear system

20 23 %2 21 Zo Yo
21 20 <3 %2 1 | _| N
22 21 20 %3 T2 Y2
23 22 Z1 %0 xs3 Y3

where {2y, 21, 22, 23} iSan arbitrary vector, can be transformed to a simple system of
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the form
) Zo Yo
21 Ty | 1| o
Zo Zo | n| G
) T3 Us

1.6 Several popular time discretization methods

General Runge-Kutta methods
Stability of Runge-Kutta methods
Multistep methods

Backward difference methods (BDF)
Operator splitting methods

We present in this section several popular time discretization methods, which will be
repeatedly used in this book, for a system of ordinary differential equations

du
— =F(U,t 16.1
= F(U,1), (16.2)

whereU € R?, F € R?. Aninitial condition is also given to the above problem:
Ulto) = Up. (1.6.2)

The simplest method is to approximate dU /dt by the finite difference quotient U (¢)
~ [U(t+ At) — U(t)]/At. Since the starting data is known from theinitial condition
U° = Uy, we can obtain an approximation to the solution at t;, = tq + At: U =
UY + At F(U°,tq). The process can be continued. Let t;, = to + kAt, k > 1. Then
the approximation Uy, 1 to the solution U (¢.+1) is given by

Uttt =Un + AtF(U™, t,), (1.6.3)

where U™ ~ U(-, t,). The above algorithm is called the Euler method. It is known
that if the function F' has a bounded partia derivative with respect to its second
variable and if the solution U has a bounded second derivative, then the Euler method
converges to the exact solution with first order of convergence, namely,

max |U" —Ul(t,)| < CAt,
1<n<N
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where C'isindependent of N and At.

The conceptually simplest approach to higher-order methodsisto use more terms
in the Taylor expansion. Compared with the Euler method, one more term istaken so
that

At?

Ultpe1) = Ulty) + AtU'(t,) + TU”(tn), (1.6.4)

where the remainder of O(A#?) has been dropped. It follows from (1.6.1) that U’ (¢,,)
can be replaced by F(U™,t,,). Moreove,

U'(t) = %F(U(t), t) = Fy (U, t)U'(t) + F(U,t),

which yields
U"(ty) = Fy (U™ t,)F(U", t,) + F(U™, t,).

Using thisto replace U”(t,,) in (1.6.4) leads to the method

At?
UM = U™ + AF(U" tn) + = [F(U" ) + Fyr (U ) F(U" )] (L65)

It can be shown the above scheme has second-order order accuracy provided that F
and the underlying solution U are smooth.

General Runge-Kutta methods

Instead of computing the partia derivatives of F', we could also obtain higher-
order methods by making more eval uations of the function values of F' at each step. A
class of such schemes is known as Runge-Kutta methods. The second-order Runge-
Kutta method is of the form:

U=Un, G =F(Ut,),

U=U+altG,  G=(-1+2a—2a")G+F(Ut, +alt), (166

At
Untl = U + =¢G.
2cy

Only two levels of storage (U and G) are required for the above algorithm. The
choice o« = 1/2 produces the modified Euler method, and oo = 1 corresponds to the
Heun method.
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The third-order Runge-Kutta method is given by:

Uu=Uu", G =F(U,t,),

U:U+§AtG, G:—gG—FF(U,tn‘F%At),

(16.7)

15 153 3
— A = F -A
U U+16 tG, G 128G+ <U,tn+4 t>,

8
U U+ 15G.

Only two levels of storage (U and () are required for the above agorithm.
The classical fourth-order Runge-Kutta (RK4) method is

( At 1
K, :F(Unvtn)a Ky =F Un‘i‘?Klatn"i'iAt )

At 1
Ky =F (U™ + = Koty + §At . Ky=F({U"+ AtKs, t,,), (1.6.8)

At
Ul = U+ S (K 4 2Kp + 2K5 + Ka).

The above formula requires four levels of storage, i.e. K, Ko, K3 and K4. An
equivaent formulation is

U=U"  G=U, P=F(U,€t,,
1 1

1 1
U=U+5AUP-G), G=:G, P=F({Ut,+At/2)-P/2,

U:U+Atp, G:G—P, P:F(Uathrl)—’_QP?

Ul =U + At (G + P/6).
(1.6.9)
This version of the RK4 method requires only three levels (U, G and P) of storage.

Aswe saw in the derivation of the Runge-Kutta method of order 2, a number of
parameters must be selected. A similar process occurs in establishing higher-order
Runge-Kutta methods. Consequently, there is not just one Runge-Kutta method for
each order, but a family of methods. As shown in the following table, the number
of required function evaluations increases more rapidly than the order of the Runge-
Kutta methods:
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Number of function evaluations 1 2 3 4 5 6 7 8
Maximum order of RK method 1 2 3 4 4 5 6 6

Unfortunately, this makes the higher-order Runge-Kutta methods less attractive than
the classical fourth-order method, since they are more expensive to use.

The Runge-Kutta procedure for systems of first-order equations is most easily
written down in the case when the system is autonomous; that is, it has the form

au
= F(U). (1.6.10)

The classical RK4 formulas, in vector form, are
n+1 n At
Ut = U+ <K1 + 2Ky + 2K5 + K4), (1.6.11)

where A
t
Ki=F{U"), K, _F<U"+7Kl>,

At
Ky=F (U" + 71(2) . Ky=F(U"+ AtKs).

For problems without source terms such as Examples 5.3.1 and 5.3.2, we will end up
with an autonomous system. The above RK4 method, or its equivalent form similar
to (1.6.9), can be used.

