
Chapter 1
Preliminaries

In this chapter, we present some preliminary materials which will be used through-
out the book. The first section set the stage for the introduction of spectral methods.
In Sections 1.2∼1.4, we present some basic properties of orthogonal polynomials,
which play an essential role in spectral methods, and introduce the notion of gen-
eralized Jacobi polynomials. Since much of the success and popularity of spectral
methods can be attributed to the invention of Fast Fourier Transform (FFT), an algo-
rithmic description of the FFT is presented in Section 1.5. In the next two sections,
we collect some popular time discretization schemes and iterative schemes which
will be frequently used in the book. In the last section, we present a concise error
analysis for several projection operators which serves as the basic ingredients for the
error analysis of spectral methods.

2 Chapter 1 Preliminaries

1.1 Some basic ideas of spectral methods

Comparison with the finite element method
Computational efficiency
Fourier spectral method
Phase error

Finite Difference (FD) methods approximate derivatives of a function by local argu-
ments (such as u′(x) ≈ (u(x+h)−u(x−h))/2h, where h is a small grid spacing) -
these methods are typically designed to be exact for polynomials of low orders. This
approach is very reasonable: since the derivative is a local property of a function, it
makes little sense (and is costly) to invoke many function values far away from the
point of interest.

In contrast, spectral methods are global. The traditional way to introduce them
starts by approximating the function as a sum of very smooth basis functions:

u(x) ≈
N∑
k=0

akΦk(x),

where the Φk(x) are polynomials or trigonometric functions. In practice, there are
many feasible choices of the basis functions, such as:

Φk(x) = eikx (the Fourier spectral method);
Φk(x) = Tk(x) (Tk(x) are the Chebyshev polynomials; the Chebyshev spec-
tral method);
Φk(x) = Lk(x) (Lk(x) are the Legendre polynomials; the Legendre spectral
method).

In this section, we will describe some basic ideas of spectral methods. For ease
of exposition, we consider the Fourier spectral method (i.e. the basis functions are
chosen as eikx). We begin with the periodic heat equation, starting at time 0 from
u0(x):

ut = uxx, (1.1.1)

with a periodic boundary condition u(x, 0) = u0(x) = u0(x+ 2π). Since the exact
solution u is periodic, it can be written as an infinite Fourier series. The approximate
solution uN can be expressed as a finite series. It is

uN (x, t) =
N−1∑
k=0

ak(t)eikx, x ∈ [0, 2π),

1.1 Some basic ideas of spectral methods 3

where each ak(t) is to be determined.

Comparison with the finite element method

We may compare the spectral method (before actually describing it) to the finite
element method. One difference is this: the trial functions τk in the finite element
method are usually 1 at the mesh-point, xk = kh with h = 2π/N , and 0 at the other
mesh-points, whereas eikx is nonzero everywhere. That is not such an important
distinction. We could produce from the exponentials an interpolating function like
τk, which is zero at all mesh-points except at x = xk:

Fk(x) =
1
N

sin
N

2
(x− xk) cot

1
2
(x− xk), N even, (1.1.2)

Fk(x) =
1
N

sin
N

2
(x− xk) csc

1
2
(x− xk), N odd. (1.1.3)

Of course it is not a piecewise polynomial; that distinction is genuine. A consequence
of this difference is the following:

Each function Fk spreads over the whole solution interval, whereas τk is zero
in all elements not containing xk. The stiffness matrix is sparse for the finite
element method; in the spectral method it is full.

The computational efficiency

Since the matrix associated with the spectral method is full, the spectral method
seems more time-consuming than finite differences or finite elements. In fact, the
spectral method had not been used widely for a long time. The main reason is the
expensive cost in computational time. However, the discovery of the Fast Fourier
Transform (FFT) by Cooley and Tukey[33] solves this problem. We will describe the
Cooley-Tukey algorithm in Chapter 5. The main idea is the following. Let wN =
e2πi/N and

(FN)jk = wjkN = cos
2πjk
N

+ i sin
2πjk
N

, 0 � j, k � N − 1.

Then for anyN -dimensional vector vN , the usualN2 operations in computing FNvN
are reduced to N log2N . The significant improvement can be seen from the follow-
ing table:

N N2 Nlog2N N N2 Nlog2N
16 256 64 256 65536 2048

4 Chapter 1 Preliminaries

32 1024 160 512 262144 4608
64 4096 384 1024 1048576 10240

128 16384 896 2048 4194304 22528

The Fourier spectral method

Unlike finite differences or finite elements, which replace the right-hand side
uxx by differences at nodes, the spectral method uses uNxx exactly. In the spectral
method, there is no ∆x. The derivatives with respect to space variables are computed
explicitly and correctly.

The Fourier approximation uN is a combination of oscillations eikx up to fre-
quency N − 1, and we simply differentiate them; hence

uNt = uNxx

becomes
N−1∑
k=0

a′k(t)e
ikx =

N−1∑
k=0

ak(t)(ik)2eikx.

Since frequencies are uncoupled, we have a′k(t) = −k2ak(t), which gives

ak(t) = e−k
2tak(0),

where the values ak(0) are determined by using the initial function:

ak(0) =
1
2π

∫ 2π

0
u0(x)e−ikxdx.

It is an easy matter to show that

|u(x, t) − uN (x, t)| =

∣∣∣∣∣
∞∑
k=N

ak(0)eikxe−k
2t

∣∣∣∣∣
�max

k
|ak(0)|

∞∑
k=N

e−k
2t

� max
0�x�2π

|u0(x)|
∫ ∞

N
e−tx

2
dx.

Therefore, the error goes to zero very rapidly as N becomes reasonably large. The

1.1 Some basic ideas of spectral methods 5

convergence rate is determined by the integral term

J(t,N) :=
∫ ∞

N
e−tx

2
dx =

√
π

4t
erfc(

√
tN),

where erfc(x) is the complementary error function (both FORTRAN and MAT-
LAB have this function). The following table lists the value of J(t,N) at several
values of t:

N J(0.1, N) J(0.5, N) J(1, N)
1 1.8349e+00 3.9769e-01 1.3940e-01
2 1.0400e+00 5.7026e-02 4.1455e-03
3 5.0364e-01 3.3837e-03 1.9577e-05
4 2.0637e-01 7.9388e-05 1.3663e-08
5 7.1036e-02 7.1853e-07 1.3625e-12
6 2.0431e-02 2.4730e-09 1.9071e-17
7 4.8907e-03 3.2080e-12 3.7078e-23
8 9.7140e-04 1.5594e-15 9.9473e-30

In more general problems, the equation in time will not be solved exactly. It needs a
difference method with time step ∆t, as Chapter 5 will describe. For derivatives with
respect to space variables, there are two ways:

(1) Stay with the harmonics eikx or sin kx or cos kx, and use FFT to go between
coefficients ak and mesh values uN (xj , t). Only the mesh values enter the difference
equation in time.

(2) Use an expansion U =
∑
Uk(t)Fk(x), where Fk(x) is given by (1.1.2) and

(1.1.3), that works directly with values Uk at mesh points (where Fk = 1). There is
a differentiation matrix D that gives mesh values of the derivatives, Djk = F ′

k(xj).
Then the approximate heat equation becomes Ut = D2U .

Phase error

The fact that x-derivatives are exact makes spectral methods free of phase error.
Differentiation of the multipliers eikx give the right factor ik while finite differences
lead to the approximate factor iK:

eik(x+h) − eik(x−h)

2h
= iKeikx, K =

sin kh
h

.

When kh is small and there are enough mesh points in a wavelength, K is close
to k. When kh is large, K is significantly smaller than k. In the case of the heat

6 Chapter 1 Preliminaries

equation (1.1.1) it means a slower wave velocity. For details, we refer to Richtmyer
and Morton[131] and LeVeque [101]. In contrast, the spectral method can follow even
the nonlinear wave interactions that lead to turbulence. In the context of solving high
Reynolds number flow, the low physical dissipation will not be overwhelmed by large
numerical dissipation.

Exercise 1.1

Problem 1 Consider the linear heat equation (1.1.1) with homogeneous Dirich-
let boundary conditions u(−1, t) = 0 and u(1, t) = 0. If the initial condition is
u(x, 0) = sin(πx), then the exact solution of this problem is given by u(x, t) =
e−π2t sin(πx). It has the infinite Chebyshev expansion

u(x, t) =
∞∑
n=0

bn(t)Tn(x),

where

bn(t) =
1
cn
Jn(π)e−π

2t,

with c0 = 2 and cn = 1 if n � 1.

a. Calculate

Jn(π) =
∫ 1

−1

1√
1 − x2

Tn(x) sin(πx)dx

by some numerical method (e.g. Simpson’s rule) ;

b. Plot Jn(π) against n for n � 25. This will show that the truncation series
converges at an exponential rate (a well-designed collocation method will do the
same).

1.2 Orthogonal polynomials

Existence
Zeros of orthogonal polynomials
Polynomial interpolations
Quadrature formulas
Discrete inner product and discrete transform

Hint: (a) Notice that Jn(π) = 0 when n is even; (b) a coordinate transformation like x = cos θ
may be used.

1.2 Orthogonal polynomials 7

Orthogonal polynomials play a fundamental role in the implementation and analysis
of spectral methods. It is thus essential to understand some general properties of
orthogonal polynomials. Two functions f and g are said to be orthogonal in the
weighted Sobolev space L2

ω(a, b) if

〈f, g〉 := (f, g)ω :=
∫ b

a
ω(x)f(x)g(x)dx = 0,

where ω is a fixed positive weight function in (a, b). It can be easily verified that 〈·, ·〉
defined above is an inner product in L2

ω(a, b).

A sequence of orthogonal polynomials is a sequence {pn}∞n=0 of polynomials
with deg(pn) = n such that

〈pi, pj〉 = 0 for i �= j. (1.2.1)

Since orthogonality is not altered by multiplying a nonzero constant, we may nor-
malize the polynomial pn so that the coefficient of xn is one, i.e.,

pn(x) = xn + a
(n)
n−1x

n−1 + · · · + a
(n)
0 .

Such a polynomial is said to be monic.

Existence

Our immediate goal is to establish the existence of orthogonal polynomials. Al-
though we could, in principle, determine the coefficients a(n)

j of pn in the natural
basis {xj} by using the orthogonality conditions (1.2.1), it is more convenient, and
numerically more stable, to express pn+1 in terms of lower-order orthogonal polyno-
mials. To this end, we need the following general result:

Let {pn}∞n=0 be a sequence of polynomials such that pn is exactly of degree n.
If

q(x) = anx
n + an−1x

n−1 + · · · + a0, (1.2.2)

then q can be written uniquely in the form

q(x) = bnpn + bn−1pn−1 + · · · + b0p0. (1.2.3)

In establishing this result, we may assume that the polynomials {pn} are monic.
We shall prove this result by induction. For n = 0, we have

q(x) = a0 = a0 · 1 = a0p0(x).

8 Chapter 1 Preliminaries

Hence we must have b0 = a0. Now assume that q has the form (1.2.2). Since pn is
the only polynomial in the sequence pn, pn−1, · · · , p0 that contains xn and since pn
is monic, it follows that we must have bn = an. Hence, the polynomial q − anpn is
of degree n − 1. Thus, by the induction hypothesis, it can be expressed uniquely in
the form

q − anpn = bn−1pn−1 + · · · + b0p0,

which establishes the result.

A consequence of this result is the following:

Lemma 1.2.1 If the sequence of polynomials {pn}∞n=0 is monic and orthogonal,
then the polynomial pn+1 is orthogonal to any polynomial q of degree n or less.

We can establish this by the following observation:

〈pn+1, q〉 = bn〈pn+1, pn〉 + bn−1〈pn+1, pn−1〉 + · · · + b0〈pn+1, p0〉 = 0,

where the last equality follows from the orthogonality of the polynomials {pn}.

We now prove the existence of orthogonal polynomials . Since p0 is monic and
of degree zero, we have

p0(x) ≡ 1.

Since p1 is monic and of degree one, it must have the form

p1(x) = x− α1.

To determine α1, we use orthogonality:

0 = 〈p1, p0〉 =
∫ b

a
ω(x)xdx− α1

∫ b

a
ω(x)dx.

Since the weight function is positive in (a, b), it follows that

α1 =
∫ b

a
ω(x)xdx

/∫ b

a
ω(x)dx.

In general we seek pn+1 in the form pn+1 = xpn−αn+1pn−βn+1pn−1−γn+1pn−2−
· · · . As in the construction of p1, we use orthogonality to determine the coefficients
above. To determine αn+1, write

0 = 〈pn+1, pn〉 = 〈xpn, pn〉 − αn+1〈pn, pn〉 − βn+1〈pn−1, pn〉 − · · · .

The procedure described here is known as Gram-Schmidt orthogonalization.

1.2 Orthogonal polynomials 9

By orthogonality, we have∫ b

a
xωp2

ndx− αn+1

∫ b

a
ωp2

ndx = 0,

which yields

αn+1 =
∫ b

a
xωp2

ndx
/∫ b

a
ωp2

ndx.

For βn+1, using the fact 〈pn+1, pn−1〉 = 0 gives

βn+1 =
∫ b

a
xωpnpn−1dx

/∫ b

a
ωp2

n−1dx.

The formulas for the remaining coefficients are similar to the formula for βk+1; e.g.

γn+1 =
∫ b

a
xωpnpn−2dx

/∫ b

a
ωp2

n−2dx.

However, there is a surprise here. The numerator 〈xpn, pn−2〉 can be written in the
form 〈pn, xpn−2〉. Since xpn−2 is of degree n − 1 it is orthogonal to pn. Hence
γn+1 = 0, and likewise the coefficients of pn−3, pn−4, etc. are all zeros.

To summarize:

The orthogonal polynomials can be generated by the following recurrence:⎧⎪⎪⎨⎪⎪⎩
p0 = 1,
p1 = x− α1,

· · · · · ·
pn+1 = (x− αn+1)pn − βn+1pn−1, n � 1,

(1.2.4)

where

αn+1 =
∫ b

a
xωp2

ndx
/∫ b

a
ωp2

ndx and βn+1 =
∫ b

a
xωpnpn−1dx

/∫ b

a
ωp2

n−1dx.

The first two equations in the recurrence merely start things off. The right-hand
side of the third equation contains three terms and for that reason is called the three-
term recurrence relation for the orthogonal polynomials.

10 Chapter 1 Preliminaries

Zeros of orthogonal polynomials

The zeros of the orthogonal polynomials play a particularly important role in the
implementation of spectral methods.

Lemma 1.2.2 The zeros of pn+1 are real, simple, and lie in the open interval (a, b).

The proof of this lemma is left as an exercise. Moreover, one can derive from the
three term recurrence relation (1.2.4) the following useful result.

