Mathematics Monograph Series 3

Jie Shen Tao Tang

Spectral and High-Order Methods with Applications

Responsible Editor: Chen Yuzhuo

Copyright© 2006 by Science Press Published by Science Press 16 Donghuangchenggen North Street Beijing 100717, China

Printed in Beijing

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner.

ISBN 7-03-017722-3/0.2553(Beijing)

Preface

This book expands lecture notes by the authors for a course on *Introduction of Spectral Methods* taught in the past few years at Penn State University, Simon Fraser University, the Chinese University of Hong Kong, Hong Kong Baptist University, Purdue University and the Chinese Academy of Sciences. Our lecture notes were also used by Prof. Zhenhuan Teng in his graduate course at Peking University.

The overall emphasis of the present book is to present some basic spectral and high-order algorithms together with applications to some linear and nonlinear problems that one frequently encounters in practice. The algorithms in the book are presented in a *pseudocode* format or with MATLAB or FORTRAN codes that contain additional details beyond the mathematical formulas. The reader can easily write computer routines based on the pseudocodes in any standard computer language. We believe that the readers learn and understand numerical methods best by seeing how algorithms are developed from the mathematical theory and then writing and testing computer implementations of them. For those interested in the numerical analysis of the spectral methods, we have also provided self-contained error analysis for some basic spectral-Galerkin algorithms presented in the book. Our aim is to provide a sufficient background on the implementation and analysis of spectral and high-order methods so that the readers can approach the current research literature with the necessary tools and understanding.

We hope that this book will be useful for people studying spectral methods on their own. It may also serve as a textbook for advanced undergraduate/beginning graduate students. The only prerequisite for the present book is a standard course in Numerical Analysis.

This project has been supported by NSERC Canada, National Science Foundation, Research Grant Council of Hong Kong, and International Research Team of Complex System of the Chinese Academy of Sciences. In writing this book, we have received much help from our friends and students. In particular, we would like to thank Dr. Lilian Wang of Nanyang Technical University of Singapore for his many contributions throughout the book. We are grateful to the help provided by Zhongzhi Bai of the Chinese Academy of Sciences, Weizhu Bao of National University of Singapore, Raymond Chan of Chinese University of Hong Kong, Wai Son Don of Brown

Preface

University, Heping Ma of Shanghai University and Xuecheng Tai of Bergen University of Norway. Our gratitude also goes to Professor Hermann Brunner of Memorial University of Newfoundland, Dr. Zhengru Zhang of Beijing Normal University, and the following graduate students at Purdue, Qirong Fang, Yuen-Yick Kwan, Hua Lin, Xiaofeng Yang and Yanhong Zhao, who have read the entire manuscripts and provided many constructive suggestions. Last but not the least, we would like to thank our wives and children for their love and support.

A website relevant to this book can be found in

http://www.math.hkbu.edu.hk/~ttang/PGteaching or

http://lsec.cc.ac.cn/~ttang/PGteaching

We welcome comments and corrections to the book. We can be reached by email to

shen@math.purdue.edu(Shen) and ttang@math.hkbu.edu.hk(Tang).

Jie Shen Purdue University

Tao Tang Hong Kong Baptist University

Contents

Preface				
Chapter	1 Preliminaries	1		
1.1	Some basic ideas of spectral methods	2		
1.2	Orthogonal polynomials	6		
1.3	Chebyshev and Legendre polynomials	15		
1.4	Jacobi polynomials and generalized Jacobi polynomials	23		
1.5	Fast Fourier transform	27		
1.6	Several popular time discretization methods	38		
1.7	Iterative methods and preconditioning	48		
1.8	Error estimates of polynomial approximations	61		
Chapter 2 Spectral-Collocation Methods		68		
2.1	Differentiation matrices for polynomial basis functions	69		
2.2	Differentiation matrices for Fourier collocation methods	79		
2.3	Eigenvalues of Chebyshev collocation operators	84		
2.4	Chebyshev collocation method for two-point BVPs	91		
2.5	Collocation method in the weak form and preconditioning \ldots .	99		
Chapter	Chapter 3 Spectral-Galerkin Methods			
3.1	General setup	105		
3.2	Legendre-Galerkin method	109		
3.3	Chebyshev-Galerkin method	114		
3.4	Chebyshev-Legendre Galerkin method	118		
3.5	Preconditioned iterative method	121		
3.6	Spectral-Galerkin methods for higher-order equations	126		
3.7	Error estimates	131		

Contents

Chapter	4 Spectral Methods in Unbounded Domains	143
4.1	Hermite spectral methods	144
4.2	Laguerre spectral methods	158
4.3	Spectral methods using rational functions	170
4.4	Error estimates in unbounded domains	177
Chapter	5 Some applications in one space dimension	183
5.1	Pseudospectral methods for boundary layer problems	184
5.2	Pseudospectral methods for Fredholm integral equations	190
5.3	Chebyshev spectral methods for parabolic equations	196
5.4	Fourier spectral methods for the KdV equation	204
5.5	Fourier method and filters	214
5.6	Essentially non-oscillatory spectral schemes	222
Chapter 6 Spectral methods in Multi-dimensional Domains		
6.1	Spectral-collocation methods in rectangular domains	233
6.2	Spectral-Galerkin methods in rectangular domains	237
6.3	Spectral-Galerkin methods in cylindrical domains	243
6.4	A fast Poisson Solver using finite differences	247
Chapter 7 Some applications in multi-dimensions		
7.1	Spectral methods for wave equations	257
7.2	Laguerre-Hermite method for Schrödinger equations	264
7.3	Spectral approximation of the Stokes equations	276
7.4	Spectral-projection method for Navier-Stokes equations	282
7.5	Axisymmetric flows in a cylinder	288
Appendix A Some online software		299
A.1	MATLAB Differentiation Matrix Suite	300
A.2	PseudoPack	308
Bibliography		
Index		323