Stability of Runge-Kutta methods

The general s-stage explicit Runge-Kutta method of maximum order s has sta-
bility function

2 s

T(z):1+z+%+...+z_', s=1,2,3,4. (1.6.12)
S

There are afew stability concepts for the Runge-Kutta methods:

a. The region of absolute stability R of an s-order Runge-Kutta method is the
set of points z = AAt € C such that if z € R, (Re(A) < 0). Then the numerica

method applied to

du
— = 1.6.13
7 u ( )

givesu™ — 0 asn — oo. It can be shown that the region of absolute stability of a



42 Chapter 1  Preliminaries

Runge-Kutta method is given by

R={z€C | |r(2)| <1}. (1.6.14)

b. A Runge-Kutta method is said to be A-stable if its stability region contains the
left-half of the complex plane, i.e. the non-positive half-plane, C.

c. A Runge-Kuttamethod is said to be L-stable if it is A-stable, and if its stability

function r(z) satisfies
| l|im Ir(z)| = 0. (1.6.15)

In Figure 1.3, we can see that the stability domains for these explicit Runge-Kutta
methods consist of the interior of closed regionsin the left-half of the complex plane.
The algorithm for plotting the absolute stability regions above can be found in the
book by Butcher [27]. Notice that all Runge-Kutta methods of a given order have the
same stability properties. The stability regions expand as the order increases.

3

2F

—
T

Imaginary
S

Real
Figure 1.3 Absolute stability regions of Runge-Kuttamethods

Multistep methods

Anather approach to higher-order methods utilizes information already computed
and does not require additional evaluations of F'(U,t). One of the simplest such
methods is

At
UMt = Up + - BF(U" 1) = FU" ™ 1)), (1.6.16)

for which the maximum pointwise error is O(A#?), and is known as the second-order
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Adams-Bashforth method, or AB2 for short. Note that the method requires only the
evaluation of F(U™, t,,) a each step, thevalue F(U™ !, ¢,,_1) being known from the
previous step.

We now consider the general construction of Adams-Bashforth methods. Let
Ur, U™t ... U™ be the computed approximations to the solution at t,, t,_1,
L ta_s Let F' = F(U* t;) and let p(t) be the interpolating polynomial of degree
s that satisfies
p(t;) = F*, t=nn—1,---,n—s.

We may then consider p(t) to be an approximation to F'(U(t),t). Since the solution
U (t) satisfies

tnt1 tnt1 lnt1
Ultun) ~Ulta) = [ U0t = [ Fw@.0a~ [ pjar,
tn tn tn
we obtain the so-called Adams-Bashforth (AB) methods as follows:

tn+1
Uttt =un 4 / p(t)dt. (1.6.17)
tn

Below we provide afew specia cases of the Adams-Bashforth methods:
e s=0:p(t) = F,fort € [t,,t,+1), gives Euler method.

es—1:

t—1t
— —_Jmn n F™ anl
p(t) = pr(t) = U + —( )
which leads to the second-order Adams-Bashforth method (1.6.16).
s =2
t—to)t —th1), - -
pa(t) :pl(t)+( 2)(At2 1)(F —2F"l 4 Fr2),

which leads to the third-order Adams-Bashforth method

At

(t=tn)(t —th—1)(t —tn—2) , n e e
pa(t) = pa(t) — N ( (F" = 3F"" 1 4 3F""2 — F"79),
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which leads to the fourth-order Adams-Bashforth method

Uttt =un + %(551?” — B59F™ ! 4 37F" T2 93, (1.6.19)
In principle, we can continue the preceding process to obtain Adams-Bashforth meth-
ods of arbitrarily high-order, but the formulas become increasingly complex as d in-
creases. The Adams-Bashforth methods are multistep methods since two or more
levels of prior data are used. Thisisin contrast to the Runge-Kutta methods which
use no prior data and are called one-step methods. We will compute the numerical
solutions of the KdV equation using a multistep method (see Sect. 5.4).

Multistep methods cannot start by themselves. For example, consider the fourth-
order Adams-Bashforth method. The initial value U° is given, but for k = 0, the
information is needed at t_1,t_o,¢_3, which is not available. The method needs
“help” getting started. We cannot use the fourth-order multistep method until & > 3.
A common policy isto use a one-step method, such as a Runge-Kutta method of the
same order of accuracy at some starting steps.

Since the Adams-Bashforth methods of arbitrary order require only one evalua-
tionof F(U, t) at each step, the“cost” islower than that of Runge-Kutta methods. On
the other hand, in Runge-Kutta methods it is much easier to change step-size; hence
they are more suitable for use in an adaptive algorithm.

Backward difference methods (BDF)

The Adams-Bashforth methods can be unstable due to the fact they are obtained
by integrating the interpolating polynomial outside theinterval of the datathat defines
the polynomial. This can be remedied by using multilevel implicit methods:

e Second-order backward difference method (BD2):

1
E(SSU”“ —4U + UMY = F(U™ ). (1.6.20)

e Third-order backward difference method (BD3):

1

@(HU”“ — 18U + 99Ut — 2™ %) = F(U™ t,y1).  (1.6.20)
In some practical applications, F'(u, t) isoften the sum of linear and nonlinear terms.
In this case, some combination of the backward difference method and extrapolation

method can be used. To fix the idea, let us consider

ur = L(u) + N(u), (1.6.22)
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where £ isalinear operator and V' is a nonlinear operator. By combining a second-
order backward differentiation (BD2) for the time derivative term and a second-order
extrapolation (EP2) for the explicit treatment of the nonlinear term, we arrive at a
second-order scheme (BD2/EP2) for (1.6.22):

1

A7 (BU™Mt —4u™ + U = (UMY 4+ N (U™ - UMY, (1.6.23)

A third-order scheme for solving (1.6.22) can be constructed in a similar manner,
which leads to the so-called BD3/EP3 scheme:

1
—— (11U 18U +9U T —2U™?) = L(UMTH + N (3U - 3U™ T U,

6AL
(1.6.24)

Operator splitting methods

In many practical situations, F'(u,t) is often the sum of several terms with dif-
ferent properties. Then it is often advisable to use an operator splitting method (also
called fractional step method)17%119.57. 1541 T fix the idea, |et us consider

up = f(u) = Au+ Bu, u(ty) = uo, (1.6.25)

where f(u) is anonlinear operator and the splitting f(u) = Au + Bu can be quite
arbitrary; in particular, A and B do not need to commute.