Theorem 1.2.1 The zeros {xj}nj=0 of the orthogonal polynomial pn+1 are the eigen-
values of the symmetric tridiagonal matrix

An+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0
√
β1

√
β1 α1

√
β2

.√
βn−1 αn−1

√
βn

√
βn αn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.2.5)

where

αj =
bj
aj
, for j � 0; βj =

cj
aj−1aj

, for j � 1, (1.2.6)

with {ak, bk, ck} being the coefficients of the three term recurrence relation (cf.
(1.2.4)) written in the form:

pk+1 = (akx− bk)pk − ckpk−1, k � 0. (1.2.7)

Proof The proof is based on introducing

p̃n(x) =
1√
γn
pn(x),

where γn is defined by

γn =
cnan−1

an
γn−1, n � 1, γ0 = 1. (1.2.8)

We deduce from (1.2.7) that

xp̃j =
cj
aj

√
γj−1

γj
p̃j−1 +

bj
aj
p̃j +

1
aj

√
γj+1

γj
p̃j+1, j � 0, (1.2.9)

1.2 Orthogonal polynomials 11

with p̃−1 = 0. Owing to (1.2.6) and (1.2.8), it can be rewritten as

xp̃j(x) =
√
βj p̃j−1(x) + αj p̃j(x) +

√
βj+1p̃j+1(x), j � 0. (1.2.10)

We now take j = 0, 1, · · · , n to form a system

xP̃(x) = An+1P̃(x) +
√
βn+1p̃n+1(x)En, (1.2.11)

where P̃(x) = (p̃0(x), p̃1(x), · · · , p̃n(x))T and En = (0, 0, · · · , 0, 1)T. Since
p̃n+1(xj) = 0, 0 � j � n, the equation (1.2.11) at x = xj becomes

xjP̃(xj) = An+1P̃(xj), 0 � j � n. (1.2.12)

Hence, the zeros {xj}nj=0 are the eigenvalues of the symmetric tridiagonal matrix
An+1.

Polynomial interpolations

Let us denote

PN = {polynomials of degree not exceeding N}. (1.2.13)

Given a set of points a = x0 < x1 · · · < xN = b (we usually take {xi} to be zeros
of certain orthogonal polynomials), we define the polynomial interpolation operator,
IN : C(a, b) → PN , associated with {xi}, by

INu(xj) = u(xj), j = 0, 1, · · · , N. (1.2.14)

The following result describes the discrepancy between a function u and its polyno-
mial interpolant INu. This is a standard result and its proof can be found in most
numerical analysis textbook.

Lemma 1.2.3 If x0, x1, · · · , xN are distinct numbers in the interval [a, b] and u ∈
CN+1[a, b], then, for each x ∈ [a, b], there exists a number ζ in (a, b) such that

u(x) − INu(x) =
u(N+1)(ζ)
(N + 1)!

N∏
k=0

(x− xk), (1.2.15)

where INu is the interpolating polynomial satisfying (1.2.14).

It is well known that for an arbitrary set of {xj}, in particular if {xj} are equally
spaced in [a, b], the error in the maximum norm, maxx∈[a,b] |u(x) − IN (x)|, may

12 Chapter 1 Preliminaries

not converge as N → +∞ even if u ∈ C∞[a, b]. A famous example is the Runge
function

f(x) =
1

25x2 + 1
, x ∈ [−1, 1], (1.2.16)

see Figure 1.1.

Figure 1.1 Runge function f and the equidistant interpolations I 5f and I9f for (1.2.16)

The approximation gets worse as the number of interpolation points increases.

Hence, it is important to choose a suitable set of points for interpolation. Good
candidates are the zeros of certain orthogonal polynomials which are Gauss-type
quadrature points, as shown below.

Quadrature formulas

We wish to create quadrature formulas of the type∫ b

a
f(x)ω(x)dx ≈

N∑
n=0

Anf(γn).

If the choice of nodes γ0, γ1, · · · , γn is made a priori, then in general the above
formula is exact for polynomials of degree � N . However, if we are free to choose
the nodes γn, we can expect quadrature formulas of the above form be exact for
polynomials of degree up to 2N + 1.

There are three commonly used quadrature formulas. Each of them is associated

1.2 Orthogonal polynomials 13

with a set of collocation points which are zeroes of a certain orthogonal polynomial.
The first is the well-known Gauss quadrature which can be found in any elementary
numerical analysis textbook.

Gauss Quadrature Let x0, x1, · · · , xN be the zeroes of pN+1. Then, the linear
system

N∑
j=0

pk(xj)ωj =
∫ b

a
pk(x)ω(x)dx, 0 � k � N, (1.2.17)

admits a unique solution (ω0, ω1, · · · , ωN)t, with ωj > 0 for j = 0, 1, · · · , N . Fur-
thermore,

N∑
j=0

p(xj)ωj =
∫ b

a
p(x)ω(x)dx, for all p ∈ P2N+1. (1.2.18)

The Gauss quadrature is the most accurate in the sense that it is impossible to find
xj, ωj such that (1.2.18) holds for all polynomials p ∈ P2N+2. However, by Lemma
1.2.1 this set of collocation points {xi} does not include the endpoint a or b, so it
may cause difficulties for boundary value problems.

The second is the Gauss-Radau quadrature which is associated with the roots of
the polynomial

q(x) = pN+1(x) + αpN (x), (1.2.19)

where α is a constant such that q(a) = 0. It can be easily verified that q(x)/(x−a) is
orthogonal to all polynomials of degree less than or equal to N − 1 in L2ω̃(a, b) with
ω̃(x) = ω(x)(x− a). Hence, the N roots of q(x)/(x− a) are all real, simple and lie
in (a, b).

Gauss-Radau Quadrature Let x0 = a and x1, · · · , xN be the zeroes of
q(x)/(x − a), where q(x) is defined by (1.2.19). Then, the linear system (1.2.17)
admits a unique solution (ω0, ω1, · · · , ωN)t with ωj > 0 for j = 0, 1, · · · , N . Fur-
thermore,

N∑
j=0

p(xj)ωj =
∫ b

a
p(x)ω(x)dx, for all p ∈ P2N . (1.2.20)

Similarly, one can construct a Gauss-Radau quadrature by fixing xN = b. Thus, the
Gauss-Radau quadrature is suitable for problems with one boundary point.

The third is the Gauss-Lobatto quadrature which is the most commonly used in

14 Chapter 1 Preliminaries

spectral approximations since the set of collocation points includes the two endpoints.
Here, we consider the polynomial

q(x) = pN+1(x) + αpN (x) + βpN−1(x), (1.2.21)

where α and β are chosen so that q(a) = q(b) = 0. One can verify that q(x)/((x −
a)(x − b)) is orthogonal to all polynomials of degree less than or equal to N − 2 in
L2
ω̂(a, b) with ω̂(x) = ω(x)(x − a)(x− b). Hence, the N − 1 zeroes of q(x)/((x −

a)(x− b)) are all real, simple and lie in (a, b).

Gauss-Lobatto Quadrature Let x0 = a, xN = b and x1, · · · , xN−1 be the
(N −1)-roots of q(x)/((x−a)(x− b)), where q(x) is defined by (1.2.21). Then, the
linear system (1.2.17) admits a unique solution (ω0, ω1, · · · , ωN)t, with ωj > 0, for
j = 0, 1, · · · , N . Furthermore,

N∑
j=0

p(xj)ωj =
∫ b

a
p(x)ω(x)dx, for all p ∈ P2N−1. (1.2.22)

Discrete inner product and discrete transform

For any of the Gauss-type quadratures defined above with the points and weights
{xj, ωj}Nj=0, we can define a discrete inner product in C[a, b] and its associated norm
by:

(u, v)N,ω =
N∑
j=0

u(xj)v(xj)ωj , ‖u‖N,ω = (u, u)
1
2
N,ω, (1.2.23)

and for u ∈ C[a, b], we can write

u(xj) = INu(xj) =
N∑
k=0

ũkpk(xj). (1.2.24)

One often needs to determine {ũk} from {u(xj)} or vice versa. A naive approach is
to consider (1.2.24) as a linear system with unknowns {ũk} and use a direct method,
such as Gaussian elimination, to determine {ũk}. This approach requires O(N3)
operations and is not only too expensive but also often unstable due to roundoff errors.
We shall now describe a stable O(N2)-approach using the properties of orthogonal
polynomials.

A direct consequence of Gauss-quadrature is the following:

1.3 Chebyshev and Legendre polynomials 15

Lemma 1.2.4 Let x0, x1, · · · , xN be the zeros of the orthogonal polynomial pN+1,
and let {ωj} be the associated Gauss-quadrature weights. Then

N∑
n=0

pi(xn)pj(xn)ωn = 0, if i �= j � N. (1.2.25)

We derive from (1.2.24) and (1.2.25) that

N∑
j=0

u(xj)pl(xj)ωj =
N∑
j=0

N∑
k=0

ũkpk(xj)pl(xj)ωj = ũl(pl, pl)N,ω. (1.2.26)

Hence, assuming the values of {pj(xk)} are precomputed and stored as an (N+1)×
(N + 1) matrix, the forward transform (1.2.24) and the backward transform (1.2.26)
can be performed by a simple matrix-vector multiplication which costs O(N2) oper-
ations. We shall see in later sections that the O(N2) operations can be improved to
O(N logN) if special orthogonal polynomials are used.

Exercise 1.2

Problem 1 Let ω(x) ≡ 1 and (a, b) = (−1, 1). Derive the three-term recurrence
relation and compute the zeros of the corresponding orthogonal polynomial P7(x).

Problem 2 Prove Lemma 1.2.2.

Problem 3 Prove Lemma 1.2.4.

1.3 Chebyshev and Legendre polynomials

Chebyshev polynomials
Discrete norm and discrete Chebyshev transform
Legendre polynomials
Zeros of the Legendre polynomials
Discrete norm and discrete Legendre transform

The two most commonly used sets of orthogonal polynomials are the Chebyshev and
Legendre polynomials. In this section, we will collect some of their basic properties.

Chebyshev polynomials

The Chebyshev polynomials {Tn(x)} are generated from (1.2.4) with ω(x) =
(1 − x2)−

1
2 , (a, b) = (−1, 1) and normalized with Tn(1) = 1. They satisfy the

16 Chapter 1 Preliminaries

following three-term recurrence relation

Tn+1(x) = 2xTn(x) − Tn−1(x), n � 1,

T0(x) ≡ 1, T1(x) = x,
(1.3.1)

and the orthogonality relation∫ 1

−1
Tk(x)Tj(x)(1 − x2)−

1
2 dx =

ckπ

2
δkj , (1.3.2)

where c0 = 2 and ck = 1 for k � 1. A unique feature of the Chebyshev polynomials
is their explicit relation with a trigonometric function:

Tn(x) = cos
(
n cos−1 x

)
, n = 0, 1, · · · . (1.3.3)

One may derive from the above many special properties, e.g., it follows from (1.3.3)
that

2Tn(x) =
1

n+ 1
T ′
n+1(x) −

1
n− 1

T ′
n−1(x), n � 2,

T0(x) = T ′
1(x), 2T1(x) =

1
2
T ′

2(x).
(1.3.4)

One can also infer from (1.3.3) that Tn(x) has the same parity as n. Moreover, we
can derive from (1.3.4) that

T ′
n(x) = 2n

n−1∑
k=0

k+n odd

1
ck
Tk(x), T ′′

n (x) =
n−2∑
k=0

k+n even

1
ck
n(n2 − k2)Tk(x). (1.3.5)

By (1.3.3), it can be easily shown that

|Tn(x)| � 1, |T ′
n(x)| � n2, (1.3.6a)

Tn(±1) = (±1)n, T ′
n(±1) = (±1)n−1n2, (1.3.6b)

2Tm(x)Tn(x) = Tm+n(x) + Tm−n(x), m � n. (1.3.6c)

The Chebyshev polynomials {Tk(x)} can also be defined as the normalized eigen-
functions of the singular Sturm-Liouville problem(√

1 − x2T ′
k(x)

)′
+

k2

√
1 − x2

Tk(x) = 0, x ∈ (−1, 1). (1.3.7)

1.3 Chebyshev and Legendre polynomials 17

We infer from the above and (1.3.2) that∫ 1

−1
T ′
k(x)T

′
j(x)

√
1 − x2dx =

ckk
2π

2
δkj, (1.3.8)

i.e. the polynomials {T ′
k(x)} are mutually orthogonal with respect to the weight

function w(x) =
√

1 − x2.

An important feature of the Chebyshev polynomials is that the Gauss-type quadra-
ture points and weights can be expressed explicitly as follows:

Chebyshev-Gauss:

xj = cos
(2j + 1)π
2N + 2

, ωj =
π

N + 1
, 0 � j � N. (1.3.9)

Chebyshev-Gauss-Radau:

x0 = 1, ω0 =
π

2N + 1
, xj = cos

2πj
2N + 1

, ωj =
2π

2N + 1
, 1 � j � N.

(1.3.10)
Chebyshev-Gauss-Lobatto:

x0 =1, xN =−1, ω0 =ωN =
π

2N
, xj=cos

πj

N
, ωj=

π

N
, 1 � j � N − 1.

(1.3.11)

Discrete norm and discrete Chebyshev transform

For the discrete norm ‖ · ‖N,ω associated with the Gauss or Gauss-Radau quadra-
ture, we have ‖u‖N,ω = ‖u‖ω for all u ∈ PN . For the discrete norm ‖ · ‖N,ω
associated with the Chebyshev-Gauss-Lobatto quadrature, the following result holds.

Lemma 1.3.1 For all u ∈ PN ,

‖u‖L2
ω

� ‖u‖N,ω �
√

2‖u‖L2
ω
. (1.3.12)

Proof For u =
∑N

k=0 ũkTk, we have

‖u‖2
L2

ω
=

N∑
k=0

ũ2
k

ckπ

2
. (1.3.13)

On the other hand,

For historical reasons and for simplicity of notation, the Chebyshev points are often ordered
in descending order. We shall keep this convention in this book.

18 Chapter 1 Preliminaries

‖u‖2
N,ω =

N−1∑
k=0

ũ2
k

ckπ

2
+ ũ2

N 〈TN , TN 〉N,ω. (1.3.14)

The inequality (1.3.12) follows from the above results and the identity

(TN , TN)N,ω =
N∑
j=0

π

c̃jN
cos2 jπ = π, (1.3.15)

where c̃0 = c̃N = 2 and c̃k = 1 for 1 � k � N − 1.
Let {ξi}Ni=0 be the Chebyshev-Gauss-Lobatto points, i.e. ξi = cos(iπ/N), and

let u be a continuous function on [−1, 1]. We write

u(ξi) = INu(ξi) =
N∑
k=0

ũkTk(ξi) =
N∑
k=0

ũk cos (kiπ/N) , i = 0, 1, · · · , N.
(1.3.16)

One derives immediately from the Chebyshev-Gauss-quadrature that

ũk =
2

c̃kN

N∑
j=0

1
c̃j
u(ξj) cos (kjπ/N) . (1.3.17)

The main advantage of using Chebyshev polynomials is that the backward and for-
ward discrete Chebyshev transforms (1.3.16) and (1.3.17) can be performed in
O(N log2N) operations, thanks to the Fast Fourier Transform (FFT), see Section
1.5. The main disadvantage is that the Chebyshev polynomials are mutually orthogo-
nal with respect to a singular weight function (1−x2)− 1

2 which introduces significant
difficulties in the analysis of the Chebyshev spectral method.

Legendre polynomials

The Legendre polynomials {Ln(x)} are generated from (1.2.4) with ω(x) ≡ 1,
(a, b) = (−1, 1) and the normalization Ln(1) = 1. The Legendre polynomials
satisfy the three-term recurrence relation

L0(x) = 1, L1(x) = x,

(n+ 1)Ln+1(x) = (2n + 1)xLn(x) − nLn−1(x), n � 1,
(1.3.18)

and the orthogonality relation∫ 1

−1
Lk(x)Lj(x)dx =

1
k + 1

2

δkj. (1.3.19)

The Legendre polynomials can also be defined as the normalized eigenfunctions of
the singular Sturm-Liouville problem

1.3 Chebyshev and Legendre polynomials 19(
(1 − x2)L′

n(x)
)′ + n(n+ 1)Ln(x) = 0, x ∈ (−1, 1), (1.3.20)

from which and (1.3.19) we infer that∫ 1

−1
L′
k(x)L

′
j(x)(1 − x2)dx =

k(k + 1)
k + 1

2

δkj , (1.3.21)

i.e. the polynomials {L′
k(x)} are mutually orthogonal with respect to the weight

function ω(x) = 1 − x2.

Other useful properties of the Legendre polynomials include:∫ x

−1
Ln(ξ)dξ =

1
2n+ 1

(Ln+1(x) − Ln−1(x)), n � 1; (1.3.22a)

Ln(x) =
1

2n + 1
(L′

n+1(x) − L′
n−1(x)); (1.3.22b)

Ln(±1) = (±1)n, L′
n(±1) =

1
2
(±1)n−1n(n+ 1); (1.3.22c)

L′
n(x) =

n−1∑
k=0

k+n odd

(2k + 1)Lk(x); (1.3.22d)

L′′
n(x) =

n−2∑
k=0

k+n even

(
k +

1
2

)
(n(n+ 1) − k(k + 1))Lk(x). (1.3.22e)

For the Legendre series, the quadrature points and weights are

Legendre-Gauss: xj are the zeros of LN+1(x), and

ωj =
2

(1 − x2
j)[L

′
N+1(xj)]2

, 0 � j � N. (1.3.23)

Legendre-Gauss-Radau: xj are the N + 1 zeros of LN (x) + LN+1(x), and

ω0 =
2

(N + 1)2
, ωj =

1
(N + 1)2

1 − xj
[LN (xj)]2

, 1 � j � N. (1.3.24)

Legendre-Gauss-Lobatto: x0 = −1, xN = 1, {xj}N−1
j=1 are the zeros of L′

N (x), and

ωj =
2

N(N + 1)
1

[LN (xj)]2
, 0 � j � N. (1.3.25)

20 Chapter 1 Preliminaries

Zeros of Legendre polynomials

We observe from the last subsection that the three types of quadrature points for
the Legendre polynomials are related to the zeros of the LN+1, LN+1 +LN and L′

N .

Theorem 1.2.1 provides a simple and efficient way to compute the zeros of or-
thogonal polynomials, given the three-term recurrence relation. However, this method
may suffer from round-off errors as N becomes very large. As a result, we will
present an alternative method to compute the zeros of L(m)

N (x) numerically, where
m < N is the order of derivative.

We start from the left boundary −1 and try to find the small interval of width
H which contains the first zero z1. The idea for locating the interval is similar to
that used by the bisection method. In the resulting (small) interval, we use Newton’s
method to find the first zero. The Newton’s method for finding a root of f(x) = 0 is

xk+1 = xk − f(xk)/f ′(xk). (1.3.26)

After finding the first zero, we use the point z1 +H as the starting point and repeat
the previous procedure to get the second zero z2. This will give us all the zeros of
L

(m)
N (x). The parameter H , which is related to the smallest gap of the zeros, will be

chosen as N−2.

The following pseudo-code generates the zeros of L(m)
N (x).

CODE LGauss.1
Input N, ε, m %ε is the accuracy tolerence
H=N−2; a=-1
For k=1 to N-m do
%The following is to search the small interval containing
a root

b=a+H
while L

(m)
N (a)*L(m)

N (b) > 0
a=b; b=a+H

endwhile
%the Newton’s method in (a,b)

x=(a+b)/2; xright=b
while |x-xright|�ε

xright=x; x=x-L(m)
N (x)/L(m+1)

N (x)
endwhile
z(k)=x

a=x+H %move to another interval containing a root
endFor
Output z(1), z(2),· · ·,z(N-m)

1.3 Chebyshev and Legendre polynomials 21

In the above pseudo-code, the parameter ε is used to control the accuracy of the
zeros. Also, we need to use the recurrence formulas (1.3.18) and (1.3.22b) to obtain
L

(m)
n (x) which are used in the above code.

CODE LGauss.2
%This code is to evaluate L

(m)
n (x).

function r=Legendre(n,m,x)
For j=0 to m do

If j=0 then
s(0,j)=1; s(1,j)=x
for k=1 to n-1 do

s(k+1,j)=((2k+1)*x*s(k,j)-k*s(k-1,j))/(k+1)
endfor

else s(0,j)=0
if j=1 then s(1,j)=2

else s(1,j)=0
endif
for k=1 to n-1 do

s(k+1,j)=(2k+1)*s(k,j-1)+s(k-1,j)
endfor

endIf
endFor
r=s(n,m)

As an example, by setting N = 7,m = 0 and ε = 10−8 in CODE LGauss.1,
we obtain the zeros for L7(x):

z1 -0.94910791 z5 0.40584515
z2 -0.74153119 z6 0.74153119
z3 -0.40584515 z7 0.94910791
z4 0.00000000

By setting N = 6,m = 1 and ε = 10−8 in CODE LGauss.1, we obtain the
zeros for L′

6(x). Together with Z1 = −1 and Z7 = 1, they form the Legendre-Gauss-
Lobatto points:

Z1 -1.00000000 Z5 0.46884879
Z2 -0.83022390 Z6 0.83022390
Z3 -0.46884879 Z7 1.00000000
Z4 0.00000000

Discrete norm and discrete Legendre transform

As opposed to the Chebyshev polynomials, the main advantage of Legendre poly-

22 Chapter 1 Preliminaries

nomialsis that they are mutually orthogonal in the standard L2-inner product, so the
analysis of Legendre spectral methods is much easier than that of the Chebyshev
spectral method. The main disadvantage is that there is no practical fast discrete
Legendre transform available. However, it is possible to take advantage of both
the Chebyshev and Legendre polynomials by constructing the so called Chebyshev-
Legendre spectral methods; we refer to [41] and [141] for more details.

Lemma 1.3.2 Let ‖·‖N be the discrete norm relative to the Legendre-Gauss-Lobatto
quadrature. Then

‖u‖L2 � ‖u‖N �
√

3‖u‖L2 , for all u ∈ PN . (1.3.27)

Proof Setting u =
∑N

k=0 ũkLk, we have from (1.3.19) that ‖u‖2L2 =
∑N

k=0 2ũ2
k/(2k

+1). On the other hand,

‖u‖2
N =

N−1∑
k=0

ũ2
k

2
2k + 1

+ ũ2
N (LN , LN)N .

The desired result (1.3.27) follows from the above results, the identity

(LN , LN)N =
N∑
j=0

LN (xj)2ωj = 2/N, (1.3.28)

and the fact that 2
2N+1 � 2

N � 3 2
2N+1 .

Let {xi}0�i�N be the Legendre-Gauss-Lobatto points, and let u be a continuous
function on [−1, 1]. We may write

u(xj) = INu(xj) =
N∑
k=0

ũkLk(xj). (1.3.29)

We then derive from the Legendre-Gauss-Lobatto quadrature points that the discrete
Legendre coefficients ũk can be determined by the relation

ũk =
1

N + 1

N∑
j=0

u(xj)
Lk(xj)
LN (xj)

, k = 0, 1, · · · , N. (1.3.30)

The values {Lk(xj)} can be pre-computed and stored as a (N+1)×(N+1) matrix by
using the three-term recurrence relation (1.3.18). Hence, the backward and forward

1.4 Jacobi polynomials and generalized Jacobi polynomials 23

discrete Legendre transforms (1.3.30) and (1.3.29) can be performed by a matrix-
vector multiplication which costs O(N2) operations.

Exercise 1.3

Problem 1 Prove (1.3.22).

Problem 2 Derive the three-term recurrence relation for {Lk + Lk+1} and use the
method in Theorem 1.2.1 to find the Legendre-Gauss-Radau points with N = 16.

Problem 3 Prove (1.3.30).

1.4 Jacobi polynomials and generalized Jacobi polynomials

Basic properties of Jacobi polynomials
Generalized Jacobi polynomials

An important class of orthogonal polynomials are the so called Jacobi polynomials,
which are denoted by Jα,βn (x) and generated from (1.2.4) with

ω(x) = (1 − x)α(1 + x)β for α, β > −1, (a, b) = (−1, 1), (1.4.1)

and normalized by

Jα,βn (1) =
Γ(n+ α+ 1)
n!Γ(α+ 1)

, (1.4.2)

where Γ(x) is the usual Gamma function. In fact, both the Chebyshev and Legen-
dre polynomials are special cases of the Jacobi polynomials, namely, the Chebyshev
polynomials Tn(x) correspond to α = β = −1

2 with the normalization Tn(1) = 1,
and the Legendre polynomials Ln(x) correspond to α = β = 0 with the normaliza-
tion Ln(1) = 1.

Basic properties of Jacobi polynomials

We now present some basic properties of the Jacobi polynomials which will be
frequently used in the implementation and analysis of spectral methods. We refer to
[155] for a complete and authoritative presentation of the Jacobi polynomials.

The three-term recurrence relation for the Jacobi polynomials is:

Jα,βn+1(x) = (aα,βn x− bα,βn)Jα,βn (x) − cα,βn Jα,βn−1(x), n � 1,

Jα,β0 (x) = 1, Jα,β1 (x) =
1
2
(α+ β + 2)x+

1
2
(α− β),

(1.4.3)

24 Chapter 1 Preliminaries

where

aα,βn =
(2n+ α+ β + 1)(2n + α+ β + 2)

2(n + 1)(n + α+ β + 1)
, (1.4.4a)

bα,βn =
(β2 − α2)(2n + α+ β + 1)

2(n+ 1)(n + α+ β + 1)(2n + α+ β)
, (1.4.4b)

cα,βn =
(n+ α)(n + β)(2n + α+ β + 2)

(n+ 1)(n+ α+ β + 1)(2n + α+ β)
. (1.4.4c)

The Jacobi polynomials satisfy the orthogonality relation∫ 1

−1
Jα,βn (x)Jα,βm (x)(1 − x)α(1 + x)βdx = 0 for n �= m. (1.4.5)

A property of fundamental importance is the following:

Theorem 1.4.1 The Jacobi polynomials satisfy the following singular Sturm-
Liouville problem:

(1 − x)−α(1 + x)−β
d

dx

{
(1 − x)α+1(1 + x)β+1 d

dx
Jα,βn (x)

}
+ n(n+ 1 + α+ β)Jα,βn (x) = 0, −1 < x < 1.

Proof We denote ω(x) = (1− x)α(1 + x)β . By applying integration by parts twice,
we find that for any φ ∈ Pn−1,∫ 1

−1

d
dx

{
(1 − x)α+1(1 + x)β+1 dJ

α,β
n

dx

}
φdx = −

∫ 1

−1
ω(1 − x2)

dJα,βn

dx

dφ
dx

dx

=
∫ 1

−1
Jα,βn

{
[−(α+ 1)(1 + x) + (β + 1)(1 − x)]

dφ
dx

+ (1 − x2)
d2φ

dx2

}
ωdx = 0.

The last equality follows from the fact that
∫ 1
−1 J

α,β
n ψω(x)dx = 0 for any ψ ∈ Pn−1.

An immediate consequence of the above relation is that there exists λ such that

− d

dx

{
(1 − x)α+1(1 + x)β+1 d

dx
Jα,βn (x)

}
= λJα,βn (x)ω(x).

To determine λ, we take the coefficients of the leading term xn+α+β in the above
relation. Assuming that Jα,βn (x) = knx

n+{lower order terms}, we get knn(n+1+

1.4 Jacobi polynomials and generalized Jacobi polynomials 25

α+ β) = knλ, which implies that λ = n(n+ 1 + α+ β).

From Theorem 1.4.1 and (1.4.5), one immediately derives the following result:

Lemma 1.4.1 For n �= m,∫ 1

−1
(1 − x)α+1(1 + x)β+1 dJα,βn

dx
dJα,βm

dx
dx = 0. (1.4.6)

The above relation indicates that d
dxJ

α,β
n forms a sequence of orthogonal polyno-

mials with weight ω(x) = (1 − x)α+1(1 + x)β+1. Hence, by the uniqueness, we
find that d

dxJ
α,β
n is proportional to Jα+1,β+1

n−1 . In fact, we can prove the following
important derivative recurrence relation:

Lemma 1.4.2 For α, β > −1,

∂xJ
α,β
n (x) =

1
2
(n+ α+ β + 1)Jα+1,β+1

n−1 (x). (1.4.7)

Generalized Jacobi polynomials

Since for α � −1 and/or β � −1, the function ωα,β is not in L1(I) so it cannot
be used as a usual weight function. Hence, the classical Jacobi polynomials are only
defined for α, β > −1. However, as we shall see later, it is very useful to extend the
definition of Jα,βn to the cases where α and/or β are negative integers.

We now define the generalized Jacobi polynomials (GJPs) with integer indexes
(k, l). Let us denote

n0 := n0(k, l) =

⎧⎨⎩
−(k + l) if k, l � −1,
−k if k � −1, l > −1,
−l if k > −1, l � −1,

(1.4.8)

Then, the GJPs are defined as

Jk,ln (x) =

⎧⎪⎨⎪⎩
(1 − x)−k(1 + x)−lJ−k,−l

n−n0
(x) if k, l � −1,

(1 − x)−kJ−k,l
n−n0

(x) if k � −1, l > −1,
(1 + x)−lJk,−ln−n0

(x) if k > −1, l � −1,
n � n0.

(1.4.9)
It is easy to verify that Jk,ln ∈ Pn.