Strang’s operator splitting method For agiven time step At > 0,
lett, =n At,n=0,1,2,--- and u" bethe approximation of u(t,). Let usformally
write the solution u(z, t) of (1.6.25) as

u(t) = e Blug =: S(t)uq. (1.6.26)

Similarly, denote by S (t) := e*4 the solution operator for u; = Au, and by Sy(t) :=
e'B the solution operator for u; = Bu. Then thefirst-order operator splitting is based
on the approximation

u" T x Sy(At)S)(At)u™, (1.6.27)

or on the one with the roles of S; and S; reversed. To maintain second-order accu-
racy, the Strang splitting*>* can be used, in which the solution S(t, )uq is approxi-
mated by

u" T~ So(At/2)S1(AL)So(At/2)u™, (1.6.28)

or by the one with the roles of S; and S; reversed. It should be pointed out that
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first-order accuracy and second-order accuracy are based on the truncation errors for
smooth solutions. For discontinuous solutions, it is not difficult to show that both
approximations (1.6.27) and (1.6.28) are at most first-order accurate, see e.g. [35],
[159].

Fourth-order time-splitting method A fourth-order symplectictime
integrator (cf. [172], [99]) for (1.6.25) is asfollows:

u(l) _ e2w1AAt un’ U(Q) _ 6QwQBAt u(l)’ U(S) _ e2w3AAt u(2)’

’LL(4) _ e2w4BAt U(3), u(5) _ e2w3AAt ’LL(4), u(6) _ 6QwQBAt ’LL(5) (1629)

n+l _ €2w1AAt ’LL(6)

)

)

u
or, equivalently,

un+1 ~ Sl (2’11)1 At)SQ(2'U)2At)Sl (2w3At)Sg(2w4At)
Sl (2w3At)SQ(2’U)2At)Sl (2w1At)u",

where

wy = 0.33780 17979 89914 40851, wq = 0.67560 35959 79828 81702,

ws = —0.08780 17979 89914 40851, wy = —0.85120 71979 59657 63405.
(1.6.30)

Numerical tests

To test the Runge-Kutta algorithms discussed above, we consider Example 5.3.1
in Section 5.3. Let U = (Uy,---,Unx_1)", namely the vector of approximation
values at the interior Chebyshev points. Using the definition of the differentiation
matrix to be provided in the next chapter, the Chebyshev pesudospectral method for
the heat equation (1.1.1) with homogeneous boundary condition leads to the system

au
= A
dt v

where A isaconstant matrix with (A);; = (D?);;. Thematrix D> = D'« D', where
D' isgiven by CODE DM. 3 in Sect 2.1. Thefollowing pseudo-code implements the
RK2 (1.6.6).

CODE RK.1
Input N, wug(x), At, Tmax, «
%$Form the matrix A
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call CODE DM.3 in Sect 2.1 to get D1(i,j), 0<i,j<N
D2=D1*D1;
A(i,j)=D2(i,3j), 1<i,j<N-1
Set starting time: time=0
Set the initial data: UO=ug(x)
While time<Tmax do
$Using RK2 (1.6.6)
U=U0; G=A*U
U=U+a*At*G; G=(-1+2a-20a%)G+A*U
U0=U+At*G/ (2*«)

Set new time level: time=time+At
endWhile
Output U0 (1),U(2), ---, U(N-1)

Codesusing (1.6.11), i.e., RK4 for autonomous system, can bewritteninasimilar
way. Numerical results for Example 5.3.1 using RK2 with o = 1 (i.e.,, the Heun
method) and RK4 are given in the following table. Tmax in the above code is set to
be 0.5. It is seen that these results are more accurate than the forward Euler solutions
obtained in Section 5.3.

N Heun method (At=1073) RK4 (At=1073)
3 1.11e-02 1.11e-02
4 3.75e-03 3.75e-03
6 3.99e-05 4.05e-05
8 1.23e-06 1.77e-06
10 5.92e-07 3.37e-08
11 5.59e-07 1.43e-09
12 5.80e-07 4.32e-10

The numerical errors for At = 1073, Tmax=0.5 and different values of s (the order
of accuracy) can be seen from the following table:

N s=2 s=3 s=4

3 1.11le-02 1.11le-02 1.11le-02
4 3.75e-03 3.75e-03 3.75e-03
6 3.99e-05 4.05e-05 4.05e-05
8 1.23e-06 1.77e-06 1.77e-06
10 5.92e-07 3.23e-08 3.37e-08
11 5.59e-07 2.82e-09 1.43e-09
12 5.80e-07 1.70e-09 4.32e-10

Exercise 1.6

Problem 1 Solve the problem in Example 5.3.1 by using a pseudo-spectral ap-
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proach (i.e. using the differential matrix to solve the problem in the physical space).
Take3 < N < 20, and use RK4.

1.7 lterative methods and preconditioning

BiCG agorithm
CGSagorithm

BiCGSTAB agorithm
GMRES method
Preconditioning techniques
Preconditioned GMRES

Among the iterative methods developed for solving large sparse problems, we will
mainly discuss two methods:. the conjugate gradient (CG) method and the generalized
minimal residual (GMRES) method. The CG method proposed by Hestenes and
Stiefel in 1952 (82 jsthe method of choice for solving large symmetric positive definite
linear systems, while the GMRES method was proposed by Saad and Schultz in 1986
for solving non-symmetric linear systems!13%],

Let the matrix A € R™*™ be a symmetric positive definite matrix and b € R"
a given vector. It can be verified that & is the solution of Az = b if and only if &
minimizes the quadratic functional

J(x) = §xTAx — 2% (1.7.2)

Let us consider the minimization procedure. Suppose 23 has been obtained. Then

Zx1 can be found by
Tl = Tk + QkPks (1.7.2)

where the scalar o4 is called the step size factor and the vector p, is caled the
search direction. The coefficient oy, in (1.7.2) is selected such that J(zx + axpr) =
min,, J(xx + api). A simple calculation shows that

o = (1, 1)/ (APk, Pk) = Py Tk /PR APk
Theresidual at this step is given by

The1=b — Azpy = b — Az + appr)
=b— Axk — OékApk =Tk — OékApk.