We now present some important properties of the GJPs. First of all, it is easy
to check that the GJPs are orthogonal with the generalized Jacobi weight ωk,l for all

26 Chapter 1 Preliminaries

integers k and l, i.e.,∫ 1

−1
Jk,ln (x)Jk,lm (x)ωk,l(x)dx = 0, ∀n �= m. (1.4.10)

It can be shown that the GJPs with negative integer indexes can be expressed as
compact combinations of Legendre polynomials.

Lemma 1.4.3 Let k, l � 1 and k, l ∈ Z. There exists a set of constants {aj} such
that

J−k,−l
n (x) =

n∑
j=n−k−l

ajLj(x), n � k + l. (1.4.11)

As some important special cases, one can verify that

J−1,−1
n =

2(n − 1)
2n − 1

(
Ln−2 − Ln

)
,

J−2,−1
n =

2(n − 2)
2n − 3

(
Ln−3 − 2n− 3

2n− 1
Ln−2 − Ln−1 +

2n − 3
2n − 1

Ln

)
,

J−1,−2
n =

2(n − 2)
2n − 3

(
Ln−3 +

2n− 3
2n− 1

Ln−2 − Ln−1 − 2n − 3
2n − 1

Ln

)
,

J−2,−2
n =

4(n− 1)(n − 2)
(2n − 3)(2n − 5)

(
Ln−4 − 2(2n − 3)

2n− 1
Ln−2 +

2n− 5
2n− 1

Ln

)
.

(1.4.12)

It can be shown (cf. [75]) that the generalized Jacobi polynomials satisfy the deriva-
tive recurrence relation stated in the following lemma.

Lemma 1.4.4 For k, l ∈ Z, we have

∂xJ
k,l
n (x) = Ck,ln Jk,ln−1(x), (1.4.13)

where

Ck,ln =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−2(n+ k + l + 1) if k, l � −1,
−n if k � −1, l > −1,
−n if k > −1, l � −1,
1
2
(n+ k + l + 1) if k, l > −1.

(1.4.14)

Remark 1.4.1 Since ωα,β /∈ L1(I) for α � −1 and β � −1, it is necessary that the
generalized Jacobi polynomials vanish at one or both end points. In fact, an important
feature of the GJPs is that for k, l � 1, we have

1.5 Fast Fourier transform 27

∂ixJ
−k,−l
n (1) = 0, i = 0, 1, · · · , k − 1;

∂jxJ
−k,−l
n (−1) = 0, j = 0, 1, · · · , l − 1.

(1.4.15)

Thus, they can be directly used as basis functions for boundary-value problems with
corresponding boundary conditions.

Exercise 1.4

Problem 1 Prove (1.4.12) by the definition (1.4.9).

Problem 2 Prove Lemma 1.4.4.

1.5 Fast Fourier transform

Two basic lemmas
Computational cost
Tree diagram
Fast inverse Fourier transform
Fast Cosine transform
The discrete Fourier transform

Much of this section will be using complex exponentials. We first recall Euler’s
formula: eiθ = cos θ + i sin θ, where i =

√−1. It is also known that the functions
Ek defined by

Ek(x) = eikx, k = 0,±1, · · · (1.5.1)

form an orthogonal system of functions in the complex space L2[0, 2π], provided that
we define the inner-product to be

〈f, g〉 =
1
2π

∫ 2π

0
f(x)g(x)dx.

This means that 〈Ek, Em〉 = 0 when k �= m, and 〈Ek, Ek〉 = 1. For discrete values,
it will be convenient to use the following inner-product notation:

〈f, g〉N =
1
N

N−1∑
j=0

f (xj) g (xj), (1.5.2)

where
xj = 2πj/N, 0 � j � N − 1. (1.5.3)

The above is not a true inner-product because the condition 〈f, f〉N = 0 does not

28 Chapter 1 Preliminaries

imply f ≡ 0. It implies that f(x) takes the value 0 at each node xj .

The following property is important.

Lemma 1.5.1 For any N � 1, we have

〈Ek, Em〉N =
{

1 if k −m is divisible by N ,
0 otherwise.

(1.5.4)

A 2π-periodic function p(x) is said to be an exponential polynomial of degree at most
n if it can be written in the form

p(x) =
n∑
k=0

cke
ikx =

n∑
k=0

ckEk(x). (1.5.5)

The coefficients {ck} can be determined by taking the discrete inner-product of
(1.5.5) with Em. More precisely, it follows from (1.5.4) that the coefficients c0, c1,
· · · , cN−1 in (1.5.5) can be expressed as:

ck =
1
N

N−1∑
j=0

f(xj)e−ikxj , 0 � k � N − 1, (1.5.6)

where xj is defined by (1.5.3). In practice, one often needs to determine {ck} from
{f(xj)}, or vice versa. It is clear that a direct computation using (1.5.6) requires
O(N2) operations. In 1965, a paper by Cooley and Tukey [33] described a different
method of calculating the coefficients ck, 0 � k � N − 1. The method requires only
O(N log2N) multiplications and O(N log2N) additions, provided N is chosen in
an appropriate manner. For a problem with thousands of data points, this reduces the
number of calculations to thousands compared to millions for the direct technique.

The method described by Cooley and Tukey has become to be known either as
the Cooley-Tukey Algorithm or the Fast Fourier Transform (FFT) Algorithm, and has
led to a revolution in the use of interpolating trigonometric polynomials. We follow
the exposition of Kincaid and Cheney[92] to introduce the algorithm.

Two basic lemmas

Lemma 1.5.2 Let p and q be exponential polynomials of degree N −1 such that, for
the points yj = πj/N , we have

p(y2j) = f(y2j), q(y2j) = f(y2j+1), 0 � j � N − 1. (1.5.7)

1.5 Fast Fourier transform 29

Then the exponential polynomial of degree � 2N−1 that interpolates f at the points
yj, 0 � j � 2N − 1, is given by

P (x) =
1
2
(1 + eiNx)p(x) +

1
2
(1 − eiNx)q(x− π/N). (1.5.8)

Proof Since p and q have degrees � N − 1, whereas eiNx is of degree N , it is clear
that P has degree � 2N − 1. It remains to show that P interpolates f at the nodes.
We have, for 0 � j � 2N − 1,

P (yj) =
1
2
(1 + EN (yj))p(yj) +

1
2
(1 − EN (yj))q(yj − π/N).

Notice that EN (yj) = (−1)j . Thus for even j, we infer that P (yj) = p(yj) = f(yj),
whereas for odd j, we have

P (yj) = q(yj − π/N) = q(yj−1) = f(yj).

This completes the proof of Lemma 1.5.2.

Lemma 1.5.3 Let the coefficients of the polynomials described in Lemma 1.5.2 be
as follows:

p =
N−1∑
j=0

αjEj, q =
N−1∑
j=0

βjEj , P =
2N−1∑
j=0

γjEj .

Then, for 0 � j � N − 1,

γj =
1
2
αj +

1
2
e−ijπ/Nβj , γj+N =

1
2
αj − 1

2
e−ijπ/Nβj . (1.5.9)

Proof To prove (1.5.9), we will be using (1.5.8) and will require a formula for q(x−
π/N):

q(x− π/N) =
N−1∑
j=0

βjEj(x− π/N) =
N−1∑
j=0

βje
ij(x−π/N) =

N−1∑
j=0

βje
−iπj/NEj(x).

Thus, from equation (1.5.8),

P =
1
2

N−1∑
j=0

{
(1 + EN)αjEj + (1 − EN)βje−iπj/NEj

}

30 Chapter 1 Preliminaries

=
1
2

N−1∑
j=0

{
(αj + βje

−ijπ/N)Ej + (αj − βje
−ijπ/N)EN+j

}
.

The formulas for the coefficients γj can now be read from this equation. This com-
pletes the proof of Lemma 1.5.3.

Computational cost

It follows from (1.5.6), (1.5.7) and (1.5.8) that

αj =
1
N

N−1∑
j=0

f(x2j)e−2πij/N ,

βj =
1
N

N−1∑
j=0

f(x2j+1)e−2πij/N ,

γj =
1

2N

2N−1∑
j=0

f(xj)e−πij/N .

For the further analysis, let R(N) denote the minimum number of multiplications
necessary to compute the coefficients in an interpolating exponential polynomial for
the set of points {2πj/N : 0 � j � N − 1}.

First, we can show that

R(2N) � 2R(N) + 2N. (1.5.10)

It is seen thatR(2N) is the minimum number of multiplications necessary to compute
γj , and R(N) is the minimum number of multiplications necessary to compute αj
or βj . By Lemma 1.5.3, the coefficients γj can be obtained from αj and βj at the
cost of 2N multiplications. Indeed, we require N multiplications to compute 1

2αj for
0 � j � N−1, and another N multiplications to compute (12e

−ijπ/N)βj for 0 � j �
N − 1. (In the latter, we assume that the factors 1

2e
−ijπ/N have already been made

available.) Since the cost of computing coefficients {αj} is R(N) multiplications,
and the same is true for computing {βj}, the total cost for P is at most 2R(N) + 2N
multiplications. It follows from (1.5.10) and mathematical induction that R(2m) �
m 2m. As a consequence of the above result, we see that if N is a power of 2, say
2m, then the cost of computing the interpolating exponential polynomial obeys the
inequality

R(N) � N log2N.

1.5 Fast Fourier transform 31

The algorithm that carries out repeatedly the procedure in Lemma 1.5.2 is the fast
Fourier transform.

Tree diagram

The content of Lemma 1.5.2 can be interpreted in terms of two linear operators,
LN and Th. For any f , let LNf denote the exponential polynomial of degree N − 1
that interpolates f at the nodes 2πj/N for 0 � j � N − 1. Let Th be a translation
operator defined by (Thf)(x) = f(x+ h). We know from (1.5.4) that

LNf =
N−1∑
k=0

< f, Ek >N Ek.

Furthermore, in Lemma 1.5.2, P = L2Nf, p = LNf and q = LNTπ/Nf . The
conclusion of Lemmas 1.5.2 and 1.5.3 is that L2Nf can be obtained efficiently from
LNf and LNTπ/Nf .

Our goal now is to establish one version of the fast Fourier transform algorithm
for computing LNf , where N = 2m. We define

P
(n)
k = L2nT2kπ/Nf, 0 � n � m, 0 � k � 2m−n − 1. (1.5.11)

An alternative description of P(n)
k is as the exponential polynomial of degree 2n − 1

that interpolates f in the following way:

P
(n)
k

(
2πj
2n

)
= f

(
2πk
N

+
2πj
2n

)
, 0 � j � 2n − 1.

A straightforward application of Lemma 1.5.2 shows that

P
(n+1)
k (x) =

1
2

(
1 + ei2

nx
)
P

(n)
k +

1
2
(1 − ei2

nx)P (n)
k+2m−n−1

(
x− π

2n
)
. (1.5.12)

We can illustrate in a tree diagram how the exponential polynomials P(n)
k are

related. Suppose that our objective is to compute

P
(3)
0 = L8f =

7∑
k=0

< f, Ek >N Ek.

In accordance with (1.5.12), this function can be easily obtained from P
(2)
0 and P (2)

1 .
Each of these, in turn, can be easily obtained from four polynomials of lower order,

32 Chapter 1 Preliminaries

and so on. Figure 1.2 shows the connections.

Figure 1.2 An illustration of a tree diagram

Algorithm

Denote the coefficients of P(n)
k by A(n)

kj . Here 0 � n � m, 0 � k � 2m−n − 1,
and 0 � j � 2n − 1. We have

P
(n)
k (x) =

2n−1∑
j=0

A
(n)
kj Ej(x) =

2n−1∑
j=0

A
(n)
kj e

ijx.

By Lemma 1.5.3, the following equations hold:

A
(n+1)
kj =

1
2

[
A

(n)
kj + e−ijπ/2

n
A

(n)
k+2m−n−1, j

]
,

A
(n+1)
k,j+2n =

1
2

[
A

(n)
kj − e−ijπ/2

n
A

(n)
k+2m−n−1, j

]
.

For a fixed n, the array A(n) requires N = 2m storage locations in memory
because 0 � k � 2m−n − 1 and 0 � j � 2n − 1. One way to carry out the
computations is to use two linear arrays of length N , one to hold A(n) and the other
to holdA(n+1). At the next stage, one array will contain A(n+1) and the otherA(n+2).
Let us call these arrays C and D. The two-dimensional array A(n) is stored in C by
the rule

C(2nk + j) = A
(n)
kj , 0 � k � 2m−n − 1, 0 � j � 2n − 1.

It is noted that if 0 � k, k′ � 2m−n − 1 and 0 � j, j′ � 2n − 1 satisfying 2nk+ j =

1.5 Fast Fourier transform 33

2nk′ + j′, then (k, j) = (k′, j′). Similarly, the array A(n+1) is stored in D by the rule

D(2n+1k + j) = A
(n+1)
kj , 0 � k � 2m−n−1 − 1, 0 � j � 2n+1 − 1.

The factors Z(j) = e−2πij/N are computed at the beginning and stored. Then we use
the fact that

e−ijπ/2
n

= Z(j2m−n−1).

Below is the fast Fourier transform algorithm:

CODE FFT.1
% Cooley-Tukey Algorithm
Input m
N=2m, w=e−2πi/N

for k=0 to N-1 do
Z(k)=wk, C(k)=f(2πk/N)

endfor
For n=0 to m-1 do

for k=0 to 2m−n−1-1 do
for j=0 to 2n-1 do

u=C(2nk+j); v=Z(j2m−n−1)*C(2nk+2m−1+j)
D(2n+1k+j)=0.5*(u+v); D(2n+1k+j+2n)=0.5*(u-v)

endfor
endfor
for j=0 to N-1 do

C(j)=D(j)
endfor

endFor
Output C(0), C(1), · · ·, C(N-1).

By scrutinizing the pseudocode, we can also verify the bound N log2N for the
number of multiplications involved. Notice that in the nested loop of the code, n
takes on m values; then k takes on 2m−n−1 values, and k takes on 2n values. In this
part of the code, there is really just one command involving a multiplication, namely,
the one in which v is computed. This command will be encountered a number of
times equal to the product m × 2m−n−1 × 2n = m2m−1. At an earlier point in the
code, the computation of the Z-array involves 2m− 1 multiplications. On any binary
computer, a multiplication by 1/2 need not be counted because it is accomplished
by subtracting 1 from the exponent of the floating-point number. Therefore, the total
number of multiplications used in CODE FFT.1 is

m2m−1 + 2m − 1 � m2m = N log2N.

34 Chapter 1 Preliminaries

Fast inverse Fourier transform

The fast Fourier transform can also be used to evaluate the inverse transform:

dk =
1
N

N−1∑
j=0

g(xj)eikxj , 0 � k � N − 1.