Select the next search direction p41 such that (px11, Apr) =0, .,

P41 = Th+1 + BkPks (L.7.3)
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where .
By = APaTre1) T APk
(Apk, pi) pi Api
It can be verified that
riry=0, pAp;=0, i#j. (1.7.4)

Conseguently, it can be shown that if A isareal n x n symmetric positive definite
matrix, then the iteration converges in at most n steps, i.e. x,, = & for somem < n.

The above derivations lead to the following conjugate gradient (CG) a gorithm:

Choose xzg, compute rg=0b— Axrg and set pg=ryg.
For k=0,1,---do
Compute oy = (1%, 7%)/(Apk, Dk)

Set Tpi1 = Tk + Pk

Compute 7p41 =7 — arpApk

If |rk41ll2 =€, continue,

Compute O = (Tkt1,Tk+1)/(Tk, k)

Set pr4+1 = Tk+1 + BrPr
endFor

It isleft as an exercise for the reader to prove that these coefficient formulas in the
CG agorithm are equivalent to the obvious expressions in the above derivations.

The rate of convergence of the conjugate gradient method is given by the follow-
ing theorem:

Theorem 1.7.1 If A is a symmetric positive definite matrix, then the error of the
conjugate gradient method satisfies

12 — zxlla < 295(1E - oL, (1.7.5)

where
|z]ls = (Az,2) = 2" Az, y=(Vr—1)/(VE+]1), (1.7.6)
and r = ||A||2||A||2 isthe condition number of A. O

For a symmetric positive definite matrix, [|All> = A, [[A71 ]2 = A{!, where A,
and \; arethe largest and smallest eigenvalues of A. It follows from Theorem 1.7.1
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that a 2-norm error bound can be obtai ned:
12 — 2xll2 < 2vEYF (|2 — 2o l2- (17.7)

We remark that

e we only have matrix-vector multiplications in the CG algorithm. In case that
the matrix is sparse or has a special structure, these multiplications can be done effi-
ciently.

e unlike the traditional successive over-relaxation (SOR) type method, thereisno
free parameter to choose in the CG algorithm.

BiCG algorithms

When the matrix A is hon-symmetric, an direct extension of the CG algorithm is
the so called biconjugate gradient (BiCG) method.

The BiCG method aims to solve Az = b and ATz* = b* simultaneously. The
iterative solutions are updated by

Tjq1 = Tj + o pj, Ti =T+ a;p; (1.7.8)

and so
riq1 =15 — a;Ap;, Tigl =T) — oszTp;f. (1.7.9)

Werequire that (rj41,77) = 0 and (r;,77,,) = 0 for al j. Thisleadsto
aj = (rj,75)/(Ap;, pj)- (17.10)
The search directions are updated by
pj+1="rj+1+Bipj,  Pip =i+ Bip; (1.7.11)
By requiring that (Ap;+1,p;) = 0 and (Ap;, pj,,) = 0, we obtain
Bi = (rj+1,7541)/(15,75). (17.12)
The above derivations lead to the following BiCG agorithm:

Choose =z, compute rg=0b— Axy and set pg=ryg.
Choose rj such that (rg,75) #0.
For 7=0,1,---do
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(ijr;)
(Ap;.p3) °
Set xjt1 =2 +a;p;.

Compute «; =

. — . oy . * ko AT
Compute 741 =71; —jAp; and rj =71; —a;A pj.
If |[rit+1]l2 =€, continue,

Tj+1v7";+1)

(
Compute f3; = i)

Set pjy1 =rjy1+ B;p; and p}fﬂ = 7"}}1 + ﬁjp;

endFor

We remark that

e The BiCG agorithm is particularly suitable for matrices which are positive
definite, i.e., (Az,z) > 0for al = # 0, but not symmetric.

e the agorithm breaks down if (Ap;, p}f) = 0. Otherwise, the amount of work
and storage is of the same order as n the CG algorithm.

o if Aissymmetric and r; = ro, then the BiCG algorithm reduces to the CG
agorithm.

CGSalgorithm

The BiCG algorithm requires multiplication by both A and A at each step. Ob-
vioudly, this means extra work, and, additionally, it is sometimes cumbersome to
multiply by AT than it is to multiply by A. For example, there may be a special
formula for the product of A with a given vector when A represents, say, a Jacobian,
but a corresponding formula for the product of AT with a given vector may not be
available. In other cases, data may be stored on aparallel machine in such away that
multiplication by A is efficient but multiplication by AT involves extra communica-
tion between processors. For these reasons it is desirable to have an iterative method
that requires multiplication only by A and that generates good approximate solutions.
A method that attempts to do thisis the conjugate gradient squared (CGS) method.

For the recurrence relations of BiCG a gorithms, we see that
rj = ®5(A)ro + 3(A)po,

where ®3(A) and ®3(A) are j-th order polynomials of the matrix A. Choosing ) =
ro gives
rj=®(A)rg (B = Pj + DF),
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with &5 = 1. Similarly,
pj = m;j(A)ro,

where m; is a polynomial of degree j. Asr} and p; are updated, using the same

recurrence relation as for r; and p;, we have

rt=®;(AT)rg,  py =m (AT,
Hence,
(@ (A)ro, @;(AT)rg) (®%(A)ro,5)

o = .
T (Amj(A)ro, mi(AT)rg) (A3 (A)ro, )
From the BiCG agorithm:

Di1(t) = @i(t) — ajtm;(t), mip1(t) = Pjpa(t) + Bym;(t).
Observe that
©jmj = j(®; + fj-1mj-1) = ©F + 1871
It follows from the above results that

(I)?-i-l = (I’? — QOzjt((I’? + ﬂj_l@jﬂj_l) + Oé?t27Tj2,

2 2 2
<I>j+17rj = (I)jﬂj - Oéjtﬂj = ‘I’j + ﬂj_lq’jﬂj_l - Oéjtﬂj,

7T]2-+1 = (I)?-f—l + 2ﬁjq>j+177j + ﬁ?ﬂ'?