Let j = N − 1 −m. It is easy to verify that

dk = e−ixk
1
N

N−1∑
m=0

g(xN−1−m)e−ikxm , 0 � k � N − 1.

Thus, we apply the FFT algorithm to get eixkdk. Then extra N operations give dk. A
pseudocode for computing dk is given below.

CODE FFT.2
% Fast Inverse Fourier Transform
Input m
N=2m, w=e−2πi/N

for k=0 to N-1 do
Z(k)=wk, C(k)=g(2π(N-1-k)/N)

end
For n=0 to m-1 do

for k=0 to 2m−n−1-1 do
for j=0 to 2n-1 do

u=C(2nk+j); v=Z(j2m−n−1)*C(2nk+2m−1+j)
D(2n+1k+j)=0.5*(u+v); D(2n+1k+j+2n)=0.5*(u-v)

endfor
endfor
for j=0 to N-1 do

C(j)=D(j)
endfor

endFor
for k=0 to N-1 do

D(k)=Z(k)*C(k)
endfor
Output D(0), D(1), · · ·, D(N-1).

Fast Cosine transform

The fast Fourier transform can also be used to evaluate the cosine transform:

ak =
N∑
j=0

f(xj) cos (πjk/N) , 0 � k � N,

1.5 Fast Fourier transform 35

where the f(xj) are real numbers. Let vj = f(xj) for 0 � j � N and vj = 0 for
N + 1 � j � 2N − 1. We compute

Ak =
1

2N

2N−1∑
j=0

vje
−ikxj , xj =

πj

N
, 0 � k � 2N − 1.

Since the vj are real numbers and vj = 0 for j � N +1, it can be shown that the real
part of Ak is

Re(Ak) =
1

2N

N∑
j=0

f(xj) cos (πjk/N) , 0 � k � 2N − 1.

In other words, the following results hold: ak = 2NRe(Ak), 0 � k � N . By the
definition of the Ak, we know that they can be computed by using the pseudocode
FFT.1. When they are multiplied by 2N , we have the values of ak.

Numerical examples

To test the the efficiency of the FFT algorithm, we compute the coefficients in
(1.5.6) using CODE FFT.1 and the direct method. A subroutine for computing the
coefficients directly from the formulas goes as follows:

CODE FFT.3
% Direct method for computing the coefficients
Input m
N=2m, w=e−2πi/N

for k=0 to N-1 do
Z(k)=wk, D(k)=f(2πk/N)

endfor
for n=0 to N-1 do

u=D(0)+
∑N−1
k=1 D(k)*Z(n)k

C(n)=u/N
endfor
Output C(0), C(1), · · ·, C(N-1)

The computer programs based on CODE FFT.1 and CODE FFT.2 are written
in FORTRAN with double precision. We compute the following coefficients:

ck =
1
N

N−1∑
j=0

cos(5xj)e−ikxj , 0 � k � N − 1,

36 Chapter 1 Preliminaries

where xj = 2πj/N . The CPU time used are listed in the following table.

m N CPU (FFT) CPU(direct)
9 512 0.02 0.5

10 1024 0.04 2.1
11 2048 0.12 9.0
12 4096 0.28 41.0
13 8192 0.60 180.0

The discrete Fourier transform

Again let f be a 2π-periodic function defined in [0, 2π]. The Fourier transform
of f(t) is defined as

H(s) = F{f(t)} =
1
2π

∫ 2π

0
f(t)e−istdt, (1.5.13)

where s is a real parameter and F is called the Fourier transform operator. The
inverse Fourier transform is denoted by F−1{H(s)},

f(t) = F−1{H(s)} =
∫ ∞

−∞
eistH(s)ds,

where F−1 is called the inverse Fourier transform operator. The following result is
important: The Fourier transform operator F is a linear operator satisfying

F{f (n)(t)} = (ik)nF{f(t)}, (1.5.14)

where f (n)(t) denotes the n-th order derivative of f(t). Similar to the continuous
Fourier transform, we will define the discrete Fourier transform below. Let the solu-
tion interval be [0, 2π]. We first transform u(x, t) into the discrete Fourier space:

û(k, t) =
1
N

N−1∑
j=0

u(xj , t)e−ikxj , −N
2

� k � N

2
− 1, (1.5.15)

where xj = 2πj/N . Due to the orthogonality relation (1.5.4),

1
N

N−1∑
j=0

eipxj =
{

1 if p = Nm,m = 0,±1,±2, · · · ,
0 otherwise,

1.5 Fast Fourier transform 37

we have the inversion formula

u(xj, t) =
N/2−1∑
k=−N/2

û(k, t)eikxj , 0 � j � N − 1. (1.5.16)

We close this section by pointing out there are many useful developments on fast
transforms by following similar spirits of the FFT methods; see e.g. [124], [126], [2],
[150], [21], [65], [123], [143].

Exercise 1.5

Problem 1 Prove (1.5.4).

Problem 2 One of the most important uses of the FFT algorithm is that it allows
periodic discrete convolutions of vectors of length n to be performed in O(n log n)
operations.

To keep the notation simple, let us consider n = 4 (the proof below carries
through in just the same way for any size). Use the fact that⎡⎢⎢⎣

1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

⎤⎥⎥⎦
⎡⎢⎢⎣
û0

û1

û2

û3

⎤⎥⎥⎦=

⎡⎢⎢⎣
u0

u1

u2

u3

⎤⎥⎥⎦,
is quivalent to

1
n

⎡⎢⎢⎣
1 1 1 1
1 ω−1 ω−2 ω−3

1 ω−2 ω−4 ω−6

1 ω−3 ω−6 ω−9

⎤⎥⎥⎦
⎡⎢⎢⎣
u0

u1

u2

u3

⎤⎥⎥⎦=

⎡⎢⎢⎣
û0

û1

û2

û3

⎤⎥⎥⎦ ,
where ω = e2πi/n, prove that the linear system⎡⎢⎢⎣

z0 z3 z2 z1
z1 z0 z3 z2
z2 z1 z0 z3
z3 z2 z1 z0

⎤⎥⎥⎦
⎡⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎦=

⎡⎢⎢⎣
y0

y1

y2

y3

⎤⎥⎥⎦
where {z0, z1, z2, z3} is an arbitrary vector, can be transformed to a simple system of

38 Chapter 1 Preliminaries

the form ⎡⎢⎢⎣
ẑ0

ẑ1
ẑ2

ẑ3

⎤⎥⎥⎦
⎡⎢⎢⎣
x̂0

x̂1

x̂2

x̂3

⎤⎥⎥⎦=
1
n

⎡⎢⎢⎣
ŷ0

ŷ1

ŷ2

ŷ3

⎤⎥⎥⎦ .

1.6 Several popular time discretization methods

General Runge-Kutta methods
Stability of Runge-Kutta methods
Multistep methods
Backward difference methods (BDF)
Operator splitting methods

We present in this section several popular time discretization methods, which will be
repeatedly used in this book, for a system of ordinary differential equations

dU

dt
= F (U, t), (1.6.1)

where U ∈ Rd, F ∈ Rd. An initial condition is also given to the above problem:

U(t0) = U0. (1.6.2)

The simplest method is to approximate dU/dt by the finite difference quotient U′(t)
≈ [U(t+∆t)−U(t)]/∆t. Since the starting data is known from the initial condition
U0 = U0, we can obtain an approximation to the solution at t1 = t0 + ∆t: U1 =
U0 + ∆t F (U0, t0). The process can be continued. Let tk = t0 + k∆t, k � 1. Then
the approximation Uk+1 to the solution U(tk+1) is given by

Un+1 = Un + ∆t F (Un, tn), (1.6.3)

where Un ≈ U(·, tn). The above algorithm is called the Euler method. It is known
that if the function F has a bounded partial derivative with respect to its second
variable and if the solution U has a bounded second derivative, then the Euler method
converges to the exact solution with first order of convergence, namely,

max
1�n�N

|Un − U(tn)| � C∆t,

1.6 Several popular time discretization methods 39

where C is independent of N and ∆t.

The conceptually simplest approach to higher-order methods is to use more terms
in the Taylor expansion. Compared with the Euler method, one more term is taken so
that

U(tn+1) ≈ U(tn) + ∆t U ′(tn) +
∆t2

2
U ′′(tn), (1.6.4)

where the remainder of O(∆t3) has been dropped. It follows from (1.6.1) that U′(tn)
can be replaced by F (Un, tn). Moreover,

U ′′(t) =
d

dt
F (U(t), t) = FU (U, t)U ′(t) + Ft(U, t) ,

which yields

U ′′(tn) ≈ FU (Un, tn)F (Un, tn) + Ft(Un, tn).

Using this to replace U′′(tn) in (1.6.4) leads to the method

Un+1 = Un + ∆tF (Un, tn) +
∆t2

2
[Ft(Un, tn) + FU (Un, tn)F (Un, tn)]. (1.6.5)

It can be shown the above scheme has second-order order accuracy provided that F
and the underlying solution U are smooth.

General Runge-Kutta methods

Instead of computing the partial derivatives of F , we could also obtain higher-
order methods by making more evaluations of the function values of F at each step. A
class of such schemes is known as Runge-Kutta methods. The second-order Runge-
Kutta method is of the form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U = Un, G = F (U, tn),

U = U + α∆tG, G = (−1 + 2α− 2α2)G+ F (U, tn + α∆t),

Un+1 = U +
∆t
2α
G.

(1.6.6)

Only two levels of storage (U and G) are required for the above algorithm. The
choice α = 1/2 produces the modified Euler method, and α = 1 corresponds to the
Heun method.

40 Chapter 1 Preliminaries

The third-order Runge-Kutta method is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = Un, G = F (U, tn),

U = U +
1
3
∆tG, G = −5

9
G+ F

(
U, tn +

1
3
∆t
)
,

U = U +
15
16

∆tG, G = −153
128

G+ F

(
U, tn +

3
4
∆t
)
,

Un+1 = U +
8
15
G.

(1.6.7)

Only two levels of storage (U and G) are required for the above algorithm.

The classical fourth-order Runge-Kutta (RK4) method is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

K1 = F (Un, tn), K2 = F

(
Un +

∆t
2
K1, tn +

1
2
∆t
)
,

K3 = F

(
Un +

∆t
2
K2, tn +

1
2
∆t
)
, K4 = F (Un + ∆tK3, tn+1),

Un+1 = Un +
∆t
6

(K1 + 2K2 + 2K3 +K4) .

(1.6.8)

The above formula requires four levels of storage, i.e. K1,K2,K3 and K4. An
equivalent formulation is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = Un, G = U, P = F (U, tn),

U = U +
1
2
∆tP, G = P, P = F

(
U, tn +

1
2
∆t
)
,

U = U +
1
2
∆t(P −G), G =

1
6
G, P = F (U, tn + ∆t/2) − P/2,

U = U + ∆tP, G = G− P, P = F (U, tn+1) + 2P,

Un+1 = U + ∆t (G+ P/6) .
(1.6.9)

This version of the RK4 method requires only three levels (U,G and P) of storage.

As we saw in the derivation of the Runge-Kutta method of order 2, a number of
parameters must be selected. A similar process occurs in establishing higher-order
Runge-Kutta methods. Consequently, there is not just one Runge-Kutta method for
each order, but a family of methods. As shown in the following table, the number
of required function evaluations increases more rapidly than the order of the Runge-
Kutta methods:

1.6 Several popular time discretization methods 41

Number of function evaluations 1 2 3 4 5 6 7 8
Maximum order of RK method 1 2 3 4 4 5 6 6

Unfortunately, this makes the higher-order Runge-Kutta methods less attractive than
the classical fourth-order method, since they are more expensive to use.

The Runge-Kutta procedure for systems of first-order equations is most easily
written down in the case when the system is autonomous; that is, it has the form

dU

dt
= F (U). (1.6.10)

The classical RK4 formulas, in vector form, are

Un+1 = Un +
∆t
6

(
K1 + 2K2 + 2K3 +K4

)
, (1.6.11)

where ⎧⎪⎪⎨⎪⎪⎩
K1 = F (Un), K2 = F

(
Un +

∆t
2
K1

)
,

K3 = F

(
Un +

∆t
2
K2

)
, K4 = F (Un + ∆tK3) .

For problems without source terms such as Examples 5.3.1 and 5.3.2, we will end up
with an autonomous system. The above RK4 method, or its equivalent form similar
to (1.6.9), can be used.

Stability of Runge-Kutta methods

The general s-stage explicit Runge-Kutta method of maximum order s has sta-
bility function

r(z) = 1 + z +
z2

2
+ · · · + zs

s!
, s = 1, 2, 3, 4. (1.6.12)

There are a few stability concepts for the Runge-Kutta methods:

a. The region of absolute stability R of an s-order Runge-Kutta method is the
set of points z = λ∆t ∈ C such that if z ∈ R, (Re(λ) < 0). Then the numerical
method applied to

du

dt
= λu (1.6.13)

gives un → 0 as n → ∞. It can be shown that the region of absolute stability of a

42 Chapter 1 Preliminaries

Runge-Kutta method is given by

R = {z ∈ C | |r(z)| < 1}. (1.6.14)

b. A Runge-Kutta method is said to be A-stable if its stability region contains the
left-half of the complex plane, i.e. the non-positive half-plane, C−.

c. A Runge-Kutta method is said to be L-stable if it isA-stable, and if its stability
function r(z) satisfies

lim
|z|→∞

|r(z)| = 0. (1.6.15)

In Figure 1.3, we can see that the stability domains for these explicit Runge-Kutta
methods consist of the interior of closed regions in the left-half of the complex plane.
The algorithm for plotting the absolute stability regions above can be found in the
book by Butcher [27]. Notice that all Runge-Kutta methods of a given order have the
same stability properties. The stability regions expand as the order increases.

Figure 1.3 Absolute stability regions of Runge-Kutta methods

Multistep methods

Another approach to higher-order methods utilizes information already computed
and does not require additional evaluations of F (U, t). One of the simplest such
methods is

Un+1 = Un +
∆t
2

[3F (Un, tn) − F (Un−1, tn−1)], (1.6.16)

for which the maximum pointwise error is O(∆t2), and is known as the second-order

1.6 Several popular time discretization methods 43

Adams-Bashforth method, or AB2 for short. Note that the method requires only the
evaluation of F (Un, tn) at each step, the value F (Un−1, tn−1) being known from the
previous step.

We now consider the general construction of Adams-Bashforth methods. Let
Un, Un−1, · · · , Un−s be the computed approximations to the solution at tn, tn−1,

· · · , tn−s. Let F i = F (U i, ti) and let p(t) be the interpolating polynomial of degree
s that satisfies

p(ti) = F i, i = n, n− 1, · · · , n− s.