Define

rj = @?(A)ro, pj = 7'(']2-(14)7”0,

qj = @j+1(A)m;(A)ro,

dj = 27“j + 25]’—1(]]'—1 — OéjApj.
It can be verified that

7“j = ’I”j_l — OéjAdj,

qj =1+ Bj-1gj-1 — o Ap;

Piv1 = i1 + 2605 + B3pj,

dj = 27“j + 25]’—1(]]'—1 — OéjApj.

(1.7.13)

(1.7.14)

(1.7.15)

(1.7.16)
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Correspondingly,

Tjr1 =25+ Oéjdj. (L.7.17)
This gives the CGS algorithm. It istrue that 2; may not be the same as that produced
by the BiCG.

The above derivations lead to the following the CGS agorithm:

Choose g, compute rg=b— Axry and set pg=rg,ug=r9, qo=0.
Choose r} such that (rg,rg) #0.
For 7=0,1,---do

ri,rs
Compute aj = (1(41];3-,2;); Compute gj+1 = uj — ;Ap;

set wjp1 = xj + a;(u; +¢j1)
Compute 7j41 =71 — a;A(u; + ¢jt1)
If ||rk41]l2 =€, continue,

Tir1,To
Compute (3; = %; Compute wujy1 = rjq1 + Biqj+1

Set pjr1 = uj1 + Bi(gj+1 + Bip;)
endFor

The CGS method requires two matrix-vector multiplications at each step but no
multiplications by the transpose. For problems where the BiCG method converges
well, the CGStypically requires only about half as many steps and, therefore, half the
work of BiCG (assuming that multiplication by A or AT requires the same amount
of work). When the norm of the BiCG residual increases at a step, however, that
of the CGS residual usually increases by approximately the square of the increase
of the BiCG residua norm. The CGS convergence curve may therefore show wild
oscillations that can sometimes lead to numerical instabilities.

BiCGSTAB algorithm

To avoid the large oscillations in the CGS convergence curve, one might try to
produce aresidual of the form

rj = V;(A)2;(A)ro, (1.7.18)

where ®; is again the BiCG polynomial but ¥; is chosen to keep the residual norm
small at each step while retaining the rapid overall convergence of the CGS method.
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For example, ¥ (t) is of theform
\I/j+1(t) = (1 — wjt)\IJj(t). (1719)

In the BiICGSTAB algorithm, the solution is updated in such away that r; is of the
form (1.7.18), where W;(A) is a polynomial of degree j which satisfies (1.7.19). It
can be shown that

Vi1 @i = (1 — wit) (P — ajtmy)

(1.7.20)
= (1 —w;t)(¥;®; — ot ¥;m;),
Wjmy = Wj(®; + Bj-1mj-1) (17.21)
= ‘I’jq)j + ﬁjfl(l - wjflt)‘lljflﬂ'jfl.
Let i = @J(A)‘I’](A)To and p; = ‘I’j(A)T('j(A)’Fo. It can be verified that
ri+1 = (I —w;A)(r; — a;Ap;), (17.22)
Pj+1 = rj+1 + B (I —w;A)p;.
By Ietting ;=1 — ajApj, we obtain
Ti+1 = (I - ij)Sj. (1723)
The parameter w; is chosen to minimize the 2-norm of 4, i.e,
(ASj, Sj)
= e e 1.7.24
’U)] (ASj, ASj) ( )

We al'so need to find an updating formulafor o; and 3;, only using 7, pi, and sy; this
is rather complicated and the calculations for deriving them are omitted here.

The BiCGSTAB algorithm is given by

Choose xzg, compute rg=0b— Arg and set pg=rg.
Choose rj such that (rg,75) #0.
For 7=0,1,---do

(r',r*)
Compute «j = (Azjaj,gg)

R A . (Asjys5)
Set sj =r; —ajAp;; Compute wj; = (Asij;j)
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Set zj+1 =+ aypj +w;sji Tjr1 = 85 — wiAs;
If ||rks1ll2 =€, continue,

(rj+1,m5)  aj

Compute f3; =

(rjrs)  wj
Set pj+1 = Tj+1+ Bi(pj — w;jApy)
endFor
GMRES method

The GMRES method proposed by Saad and Schultz in 1986 is one of the most
important tools for ageneral non-symmetric system

Ax =0, with A non-symmetric. (1.7.25)

In the k-th iteration of the GMRES method, we need to find a solution of the least-
squares problem
min |b— Az||2, (1.7.26)
z€xo+|(A,ro0,k)
where rg = b — Azg and ||(A, o, k) := {ro, Arg,--- ,A¥*"Irg}. Letz € x +
(A, ro, k). We have

k—1
r =m0+ » AT (1.7.27)
j=0
Moreover, it can be shown that
k .
r=b—Axr=rg— Z’yj,lAjro. (1.7.28)
j=1

Like the CG method, the GMRES method will obtain the exact solution of Az = b
within n iterations. Moreover, if bisalinear combination of & eigenvectors of A, say
b= Z';zl Ypli,, then the GMRES method will terminate in at most & iterations.

Suppose that we have a matrix Vi, = [vf,v5, -, v¥] whose columns form an
orthogonal basis of ||(A, r, k). Thenany z € ||(A, ro, k) can be expressed as

k
z = Zupv;f = Vyu, (1.7.29)
p=1
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where u € R¥. Thus, once we have found V4, we can convert the original least-
squares problem (1.7.26) into aleast-squares problem in R¥, as to be described below.
Let x5, be the solution after the k-th iteration. We then have @, = x¢ + Viyr, Where
the vector y;, minimizes

min ||b — A(zo + Viy)||2 = min ||ro — AViy||2- (1.7.30)
y€ERK y€ERK
Thisisastandard linear |east-squares problem that can be solved by a QR decompo-
sition.

One can use the modified Gram-Schmidt orthogonalization to find an orthonor-
mal basis of ||(A,rg, k). Theagorithm is given as follows:

Choose xg, set rg=b— Axg,v1 =10/||r0]2-

For +=1,2,--- J/k—1, do:
Avi—Y 51 ((Avi) o))

[[Av =25 ((Av) Toy)uy ][, !

Compute v;41 =

endFor

This algorithm produces the columns of the matrix V4, which also form an orthonor-
mal basis for ||(A,r, k). Note that the algorithm breaks down when a division by
Zero occurs.

If the modified Gram-Schmidt process does not break down, we can use it to
carry out the GMRES method in the following efficient way. Let h;; = (Av;) ;.
By the modified Gram-Schmidt algorithm, we have a (k + 1) x k& matrix Hy, whichis
upper Hessenberg, i.e., its entries satisfy ;; = 0 if ¢ > j + 1. This process produces
a sequence of matrices {1} } with orthonormal columns such that AV, = Vj11 Hy.
Therefore, we have

rp =0b— Axp =ro — A(zp — x0)

= BVig1e1 — AViyr = Vi1 (Ber — Hryr), (1.7.31)
where e; isthe first unit k-vector (1,0, --- ,0)", and y;, isthe solution of
min ||fe; — Hiyl|2. (1.7.32)
y€ERK

Hence, zr = zo + Viyi. To find a minimizer for (1.7.32), we need to look at the
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linear algebraic system H,,y = [eq, namely,

hir hor -+ hp Y1 3
hia hae -+ hpo Y2 0
L R Y3 _
: 70 I
Pk : 8

Ptk Yk

This problem can be solved by using rotation matrices to do Gauss-elimination for
1, (see e.g. [134]), which yidds H;, "y = g, where

k k k
W hoy -+ hyy T2
Hp " = : S
h,ilz) Tk
hk+1’k Tk+1
Moreover, i
min [|Hyy — e[l = min [,y — g, ). (1.7.33)
y€ERK y€ERK

Define 7" to be the matrix containing the first m rows of Pz

that the minimizer of (1.7.33) is the solution of H,(f)yk = G-

. Itiseasy to see

Below we give the GMRES algorithm for solving Az = b with A non-symmetric:

Choose xzy, set rg=b— Axg, [ =|roll2 and vi =r¢/S.
For j=1,2,--- ,k,---, do
Compute w; = Av;
for +=1,2,---,5 do
Compute h;; = w]-T'Ui.
Set wj; = wj — hy;v;.
endfor
Compute hji1; = [lwj2

Set vj41 = wj/h]qu,j
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endFor

Compute Eém

and gy
Solve H]gk)yk =7

Set =z = x9 + Viyx

Preconditioning techniques

Itisseen from Theorem 1.7.1 that the rate of convergence of the conjugate gradi-
ent method depends on the condition number of A: the larger « is, the closer v will
be to 1 and the slower will be the rate of convergence. A good preconditioner is a
matrix M that is (i) easy toinvert, and (ii) the condition number of M/~ A issmall, or
the preconditioned system M~! Az = M ~'b can be solved efficiently by an iterative
method. Thisidea leadsto the so-called preconditioned conjugate gradient (PCG)
method:

Choose xzgp, compute rg=0b— Axry and solve M7y =rg
Set pg = 7o
For k=0,1,---do
Compute ag = —(Tk, %)/ (Pks APr)
Set Tp41 =Tk +oppr;  Set rpp1 =71 — apApy
If |[rg+1]l2 =€, continue,
Solve M7Tii1 = Tk41
Compute B = (Frt1,Tk+1)/ (T Tk)
Set pr+1 = Tk+1 + Brbk
endFor

In the above algorithm, we need to solve the system M7 = r which may be as
complicated as the original system. The idea for reducing the condition number of
M~1Aisto choose M such that M~!iscloseto A~!, while the system M7 = r is
easy to solve. The following theorem describes away to choose M.

Theorem 1.7.2 Let A beann x n nonsingular matrix and A = P — @ a splitting
of A suchthat Pisnonsingular. If H = P~'Q and p(H) < 1, then

Al = (Z Hk> P 0
k=0
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Based on this theorem, we can consider the matrices

M=PI+H+---+H"H
MY=I+H+---+H"Hp!

to be approximations of A and A~!, respectively. Thus the solution of the system
M7 = r becomes

F=M'r=(I+H+ - +H" P

Equivaently, the solution 7 = r,,, isthe the result of applying m steps of the iterative
method
Prig1=Qr;+r, :=0,1,--- ,m—1, rg=0.

If P=D,Q = L+ U, the above iteration is the standard Jacobi iteration. Then
in the PCG method we replace the system M71 = 7,41 With do m Jacobi
iterations on Ar =rypy; to obtain 7gy1. Theresulting methodiscalled
the m-step Jacobi PCG Method.

In practice, we may just use the one-step Jacobi PCG Method: in thiscase M =
D. Similarly, the symmetric Gauss-Seidel and symmetric successive over-relaxation
(SSOR) methods can also be used as preconditioners:

e Symmetric Gauss-Seidel preconditioner:
M=(D-L)DYD-U), M'=(D-U)"'DD-L)"};
e SSOR preconditioner:
= —(w'D-L)D Y (w D - 1),
M~ =(2-wwD—-wl)'DD —wL)™L.
Preconditioned GMRES

If we use M as aleft preconditioner for the GMRES method, then we are trying
to minimize the residua in the space:

Km(A, To) = Span{ro, M_IAT(), cee (M_IA)m_lro}. (1734)

The resulting algorithm is exactly the same as the original GMRES, except that the
matrix A isreplaced by M1 A.