We may then consider p(t) to be an approximation to F (U(t), t). Since the solution
U(t) satisfies

U(tn+1) − U(tn) =
∫ tn+1

tn

U ′(t)dt =
∫ tn+1

tn

F (U(t), t)dt ≈
∫ tn+1

tn

p(t)dt,

we obtain the so-called Adams-Bashforth (AB) methods as follows:

Un+1 = Un +
∫ tn+1

tn

p(t)dt. (1.6.17)

Below we provide a few special cases of the Adams-Bashforth methods:

• s = 0: p(t) = Fn for t ∈ [tn, tn+1), gives Euler method.

• s = 1:
p(t) = p1(t) = Un +

t− tn
∆t

(Fn − Fn−1),

which leads to the second-order Adams-Bashforth method (1.6.16).

• s = 2:

p2(t) = p1(t) +
(t− tn)(t− tn−1)

2∆t2
(Fn − 2Fn−1 + Fn−2),

which leads to the third-order Adams-Bashforth method

Un+1 = Un +
∆t
12

(23Fn − 16Fn−1 + 5Fn−2). (1.6.18)

• s = 3:

p3(t) = p2(t) − (t− tn)(t− tn−1)(t− tn−2)
3!∆t3

(Fn − 3Fn−1 + 3Fn−2 − Fn−3),

44 Chapter 1 Preliminaries

which leads to the fourth-order Adams-Bashforth method

Un+1 = Un +
∆t
24

(55Fn − 59Fn−1 + 37Fn−2 − 9Fn−3). (1.6.19)

In principle, we can continue the preceding process to obtain Adams-Bashforth meth-
ods of arbitrarily high-order, but the formulas become increasingly complex as d in-
creases. The Adams-Bashforth methods are multistep methods since two or more
levels of prior data are used. This is in contrast to the Runge-Kutta methods which
use no prior data and are called one-step methods. We will compute the numerical
solutions of the KdV equation using a multistep method (see Sect. 5.4).

Multistep methods cannot start by themselves. For example, consider the fourth-
order Adams-Bashforth method. The initial value U0 is given, but for k = 0, the
information is needed at t−1, t−2, t−3, which is not available. The method needs
“help” getting started. We cannot use the fourth-order multistep method until k � 3.
A common policy is to use a one-step method, such as a Runge-Kutta method of the
same order of accuracy at some starting steps.

Since the Adams-Bashforth methods of arbitrary order require only one evalua-
tion of F (U, t) at each step, the “cost” is lower than that of Runge-Kutta methods. On
the other hand, in Runge-Kutta methods it is much easier to change step-size; hence
they are more suitable for use in an adaptive algorithm.

Backward difference methods (BDF)

The Adams-Bashforth methods can be unstable due to the fact they are obtained
by integrating the interpolating polynomial outside the interval of the data that defines
the polynomial. This can be remedied by using multilevel implicit methods:

• Second-order backward difference method (BD2):

1
2∆t

(3Un+1 − 4Un + Un−1) = F (Un+1, tn+1). (1.6.20)

• Third-order backward difference method (BD3):

1
6∆t

(11Un+1 − 18Un + 9Un−1 − 2Un−2) = F (Un+1, tn+1). (1.6.21)

In some practical applications, F (u, t) is often the sum of linear and nonlinear terms.
In this case, some combination of the backward difference method and extrapolation
method can be used. To fix the idea, let us consider

ut = L(u) + N (u), (1.6.22)

1.6 Several popular time discretization methods 45

where L is a linear operator and N is a nonlinear operator. By combining a second-
order backward differentiation (BD2) for the time derivative term and a second-order
extrapolation (EP2) for the explicit treatment of the nonlinear term, we arrive at a
second-order scheme (BD2/EP2) for (1.6.22):

1
2∆t

(3Un+1 − 4Un + Un−1) = L(Un+1) + N (2Un − Un−1). (1.6.23)

A third-order scheme for solving (1.6.22) can be constructed in a similar manner,
which leads to the so-called BD3/EP3 scheme:

1
6∆t

(11Un+1−18Un+9Un−1−2Un−2) = L(Un+1)+N (3Un−3Un−1 +Un−2).
(1.6.24)

Operator splitting methods

In many practical situations, F (u, t) is often the sum of several terms with dif-
ferent properties. Then it is often advisable to use an operator splitting method (also
called fractional step method)[171, 119, 57, 154]. To fix the idea, let us consider

ut = f(u) = Au+Bu, u(t0) = u0, (1.6.25)

where f(u) is a nonlinear operator and the splitting f(u) = Au + Bu can be quite
arbitrary; in particular, A and B do not need to commute.

Strang’s operator splitting method For a given time step ∆t > 0,
let tn = n ∆t, n = 0, 1, 2, · · · and un be the approximation of u(tn). Let us formally
write the solution u(x, t) of (1.6.25) as

u(t) = et(A+B)u0 =: S(t)u0. (1.6.26)

Similarly, denote by S1(t) := etA the solution operator for ut = Au, and by S2(t) :=
etB the solution operator for ut = Bu. Then the first-order operator splitting is based
on the approximation

un+1 ≈ S2(∆t)S1(∆t)un, (1.6.27)

or on the one with the roles of S2 and S1 reversed. To maintain second-order accu-
racy, the Strang splitting[154] can be used, in which the solution S(tn)u0 is approxi-
mated by

un+1 ≈ S2(∆t/2)S1(∆t)S2(∆t/2)un, (1.6.28)

or by the one with the roles of S2 and S1 reversed. It should be pointed out that

46 Chapter 1 Preliminaries

first-order accuracy and second-order accuracy are based on the truncation errors for
smooth solutions. For discontinuous solutions, it is not difficult to show that both
approximations (1.6.27) and (1.6.28) are at most first-order accurate, see e.g. [35],
[159].

Fourth-order time-splitting method A fourth-order symplectic time
integrator (cf. [172], [99]) for (1.6.25) is as follows:

u(1) = e2w1A∆t un, u(2) = e2w2B∆t u(1), u(3) = e2w3A∆t u(2),

u(4) = e2w4B∆t u(3), u(5) = e2w3A∆t u(4), u(6) = e2w2B∆t u(5),

un+1 = e2w1A∆t u(6);

(1.6.29)

or, equivalently,

un+1 ≈S1(2w1∆t)S2(2w2∆t)S1(2w3∆t)S2(2w4∆t)
S1(2w3∆t)S2(2w2∆t)S1(2w1∆t)un,

where

w1 = 0.33780 17979 89914 40851, w2 = 0.67560 35959 79828 81702,

w3 = −0.08780 17979 89914 40851, w4 = −0.85120 71979 59657 63405.
(1.6.30)

Numerical tests

To test the Runge-Kutta algorithms discussed above, we consider Example 5.3.1
in Section 5.3. Let U = (U1, · · · , UN−1)T, namely the vector of approximation
values at the interior Chebyshev points. Using the definition of the differentiation
matrix to be provided in the next chapter, the Chebyshev pesudospectral method for
the heat equation (1.1.1) with homogeneous boundary condition leads to the system

dU

dt
= AU,

whereA is a constant matrix with (A)ij = (D2)ij . The matrixD2 = D1∗D1, where
D1 is given by CODE DM.3 in Sect 2.1. The following pseudo-code implements the
RK2 (1.6.6).

CODE RK.1
Input N, u0(x), ∆t, Tmax, α

%Form the matrix A

1.6 Several popular time discretization methods 47

call CODE DM.3 in Sect 2.1 to get D1(i,j), 0�i,j�N
D2=D1*D1;
A(i,j)=D2(i,j), 1�i,j�N-1
Set starting time: time=0
Set the initial data: U0=u0(x)
While time�Tmax do

%Using RK2 (1.6.6)
U=U0; G=A*U
U=U+α*∆t*G; G=(-1+2α-2α2)G+A*U
U0=U+∆t*G/(2*α)
Set new time level: time=time+∆t

endWhile
Output U0(1),U(2), · · ·, U(N-1)

Codes using (1.6.11), i.e., RK4 for autonomous system, can be written in a similar
way. Numerical results for Example 5.3.1 using RK2 with α = 1 (i.e., the Heun
method) and RK4 are given in the following table. Tmax in the above code is set to
be 0.5. It is seen that these results are more accurate than the forward Euler solutions
obtained in Section 5.3.

N Heun method (∆t=10−3) RK4 (∆t=10−3)
3 1.11e-02 1.11e-02
4 3.75e-03 3.75e-03
6 3.99e-05 4.05e-05
8 1.23e-06 1.77e-06

10 5.92e-07 3.37e-08
11 5.59e-07 1.43e-09
12 5.80e-07 4.32e-10

The numerical errors for ∆t = 10−3, Tmax=0.5 and different values of s (the order
of accuracy) can be seen from the following table:

N s=2 s=3 s=4
3 1.11e-02 1.11e-02 1.11e-02
4 3.75e-03 3.75e-03 3.75e-03
6 3.99e-05 4.05e-05 4.05e-05
8 1.23e-06 1.77e-06 1.77e-06

10 5.92e-07 3.23e-08 3.37e-08
11 5.59e-07 2.82e-09 1.43e-09
12 5.80e-07 1.70e-09 4.32e-10

Exercise 1.6

Problem 1 Solve the problem in Example 5.3.1 by using a pseudo-spectral ap-

48 Chapter 1 Preliminaries

proach (i.e. using the differential matrix to solve the problem in the physical space).
Take 3 � N � 20, and use RK4.

1.7 Iterative methods and preconditioning

BiCG algorithm
CGS algorithm
BiCGSTAB algorithm
GMRES method
Preconditioning techniques
Preconditioned GMRES

Among the iterative methods developed for solving large sparse problems, we will
mainly discuss two methods: the conjugate gradient (CG) method and the generalized
minimal residual (GMRES) method. The CG method proposed by Hestenes and
Stiefel in 1952 [82] is the method of choice for solving large symmetric positive definite
linear systems, while the GMRES method was proposed by Saad and Schultz in 1986
for solving non-symmetric linear systems [135].

Let the matrix A ∈ Rn×n be a symmetric positive definite matrix and b ∈ Rn

a given vector. It can be verified that x̂ is the solution of Ax = b if and only if x̂
minimizes the quadratic functional

J(x) =
1
2
xTAx− xTb. (1.7.1)

Let us consider the minimization procedure. Suppose xk has been obtained. Then
xk+1 can be found by

xk+1 = xk + αkpk, (1.7.2)

where the scalar αk is called the step size factor and the vector pk is called the
search direction. The coefficient αk in (1.7.2) is selected such that J(xk + αkpk) =
minα J(xk + αpk). A simple calculation shows that

αk = (rk, pk)/(Apk, pk) = pT
k rk/p

T
kApk.

The residual at this step is given by

rk+1 = b−Axk+1 = b−A(xk + αkpk)

= b−Axk − αkApk = rk − αkApk.

Select the next search direction pk+1 such that (pk+1, Apk) = 0, i.e,

pk+1 = rk+1 + βkpk, (1.7.3)

1.7 Iterative methods and preconditioning 49

where

βk = −(Apk, rk+1)
(Apk, pk)

= −r
T
k+1Apk

pT
kApk

.

It can be verified that

rTi rj = 0, pT
i Apj = 0, i �= j. (1.7.4)

Consequently, it can be shown that if A is a real n × n symmetric positive definite
matrix, then the iteration converges in at most n steps, i.e. xm = x̂ for some m � n.

The above derivations lead to the following conjugate gradient (CG) algorithm:

Choose x0, compute r0 = b−Ax0 and set p0 = r0.

For k = 0, 1, · · · do
Compute αk = (rk, rk)/(Apk, pk)

Set xk+1 = xk + αkpk

Compute rk+1 = rk − αkApk

If ‖rk+1‖2 � ε, continue,

Compute βk = (rk+1, rk+1)/(rk, rk)

Set pk+1 = rk+1 + βkpk

endFor

It is left as an exercise for the reader to prove that these coefficient formulas in the
CG algorithm are equivalent to the obvious expressions in the above derivations.

The rate of convergence of the conjugate gradient method is given by the follow-
ing theorem:

Theorem 1.7.1 If A is a symmetric positive definite matrix, then the error of the
conjugate gradient method satisfies

‖x̂− xk‖A � 2γk‖x̂− x0‖A, (1.7.5)

where
‖x‖A = (Ax, x) = xTAx, γ = (

√
κ− 1)/(

√
κ+ 1), (1.7.6)

and κ = ‖A‖2‖A−1‖2 is the condition number of A.

For a symmetric positive definite matrix, ‖A‖2 = λn, ‖A−1‖2 = λ−1
1 , where λn

and λ1 are the largest and smallest eigenvalues of A. It follows from Theorem 1.7.1

50 Chapter 1 Preliminaries

that a 2-norm error bound can be obtained:

‖x̂− xk‖2 � 2
√
κγk‖x− x0‖2. (1.7.7)

We remark that

• we only have matrix-vector multiplications in the CG algorithm. In case that
the matrix is sparse or has a special structure, these multiplications can be done effi-
ciently.

• unlike the traditional successive over-relaxation (SOR) type method, there is no
free parameter to choose in the CG algorithm.

BiCG algorithms

When the matrix A is non-symmetric, an direct extension of the CG algorithm is
the so called biconjugate gradient (BiCG) method.

The BiCG method aims to solve Ax = b and ATx∗ = b∗ simultaneously. The
iterative solutions are updated by

xj+1 = xj + αjpj, x∗j+1 = x∗j + αjp
∗
j (1.7.8)

and so
rj+1 = rj − αjApj, r∗j+1 = r∗j − αjA

Tp∗j . (1.7.9)

We require that (rj+1, r
∗
j) = 0 and (rj, r∗j+1) = 0 for all j. This leads to

αj = (rj , r∗j)/(Apj , p
∗
j). (1.7.10)

The search directions are updated by

pj+1 = rj+1 + βjpj , p∗j+1 = r∗j+1 + βjp
∗
j . (1.7.11)

By requiring that (Apj+1, p
∗
j) = 0 and (Apj, p∗j+1) = 0, we obtain

βj = (rj+1, r
∗
j+1)/(rj , r

∗
j). (1.7.12)

The above derivations lead to the following BiCG algorithm:

Choose x0, compute r0 = b−Ax0 and set p0 = r0.

Choose r∗0 such that (r0, r∗0) �= 0.

For j = 0, 1, · · · do

1.7 Iterative methods and preconditioning 51

Compute αj =
(rj ,r∗j)

(Apj ,p∗j).

Set xj+1 = xj + αjpj.

Compute rj+1 = rj − αjApj and r∗j+1 = r∗j − αjA
Tp∗j.

If ‖rk+1‖2 � ε, continue,

Compute βj =
(rj+1,r

∗
j+1)

(rj ,r∗j) .

Set pj+1 = rj+1 + βjpj and p∗j+1 = r∗j+1 + βjp
∗
j

endFor

We remark that

• The BiCG algorithm is particularly suitable for matrices which are positive
definite, i.e., (Ax, x) > 0 for all x �= 0, but not symmetric.