Below is the preconditioned version of the GMRES method with left-
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preconditioning:

Compute 79 = M~'(b— Azg) and set B=|rola2, vi=r0/8.
For j=1,2,--+,k,--- do:

Compute wj =M 'Av;.

for i=1,2,---,7, do:

Compute hj; = (wj,v;);Set w; = w; — hjjv;

endfor

Compute hji1; = |lw;j]|.

Set vj41 = wj/hj+1,j .
endFor

Compute H,ik)

and gy
Solve H,ik)yk =7
Set =z = xg + Viyx
If M is used as a right preconditioner, we just need to replace A in the origina
GMRESby AM 1. Also, in the last step, we need to update z;, by

T, = 20 + M V. (1.7.35)

In practice, for the GMRES method, however, the Gauss-Seidel and SOR methods
can aso be used as preconditioners:

e Gauss-Seidel preconditioner: M = D — L, M~ = (D — L)7!;

e SOR preconditioner: M =w™'D — L, M~ = w(D —wL)™ %

The preconditioned CGS or BiCGSTAB algorithms can be constructed similarly. In
general, to use preconditioners for the CGS or BiCGSTAB, we just need to replace
the matrix A in the original algorithms by M~'A or AM 1.

Exercise 1.7

Problem1 Prove (1.7.5) and (1.7.7).

Problem 2 Prove Theorem 1.7.2.
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1.8 Error estimates of polynomial approximations

Orthogonal projectionin L2, (1)
Orthogonal projection in H&wa, 5(I)
Interpolation error

The numerical analysis of spectral approximations relies on the polynomial approxi-
mation resultsin various norms. In this section, we present some of the basic approxi-
mation results for the Jacobi polynomials which include the Legendre and Chebyshev
polynomials as special cases. Some basic properties of the Jacobi polynomials are
introduced in Section 1.4.

We first introduce some notations. Let I = (—1,1) and w(z) > 0 be aweight
function (w is not necessarily in L'(I)). We define the “usual” weighted Sobolev
spaces:

Li(I) = {u : /qudx < —I—oo},
I

Hi,(I) = {u € L2(I): Opu, - ,0bu € Lf,(f)} : (1.8.2)
Hy,(I) = {u € HL(I) s u(£1) = dpu(£1) = - = 95 Lu(£1) = 0} .

The normsin L2 (1) and H,(I) will be denoted by || - ||, and || - ||;..., respectively.
Furthermore, we shall use u|;,, = ||d%u]|,, to denote the semi-normin H. (). When
w(z) = 1, the subscript w will often be omitted from the notations. Hereafter, we
denote the Jacobi weight function of index («, 3) by

w¥P(z) = (1 —2)*(1 +z)°.

It turns out that the “uniformly” weighted Sobolev spacesin (1.8.1) are not the most
appropriate ones to describe the approximation error. Hence, we introduce the fol-
lowing non-uniformly weighted Sobolev spaces:

T 1) = {us Obu € Luisn(D), 0<k<m},  (182)

WP %

equipped with the inner product and norm

m

(,0) e = D051, 050)gosinns [l o = (wsw) 2 s, (1.83)
k=0

[un
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Hereafter, we shall use the expression Ay < By to mean that there exists a positive
constant ', independent of NV, such that Ay < CBy.

Orthogonal projectionin L2, (1)

Since {Jﬁﬁ } forms a complete orthogonal system in Lia, 5(I), we can write

o Oé,,@
u(z) =Y agfIel(z), with apf = (W Iy J”% ﬂ)wa"’, (18.4)
n=0 Tn
where y27 = ||Jﬁf’ﬁ||iaﬂ. Itisclear that
PN :Span{‘](()y”@v Jfé”@a T J](it[ﬂ} (185)

We start by establishing some fundamental approximation results on the Lfu 05— Of-
thogonal projection my a5 : L2, 5(I) — Py, defined by

(TN o 8% — Uy V)yap =0, Vv € Py. (1.8.6)

Itisclear that 7y ,a.5u iSthe best Liaﬂ—approximate polynomial of u, and can be
expressed as

N
(T past) (@) = Y a3l JeP (z), (1.8.7)
n=0

First of al, we derive inductively from (1.4.7) that
or I (@) = Al Je R (@), m >k, (1.8.8)

where
'n+k+a+8+1)

2Tn+a+p+1)
As an immediate consequence of this formula and the orthogonality (1.4.5), we have

d2) = (1.8.9)
1
/ 1 Ok J5 P ()0 T () AR () da = B, (1.8.10)

where
s s k,B+k
hot = (dod Pyt (18.11)
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Let usrecal first Stirling's formula,

1 1
_ x—1/2 —x -3
I'(z) = V2rx e {1 ton T 53822 + O(x )}. (1.8.12)
In particular, we have
D(n+1) = n! = 2rn" 126, (1.8.13)

which can be used to obtain the following asymptotic behaviors for n > 1:

R I e AR L R Lt (1.8.14)

9

Here, we have adopted the conventional assumption that «, 5 and &k are small con-
stants when compared with large n.

Below isthe main result on the Jacobi projection error:

Theorem 1.8.1 Leta,8 > —1. Foranyu € H™, 5 (I)andm € N,

|’8i(7rN7wa,[3u - u)“wa+l,ﬁ+l SJ Nlim”(‘a;nu”wa+m,,8+m, 0 < l < m. (1815)

Proof Owing to (1.8.10)~(1.8.11), we have

o0

a8\ 2
105 ulZasrssn = (@0 7) 105 T | 2asnsins (1.8.16)
n=k
— 2
“8i(WN’wa’ﬁu_u)”i”lﬂ“: Z (ag,ﬁ) |’6§:JS’ﬁHia+l,ﬁ+l (1.8.17)
n=N+1
[e) ha,f )
= 3 o @108 T s
TL:NJrl n,m

Using the the asymptotic estimate (1.8.14) gives

n,m ~v

WA S, L LN

which, together with (1.8.17), leads to

o0
_ ~ 2
105 (7 it = W) Pasros S (N 4 120N (a08) )0 TP 2
n=N-+1
< N2=m) || gma |2

watm,B+m:
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This ends the proof. O

We shall now extend the above result to the cases where o and/or 3 are negative
integers, using the properties of the generalized Jacobi polynomials. We point out
that like the classical Jacobi polynomials, the GJPs with negative integer indexes
form a complete orthogonal systemin L2, (I).

Hence, we define the polynomial space
k.l k,l k.l
Qy = span{J,, J, no+17"' Iy ) k<=1 andlor [ < -1, (1.8.18)

where ng is defined in (1.4.8). According to Remark 1.4.1, we have that for k£ < —1
and/or i < —1,

Q¥ ={pe Py : 0p(-1)=8¢p(1) =0, 0<i<—-k—1,0<j< -1}
We now define the orthogonal projection my i : L2, (I) — Q%' by
( — Tyttt 0N )it = 0, Yoy € QR (1.8.19)

Owing to the orthogonality (1.4.10) and the derivative relation (1.4.13), the following
theorem is a direct extension of Theorem 1.8.1.

Theorem 1.8.2 Forany k,l € Z,andu € H"};, (I),

||85(7TN7wk,lU — )| prrutrn SN O U] phrmairm, 0 < p<m. (1.8.20)

Orthogonal projection in H;} . 5(I)

In order to carry out the error analysis of spectral methods for second-order ellip-
tic equations with Dirichlet boundary conditions, we need to study the orthogonal
projection error in the space Hé Las(1). We define

PY ={uc€ Py: u(£l) =0} (1.8.21)

Definition 1.8.1 The orthogonal projector =", + H}

0w () — P is defined
by

((u — W}VO ws) 0 ) e =0, Ywe PY. (1.8.22)
Theorem 1.8.3 Let—1 < o, 8 < 1. Thenforanyu € Hy . ,(I)NH"_, ;. (I),

,k

102w = 75 0 s e S N[0 ullyarmrpem,  m > 1.
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Proof Forany u € H . (1), we set

T 1 1
Uy = / {WNl,wa,ﬁ’LL/ — 5/ WNl’wa,gu’dn} d¢. (1.8.23)
-1

-1

Therefore,

1
uy € Py anduly = TN 100U — 3 TN 1 ont/d).
-1

Hence,

1 1
o =l , < I = gtz o+ |5 [ el (L824
w™ w™ 71

On the other hand, since u(+1) = 0, we derive by using the Cauchy-Schwarz in-
equality that

‘/ TN 1 pont A —‘/ TN_1 wonB U —u)dx‘

wa ﬁ
(1.8.25)

<([ o) gt =l S iy agonont =l

for o, B < 1. We then conclude from (1.8.24), (1.8.25) and Theorem 1.8.1 that

[0ut = T i)l = E (o — il < 1 — s
dNEPY

Sl =y 1 gast lyes S N0 Ul ot me1,54m-1.

This completes the proof of Theorem 1.8.3. O

I nter polation error
We present below an optimal error estimate for the interpolation polynomials
based on the Gauss-L obatto points.

Theorem 1.8.4 Let {xj}j-vzo be the roots of (1 —x2)8xJ]°\“,”3(x) with—1 < o, 5 < 1.
Let Iy o : C[=1,1] — Py betheinterpolation operator with respect to {xj}ﬁyzo.
Then, we have

1L (I8P u = w) || yarrsrr S N0 u| pasmpem, 0<I<m.  (1.8.26)
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The proof of the above lemmais rather technical. We refer to [3] for a complete
proof (see also [11] for asimilar result for the specia case o = ).

Theorem 1.8.4 indicates that error estimates for the interpolation polynomial
based on the Gauss-L obatto points are optimal in suitable weighted Sobolev spaces.
One should note that an interpolation polynomial based on uniformly spaced points
isusually avery poor approximation unless the function is periodic in the concerned
interval.

As we can see from the estimates presented in this section, the convergence rates
of spectral projection/interpolation increase with the smoothness of the function, as
opposed to afixed convergence rate for the finite difference or finite element approx-
imations. Moreover, it can be shown that the convergence rates of spectral projec-
tion/interpolation are exponentia for analytical functions. We now provide a direct
proof of this statement in the Chebyshev case.

Let {x;} be the set of Chebyshev-Gauss-Lobatto points, i.e. 2p = 1, zy = —1
and T} (zj) = 0,1 < j < N — 1. This suggests that

N-1
Ty (z) = ay H (x — ).
j=1

Since Ty () = 2N~ T (x), where Ty () is monic, we have
Ty (x) = 2V 12N + lower order terms.

Combining the above two equations gives oy = N2V~!. Notice also that 2y = 1
and zy = —1, weobtain

N 1-N
2 (x2 — )Ty ().

The above result, together with (1.3.6a), yields

N
( [ - xk)\ < N2t (1.8.27)
k=0

Let u be asmooth function in CV*+1(—1,1). Using Lemma 1.2.3, (1.8.27) and Stir-
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ling's formula (1.8.13), we obtain

N
_ N < (N+1) © 8.
ma [u(2) ~ Iy esu(@)] < O™Vl (55) (1.8.28)
for large N, where C' is a constant independent of N. Thisresult implies that if u is
smooth, then the interpolations using the Chebyshev-Gauss-L obatto points may lead
to exponential order of convergence.

Exercise 1.8

Problem 1 Prove Theorem 1.8.2.

1,0

Problem 2 Show that 7y ,—1,-1 = TN 0.0