• the algorithm breaks down if (Apj , p∗j) = 0. Otherwise, the amount of work
and storage is of the same order as n the CG algorithm.

• if A is symmetric and r∗0 = r0, then the BiCG algorithm reduces to the CG
algorithm.

CGS algorithm

The BiCG algorithm requires multiplication by both A and AT at each step. Ob-
viously, this means extra work, and, additionally, it is sometimes cumbersome to
multiply by AT than it is to multiply by A. For example, there may be a special
formula for the product of A with a given vector when A represents, say, a Jacobian,
but a corresponding formula for the product of AT with a given vector may not be
available. In other cases, data may be stored on a parallel machine in such a way that
multiplication by A is efficient but multiplication by AT involves extra communica-
tion between processors. For these reasons it is desirable to have an iterative method
that requires multiplication only by A and that generates good approximate solutions.
A method that attempts to do this is the conjugate gradient squared (CGS) method.

For the recurrence relations of BiCG algorithms, we see that

rj = Φ1
j(A)r0 + Φ2

j(A)p0,

where Φ1
j(A) and Φ2

j(A) are j-th order polynomials of the matrix A. Choosing p0 =
r0 gives

rj = Φj(A)r0 (Φj = Φ1
j + Φ2

j),

52 Chapter 1 Preliminaries

with Φ0 ≡ 1. Similarly,
pj = πj(A)r0,

where πj is a polynomial of degree j. As r∗j and p∗j are updated, using the same
recurrence relation as for rj and pj , we have

r∗j = Φj(AT)r∗0, p∗j = πj(AT)r∗0. (1.7.13)

Hence,

αj =
(Φj(A)r0,Φj(AT)r∗0)
(Aπj(A)r0, πj(AT)r∗0)

=
(Φ2

j (A)r0, r∗0)
(Aπ2

j (A)r0, r∗0)
. (1.7.14)

From the BiCG algorithm:

Φj+1(t) = Φj(t) − αjtπj(t), πj+1(t) = Φj+1(t) + βjπj(t). (1.7.15)

Observe that

Φjπj = Φj(Φj + βj−1πj−1) = Φ2
j + βj−1Φjπj−1. (1.7.16)

It follows from the above results that

Φ2
j+1 = Φ2

j − 2αjt(Φ2
j + βj−1Φjπj−1) + α2

j t
2π2
j ,

Φj+1πj = Φjπj − αjtπ
2
j = Φ2

j + βj−1Φjπj−1 − αjtπ
2
j ,

π2
j+1 = Φ2

j+1 + 2βjΦj+1πj + β2
j π

2
j .

Define

rj = Φ2
j(A)r0, pj = π2

j (A)r0,

qj = Φj+1(A)πj(A)r0,

dj = 2rj + 2βj−1qj−1 − αjApj.

It can be verified that

rj = rj−1 − αjAdj ,

qj = rj + βj−1qj−1 − αjApj

pj+1 = rj+1 + 2βjqj + β2
j pj,

dj = 2rj + 2βj−1qj−1 − αjApj.

1.7 Iterative methods and preconditioning 53

Correspondingly,
xj+1 = xj + αjdj . (1.7.17)

This gives the CGS algorithm. It is true that xj may not be the same as that produced
by the BiCG.

The above derivations lead to the following the CGS algorithm:

Choose x0, compute r0 = b−Ax0 and set p0 =r0, u0 =r0, q0 =0.

Choose r∗0 such that (r0, r∗0) �= 0.

For j = 0, 1, · · · do
Compute αj = (rj ,r∗0)

(Apj ,r∗0) ; Compute qj+1 = uj − αjApj

Set xj+1 = xj + αj(uj + qj+1)

Compute rj+1 = rj − αjA(uj + qj+1)

If ‖rk+1‖2 � ε, continue,

Compute βj = (rj+1,r∗0)
(rj ,r∗0) ; Compute uj+1 = rj+1 + βjqj+1

Set pj+1 = uj+1 + βj(qj+1 + βjpj)

endFor

The CGS method requires two matrix-vector multiplications at each step but no
multiplications by the transpose. For problems where the BiCG method converges
well, the CGS typically requires only about half as many steps and, therefore, half the
work of BiCG (assuming that multiplication by A or AT requires the same amount
of work). When the norm of the BiCG residual increases at a step, however, that
of the CGS residual usually increases by approximately the square of the increase
of the BiCG residual norm. The CGS convergence curve may therefore show wild
oscillations that can sometimes lead to numerical instabilities.

BiCGSTAB algorithm

To avoid the large oscillations in the CGS convergence curve, one might try to
produce a residual of the form

rj = Ψj(A)Φj(A)r0, (1.7.18)

where Φj is again the BiCG polynomial but Ψj is chosen to keep the residual norm
small at each step while retaining the rapid overall convergence of the CGS method.

54 Chapter 1 Preliminaries

For example, Ψj(t) is of the form

Ψj+1(t) = (1 − wjt)Ψj(t). (1.7.19)

In the BiCGSTAB algorithm, the solution is updated in such a way that rj is of the
form (1.7.18), where Ψj(A) is a polynomial of degree j which satisfies (1.7.19). It
can be shown that

Ψj+1Φj+1 = (1 − wjt)Ψj(Φj − αjtπj)

= (1 − wjt)(ΨjΦj − αjtΨjπj),
(1.7.20)

Ψjπj = Ψj(Φj + βj−1πj−1)

= ΨjΦj + βj−1(1 − wj−1t)Ψj−1πj−1.
(1.7.21)

Let rj = Φj(A)Ψj(A)r0 and pj = Ψj(A)πj(A)r0. It can be verified that

rj+1 = (I − wjA)(rj − αjApj),

pj+1 = rj+1 + βj(I − wjA)pj .
(1.7.22)

By letting sj = rj − αjApj , we obtain

rj+1 = (I −wjA)sj . (1.7.23)

The parameter wj is chosen to minimize the 2-norm of rj+1, i.e.,

wj =
(Asj , sj)

(Asj , Asj)
. (1.7.24)

We also need to find an updating formula for αj and βj , only using rk, pk and sk; this
is rather complicated and the calculations for deriving them are omitted here.

The BiCGSTAB algorithm is given by

Choose x0, compute r0 = b−Ax0 and set p0 = r0.

Choose r∗0 such that (r0, r∗0) �= 0.

For j = 0, 1, · · · do
Compute αj = (rj ,r

∗
0)

(Apj ,r∗0)

Set sj = rj − αjApj ; Compute wj = (Asj ,sj)
(Asj ,Asj)

1.7 Iterative methods and preconditioning 55

Set xj+1 = xj + αjpj + wjsj; rj+1 = sj − wjAsj

If ‖rk+1‖2 � ε, continue,

Compute βj = (rj+1,r
∗
0)

(rj ,r∗0) · αj

wj

Set pj+1 = rj+1 + βj(pj − wjApj)

endFor

GMRES method

The GMRES method proposed by Saad and Schultz in 1986 is one of the most
important tools for a general non-symmetric system

Ax = b, with A non-symmetric. (1.7.25)

In the k-th iteration of the GMRES method, we need to find a solution of the least-
squares problem

min
x∈x0+‖(A,r0,k)

‖b−Ax‖2 , (1.7.26)

where r0 = b − Ax0 and ‖(A, r0, k) := {r0, Ar0, · · · , Ak−1r0}. Let x ∈ x0 +
‖(A, r0, k). We have

x = x0 +
k−1∑
j=0

γjA
jr0. (1.7.27)

Moreover, it can be shown that

r = b−Ax = r0 −
k∑
j=1

γj−1A
jr0. (1.7.28)

Like the CG method, the GMRES method will obtain the exact solution of Ax = b

within n iterations. Moreover, if b is a linear combination of k eigenvectors of A, say
b =

∑k
p=1 γpuip , then the GMRES method will terminate in at most k iterations.

Suppose that we have a matrix Vk = [vk1 , v
k
2 , · · · , vkk] whose columns form an

orthogonal basis of ‖(A, r0, k). Then any z ∈ ‖(A, r0, k) can be expressed as

z =
k∑
p=1

upv
k
p = Vku, (1.7.29)

56 Chapter 1 Preliminaries

where u ∈ Rk. Thus, once we have found Vk, we can convert the original least-
squares problem (1.7.26) into a least-squares problem in Rk, as to be described below.
Let xk be the solution after the k-th iteration. We then have xk = x0 + Vkyk, where
the vector yk minimizes

min
y∈Rk

‖b−A(x0 + Vky)‖2 = min
y∈Rk

‖r0 −AVky‖2. (1.7.30)

This is a standard linear least-squares problem that can be solved by a QR decompo-
sition.

One can use the modified Gram-Schmidt orthogonalization to find an orthonor-
mal basis of ‖(A, r0, k). The algorithm is given as follows:

Choose x0, set r0 = b−Ax0, v1 = r0/‖r0‖2.

For i = 1, 2, · · · , k − 1, do:

Compute vi+1 =
Avi−

∑i
j=1((Avi)Tvj)vj

‖Avi−
∑i

j=1((Avi)Tvj)vj‖2

,

endFor

This algorithm produces the columns of the matrix Vk which also form an orthonor-
mal basis for ‖(A, r0, k). Note that the algorithm breaks down when a division by
zero occurs.

If the modified Gram-Schmidt process does not break down, we can use it to
carry out the GMRES method in the following efficient way. Let hij = (Avj)Tvi.
By the modified Gram-Schmidt algorithm, we have a (k+1)×k matrix Hk which is
upper Hessenberg, i.e., its entries satisfy hij = 0 if i > j + 1. This process produces
a sequence of matrices {Vk} with orthonormal columns such that AVk = Vk+1Hk.
Therefore, we have

rk = b−Axk = r0 −A(xk − x0)

= βVk+1e1 −AVkyk = Vk+1(βe1 −Hkyk), (1.7.31)

where e1 is the first unit k-vector (1, 0, · · · , 0)T, and yk is the solution of

min
y∈Rk

‖βe1 −Hky‖2. (1.7.32)

Hence, xk = x0 + Vkyk. To find a minimizer for (1.7.32), we need to look at the

1.7 Iterative methods and preconditioning 57

linear algebraic system H̄ky = βe1, namely,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h11 h21 · · · hk1
h12 h22 · · · hk2

h23 · · · hk3
...
hkk
hk+1,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

y3

y4
...
yk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
β

0
...
0
0

⎞⎟⎟⎟⎟⎟⎠ .

This problem can be solved by using rotation matrices to do Gauss-elimination for

H̄k (see e.g. [134]), which yields Hk
(k)
y = gk, where

Hk
(k) =

⎛⎜⎜⎜⎜⎜⎜⎝
h

(k)
11 h

(k)
12 · · · h

(k)
1k

h
(k)
22 · · · h

(k)
2k

. . .
...

h
(k)
kk

hk+1,k

⎞⎟⎟⎟⎟⎟⎟⎠ , gk =

⎛⎜⎜⎜⎜⎜⎝
r1
r2
...
rk
rk+1

⎞⎟⎟⎟⎟⎟⎠ .

Moreover,
min
y∈Rk

‖Hky − βe1‖2 = min
y∈Rk

‖Hk
(k)
y − gk‖2. (1.7.33)

Define H(k)
k to be the matrix containing the first m rows of Hk

(k)
. It is easy to see

that the minimizer of (1.7.33) is the solution of H(k)
k yk = gk.

Below we give the GMRES algorithm for solving Ax = bwithA non-symmetric:

Choose x0, set r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β.

For j = 1, 2, · · · , k, · · · , do
Compute wj = Avj

for i = 1, 2, · · · , j do

Compute hij = wT
j vi.

Set wj = wj − hijvi.

endfor

Compute hj+1,j = ‖wj‖2

Set vj+1 = wj/hj+1,j

58 Chapter 1 Preliminaries

endFor

Compute H
(k)
k and gk

Solve H
(k)
k yk = gk

Set xk = x0 + Vkyk

Preconditioning techniques

It is seen from Theorem 1.7.1 that the rate of convergence of the conjugate gradi-
ent method depends on the condition number of A: the larger κ is, the closer γ will
be to 1 and the slower will be the rate of convergence. A good preconditioner is a
matrixM that is (i) easy to invert, and (ii) the condition number ofM−1A is small, or
the preconditioned system M−1Ax = M−1b can be solved efficiently by an iterative
method. This idea leads to the so-called preconditioned conjugate gradient (PCG)
method:

Choose x0, compute r0 = b−Ax0 and solve Mr̃0 = r0

Set p0 = r̃0

For k = 0, 1, · · · do

Compute αk = −(r̃k, rk)/(pk, Apk)

Set xk+1 = xk + αkpk; Set rk+1 = rk − αkApk

If ‖rk+1‖2 � ε, continue,

Solve Mr̃k+1 = rk+1

Compute βk = (r̃k+1, rk+1)/(r̃k, rk)

Set pk+1 = r̃k+1 + βkpk

endFor

In the above algorithm, we need to solve the system Mr̃ = r which may be as
complicated as the original system. The idea for reducing the condition number of
M−1A is to choose M such that M−1 is close to A−1, while the system Mr̃ = r is
easy to solve. The following theorem describes a way to choose M .

Theorem 1.7.2 Let A be an n × n nonsingular matrix and A = P −Q a splitting
of A such that P is nonsingular. If H = P−1Q and ρ(H) < 1, then

A−1 =

(∞∑
k=0

Hk

)
P−1.

1.7 Iterative methods and preconditioning 59

Based on this theorem, we can consider the matrices

M = P (I +H + · · · +Hm−1)−1,

M−1 = (I +H + · · · +Hm−1)P−1

to be approximations of A and A−1, respectively. Thus the solution of the system
Mr̃ = r becomes

r̃ = M−1r = (I +H + · · · +Hm−1)P−1r.

Equivalently, the solution r̃ = rm is the the result of applying m steps of the iterative
method

Pri+1 = Qri + r, i = 0, 1, · · · ,m− 1, r0 = 0.

If P = D, Q = L + U , the above iteration is the standard Jacobi iteration. Then
in the PCG method we replace the system Mr̃k+1 = rk+1 with do m Jacobi
iterations on Ar = rk+1 to obtain r̃k+1. The resulting method is called
the m-step Jacobi PCG Method.

In practice, we may just use the one-step Jacobi PCG Method: in this case M =
D. Similarly, the symmetric Gauss-Seidel and symmetric successive over-relaxation
(SSOR) methods can also be used as preconditioners:

• Symmetric Gauss-Seidel preconditioner:

M = (D − L)D−1(D − U), M−1 = (D − U)−1D(D − L)−1;

• SSOR preconditioner:

M =
ω

2 − ω
(ω−1D − L)D−1(ω−1D − U),

M−1 = (2 − ω)ω(D − ωU)−1D(D − ωL)−1.

Preconditioned GMRES

If we use M as a left preconditioner for the GMRES method, then we are trying
to minimize the residual in the space:

Km(A, r0) = span{r0,M−1Ar0, · · · (M−1A)m−1r0}. (1.7.34)

The resulting algorithm is exactly the same as the original GMRES, except that the
matrix A is replaced by M−1A.

Below is the preconditioned version of the GMRES method with left-

60 Chapter 1 Preliminaries

preconditioning:

Compute r0 = M−1(b−Ax0) and set β = ‖r0‖2, v1 = r0
/
β.

For j = 1, 2, · · · , k, · · · do:

Compute wj = M−1Avj.

for i = 1, 2, · · · , j, do:
Compute hij = (wj , vi);Set wj = wj − hijvi

endfor

Compute hj+1,j = ‖wj‖.
Set vj+1 = wj

/
hj+1,j.

endFor

Compute H
(k)
k and gk

Solve H
(k)
k yk = gk

Set xk = x0 + Vkyk

If M is used as a right preconditioner, we just need to replace A in the original
GMRES by AM−1. Also, in the last step, we need to update xk by

xk = x0 +M−1Vkyk. (1.7.35)

In practice, for the GMRES method, however, the Gauss-Seidel and SOR methods
can also be used as preconditioners:

• Gauss-Seidel preconditioner: M = D − L, M−1 = (D − L)−1;

• SOR preconditioner: M = ω−1D − L, M−1 = ω(D − ωL)−1.

The preconditioned CGS or BiCGSTAB algorithms can be constructed similarly. In
general, to use preconditioners for the CGS or BiCGSTAB, we just need to replace
the matrix A in the original algorithms by M−1A or AM−1.

Exercise 1.7

Problem 1 Prove (1.7.5) and (1.7.7).

Problem 2 Prove Theorem 1.7.2.

1.8 Error estimates of polynomial approximations 61

1.8 Error estimates of polynomial approximations

Orthogonal projection in L2
ωα,β(I)

Orthogonal projection in H1
0,ωα,β(I)

Interpolation error

The numerical analysis of spectral approximations relies on the polynomial approxi-
mation results in various norms. In this section, we present some of the basic approxi-
mation results for the Jacobi polynomials which include the Legendre and Chebyshev
polynomials as special cases. Some basic properties of the Jacobi polynomials are
introduced in Section 1.4.

We first introduce some notations. Let I = (−1, 1) and ω(x) > 0 be a weight
function (ω is not necessarily in L1(I)). We define the “usual” weighted Sobolev
spaces:

L2
ω(I) =

{
u :

∫
I
u2ωdx < +∞

}
,

H l
ω(I) =

{
u ∈ L2

ω(I) : ∂xu, · · · , ∂lxu ∈ L2
ω(I)

}
,

H l
0,ω(I) =

{
u ∈ H l

ω(I) : u(±1) = ∂xu(±1) = · · · = ∂l−1
x u(±1) = 0

}
.

(1.8.1)

The norms in L2
ω(I) and Hl

ω(I) will be denoted by ‖ · ‖ω and ‖ · ‖l,ω, respectively.
Furthermore, we shall use |u|l,ω = ‖∂lxu‖ω to denote the semi-norm inHl

ω(I). When
ω(x) ≡ 1, the subscript ω will often be omitted from the notations. Hereafter, we
denote the Jacobi weight function of index (α, β) by

ωα,β(x) = (1 − x)α(1 + x)β.

It turns out that the “uniformly” weighted Sobolev spaces in (1.8.1) are not the most
appropriate ones to describe the approximation error. Hence, we introduce the fol-
lowing non-uniformly weighted Sobolev spaces:

Hm
ωα,β ,∗(I) :=

{
u : ∂kxu ∈ L2

ωα+k,β+k(I), 0 � k � m
}
, (1.8.2)

equipped with the inner product and norm

(
u, v

)
m,ωα,β ,∗ =

m∑
k=0

(∂kxu, ∂
k
xv)ωα+k,β+k , ‖u‖m,ωα,β ,∗ =

(
u, u

) 1
2

m,ωα,β ,∗. (1.8.3)

62 Chapter 1 Preliminaries

Hereafter, we shall use the expression AN � BN to mean that there exists a positive
constant C , independent of N , such that AN � CBN .

Orthogonal projection in L2
ωα,β (I)

Since {Jα,βn } forms a complete orthogonal system in L2
ωα,β(I), we can write

u(x) =
∞∑
n=0

ûα,βn Jα,βn (x), with ûα,βn =
(u, Jα,βn)ωα,β

γα,βn

, (1.8.4)

where γα,βn = ‖Jα,βn ‖2
ωα,β . It is clear that

PN = span
{
Jα,β0 , Jα,β1 , · · · , Jα,βN

}
. (1.8.5)

We start by establishing some fundamental approximation results on the L2
ωα,β− or-

thogonal projection πN,ωα,β : L2
ωα,β (I) → PN , defined by

(πN,ωα,βu− u, v)ωα,β = 0, ∀v ∈ PN . (1.8.6)

It is clear that πN,ωα,βu is the best L2
ωα,β−approximate polynomial of u, and can be

expressed as

(πN,ωα,βu)(x) =
N∑
n=0

ûα,βn Jα,βn (x). (1.8.7)

First of all, we derive inductively from (1.4.7) that

∂kxJ
α,β
n (x) = dα,βn,kJ

α+k,β+k
n−k (x), n � k, (1.8.8)

where

dα,βn,k =
Γ(n+ k + α+ β + 1)
2kΓ(n+ α+ β + 1)

. (1.8.9)

As an immediate consequence of this formula and the orthogonality (1.4.5), we have∫ 1

−1
∂kxJ

α,β
n (x)∂kxJ

α,β
l (x)ωα+k,β+k(x)dx = hα,βn,k δn,l, (1.8.10)

where
hα,βn,k = (dα,βn,k)2γα+k,β+k

n−k . (1.8.11)

1.8 Error estimates of polynomial approximations 63

Let us recall first Stirling’s formula,

Γ(x) =
√

2πxx−1/2e−x
{

1 +
1

12x
+

1
288x2

+ O(x−3)
}
. (1.8.12)

In particular, we have

Γ(n+ 1) = n! ∼=
√

2πnn+1/2e−n, (1.8.13)

which can be used to obtain the following asymptotic behaviors for n� 1:

γα,βn ∼ n−1, dα,βn,k ∼ nk, hα,βn,k ∼ n2k−1. (1.8.14)

Here, we have adopted the conventional assumption that α, β and k are small con-
stants when compared with large n.

Below is the main result on the Jacobi projection error:

Theorem 1.8.1 Let α, β > −1. For any u ∈ Hm
ωα,β ,∗(I) and m ∈ N,

‖∂lx(πN,ωα,βu− u)‖ωα+l,β+l � N l−m‖∂mx u‖ωα+m,β+m, 0 � l � m. (1.8.15)

Proof Owing to (1.8.10)∼(1.8.11), we have

‖∂kxu‖2
ωα+k,β+k =

∞∑
n=k

(
ûα,βn

)2‖∂kxJα,βn ‖2
ωα+k,β+k , (1.8.16)

‖∂lx(πN,ωα,βu− u)‖2
ωα+l,β+l =

∞∑
n=N+1

(
ûα,βn

)2‖∂lxJα,βn ‖2
ωα+l,β+l (1.8.17)

=
∞∑

n=N+1

hα,βn,l

hα,βn,m

(
ûα,βn

)2‖∂mx Jα,βn ‖2
ωα+m,β+m.

Using the the asymptotic estimate (1.8.14) gives

hα,βn,l /h
α,β
n,m � n2(l−m), n� 1, l,m ∈ N,

which, together with (1.8.17), leads to

‖∂lx(πN,ωα,βu− u)‖2
ωα+l,β+l � (N + 1)2(l−m)

∞∑
n=N+1

(
ûα,βn

)2‖∂mx Jα,βn ‖2
ωα+m,β+m

� N2(l−m)‖∂mx u‖2
ωα+m,β+m.

64 Chapter 1 Preliminaries

This ends the proof.

We shall now extend the above result to the cases where α and/or β are negative
integers, using the properties of the generalized Jacobi polynomials. We point out
that like the classical Jacobi polynomials, the GJPs with negative integer indexes
form a complete orthogonal system in L2

ωk,l(I).

Hence, we define the polynomial space

Qk,lN := span{Jk,ln0
, Jk,ln0+1, · · · , Jk,lN }, k � −1 and/or l � −1, (1.8.18)

where n0 is defined in (1.4.8). According to Remark 1.4.1, we have that for k < −1
and/or l � −1,

Qk,lN = {φ ∈ PN : ∂ixφ(−1) = ∂jxφ(1) = 0, 0 � i � −k − 1, 0 � j � −l− 1}.

We now define the orthogonal projection πN,ωk,l : L2
ωk,l(I) → Qk,lN by

(u− πN,ωk,lu, vN)ωk,l = 0, ∀vN ∈ Qk,lN . (1.8.19)

Owing to the orthogonality (1.4.10) and the derivative relation (1.4.13), the following
theorem is a direct extension of Theorem 1.8.1.

Theorem 1.8.2 For any k, l ∈ Z, and u ∈ Hm
ωk,l,∗(I),

‖∂µx (πN,ωk,lu− u)‖ωk+µ,l+µ � Nµ−m‖∂mx u‖ωk+m,l+m , 0 � µ � m. (1.8.20)

Orthogonal projection in H1
0,ωα,β (I)

In order to carry out the error analysis of spectral methods for second-order ellip-
tic equations with Dirichlet boundary conditions, we need to study the orthogonal
projection error in the space H1

0,ωα,β(I). We define

P 0
N = {u ∈ PN : u(±1) = 0}. (1.8.21)

Definition 1.8.1 The orthogonal projector π1,0
N,ωα,β : H1

0,ωα,β(I) → P 0
N is defined

by
((u− π1,0

N,ωα,βu)
′, v′)ωα,β = 0, ∀ v ∈ P 0

N . (1.8.22)

Theorem 1.8.3 Let −1 < α, β < 1. Then for any u ∈ H1
0,ωα,β(I)∩Hm

ωα−1,β−1,∗(I),

‖∂x(u− π1,0
N,ωα,βu)‖ωα,β � N1−m‖∂mx u‖ωα+m−1,β+m−1 , m � 1.

1.8 Error estimates of polynomial approximations 65

Proof For any u ∈ H1
0,ωα,β(I), we set

uN =
∫ x

−1

{
πN−1,ωα,βu′ − 1

2

∫ 1

−1
πN−1,ωα,βu′dη

}
dξ. (1.8.23)

Therefore,

uN ∈ P 0
N and u′N = πN−1,ωα,βu′ − 1

2

∫ 1

−1
πN−1,ωα,βu′dη.

Hence,

‖u′ − u′N‖L2
ωα,β

� ‖u′ − πN−1,ωα,βu′‖L2
ωα,β

+
∣∣∣1
2

∫ 1

−1
πN−1,ωα,βu′dη

∣∣∣. (1.8.24)

On the other hand, since u(±1) = 0, we derive by using the Cauchy-Schwarz in-
equality that∣∣∣ ∫ 1

−1
πN−1,ωα,βu′dx

∣∣∣ =
∣∣∣ ∫ 1

−1
(πN−1,ωα,βu′ − u′)dx

∣∣∣
�
(∫ 1

−1
(ωα,β)−1dx

) 1
2‖πN−1,ωα,βu′ − u′‖L2

ωα,β
� ‖πN−1,ωα,βu′ − u′‖L2

ωα,β
,

(1.8.25)

for α, β < 1. We then conclude from (1.8.24), (1.8.25) and Theorem 1.8.1 that

‖∂x(u− π1,0
N,ωα,βu)‖ωα,β = inf

φN∈P 0
N

‖u′ − φ′N‖ωα,β � ‖u′ − u′N‖ωα,β

� ‖u′ − πN−1,ωα,βu′‖ωα,β � N1−m‖∂mx u‖ωα+m−1,β+m−1 .

This completes the proof of Theorem 1.8.3.

Interpolation error

We present below an optimal error estimate for the interpolation polynomials
based on the Gauss-Lobatto points.

Theorem 1.8.4 Let {xj}Nj=0 be the roots of (1−x2)∂xJ
α,β
N (x) with −1 < α, β < 1.

Let IN,ωα,β : C[−1, 1] → PN be the interpolation operator with respect to {xj}Nj=0.
Then, we have

‖∂lx(Iα,βN u− u)‖ωα+l,β+l � N l−m‖∂mx u‖ωα+m,β+m , 0 � l � m. (1.8.26)

66 Chapter 1 Preliminaries

The proof of the above lemma is rather technical. We refer to [3] for a complete
proof (see also [11] for a similar result for the special case α = β).

Theorem 1.8.4 indicates that error estimates for the interpolation polynomial
based on the Gauss-Lobatto points are optimal in suitable weighted Sobolev spaces.
One should note that an interpolation polynomial based on uniformly spaced points
is usually a very poor approximation unless the function is periodic in the concerned
interval.

As we can see from the estimates presented in this section, the convergence rates
of spectral projection/interpolation increase with the smoothness of the function, as
opposed to a fixed convergence rate for the finite difference or finite element approx-
imations. Moreover, it can be shown that the convergence rates of spectral projec-
tion/interpolation are exponential for analytical functions. We now provide a direct
proof of this statement in the Chebyshev case.

Let {xj} be the set of Chebyshev-Gauss-Lobatto points, i.e. x0 = 1, xN = −1
and T ′

N (xj) = 0, 1 � j � N − 1. This suggests that

T ′
N (x) = αN

N−1∏
j=1

(x− xj).

Since TN (x) = 2N−1T̂N (x), where T̂N (x) is monic, we have

TN (x) = 2N−1xN + lower order terms.

Combining the above two equations gives αN = N2N−1. Notice also that x0 = 1
and xN = −1, we obtain

N∏
k=0

(x− xk) =
21−N

N
(x2 − 1)T ′

N (x).

The above result, together with (1.3.6a), yields

∣∣∣ N∏
k=0

(x− xk)
∣∣∣ � N21−N . (1.8.27)

Let u be a smooth function in CN+1(−1, 1). Using Lemma 1.2.3, (1.8.27) and Stir-

1.8 Error estimates of polynomial approximations 67

ling’s formula (1.8.13), we obtain

max
x∈Ī

|u(x) − IN,ωα,βu(x)| � C‖u(N+1)‖∞
(e

2N

)N
, (1.8.28)

for large N , where C is a constant independent of N . This result implies that if u is
smooth, then the interpolations using the Chebyshev-Gauss-Lobatto points may lead
to exponential order of convergence.

Exercise 1.8

Problem 1 Prove Theorem 1.8.2.

Problem 2 Show that πN,ω−1,−1 = π1,0
N,ω0,0 .

