
Introduction
Random matrices

Universality
Proof techniques

Discrete random matries and universality

Terence Tao

University of California, Los Angeles

Mahler Lecture Series

Terence Tao Random matrices



Introduction
Random matrices

Universality
Proof techniques

Universality

The world is a complex place, and so one would think that
complex mathematical models, with many independent
variables, are needed to describe it.
However, it is a curious phenomenon that the cumulative
effect of many independent variables in a system becomes
more predictable as the number of variables increases,
rather than less.
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Universality cont.

In fact, in many cases, the exact behaviour of each
individual variable becomes essentially irrelevant (except
perhaps for one or two key parameters); one gets the
same observed behaviour for the system as a whole
regardless of what the individual components are doing.
This phenomenon is sometimes referred to universality, or
the invarance principle.
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Examples from the physical world

Statistical mechanics: The behaviour of a system of N
particles with respect to changes in energy, volume, etc.,
would seem almost impossible to compute precisely when
N is huge, requiring precise knowledge of the system and
its interactions. But, in fact, in the limit N →∞, the
behaviour can be controlled by just a handful of key
parameters, such as temperature and entropy.
Benford’s law: 30% (or more precisely, log10 2 ≈ 30.1%)
of all statistics start with the digit 1! For instance, 30% of all
cities have populations beginning with 1, 30% of all word
frequencies in a language begin with 1, 30% of all stock
prices begin with 1, etc. This is despite the fact that
different statistics are governed by completely different
laws of nature.
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An example from probability theory

The law of large numbers If X1, . . . ,Xn are n random
variables that are independent and identically distributed
(iid), then the empirical average X1+...+Xn

n converges to the
mean µ of any one of the variables Xi in the limit n→∞.
(Let me gloss over the technical issue of what “converges”
means here.)
The central limit theorem Continuing the above example,
the distribution of the normalised deviation√

n × (X1+...+Xn
n − µ) converges as n→∞ to the normal

distribution N(0, σ2), where σ2 is the variance of any of the
Xi .
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The invariance principle

In the above example, we saw that the only two features of the
random variables that are relevant in the limit n→∞ are the
mean and variance; it does not matter, for instance, whether
these variables are continuous or discrete.
This is a model case of a more general

Invariance principle In many cases, the behaviour of a
combination F (X1, . . . ,Xn) of iid random variables
X1, . . . ,Xn for n large does not depend very much on the
actual distribution of the Xi , but only on some key
parameters of that distribution, such as mean and
variance.
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In the law of large numbers and central limit theorem, F
was a linear combination of the Xi . But the principle also
extends to some important nonlinear combinations as well,
in particular to spectral statistics of random matrices.
This is the focus of my talk today.
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Random matrix models

We will consider a number of random matrix models, which can
be either discrete or continuous:

Iid random matrices These are n × n matrices
A = (xij)1≤i,j≤n, where the xij are iid random variables,
normalised to have mean zero and variance 1. Key
examples include the Bernoulli matrix ensemble (random
sign matrices), in which xij = ±1 with an equal probability
of each, and the real and complex gaussian matrix
ensembles, in which the xij have either the real or complex
gaussian distribution with the indicated mean and variance.
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More random matrix models

Wigner symmetric matrices These are similar to iid
random matrices, but the coefficients xij are now assumed
to be real and symmetric (xij = xji ). The xij are now iid just
for 1 ≤ i ≤ j ≤ n. Examples include the symmetric
Bernoulli matrix ensemble (xij = ±1) and the gaussian
orthonormal ensemble (GOE) (xij are real gaussians).
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Even more random matrix models

Wigner Hermitian matrices These are similar to Wigner
symmetric matrices, but now the coefficients xij are
complex and Hermitian (xij = xji ). The xij are iid on the
upper triangular region 1 ≤ i < j ≤ n and on the diagonal
1 ≤ i = j ≤ n, but can have different distributions in the two
regions. For instance, in the gaussian unitary ensemble
(GUE), the xij are complex gaussian for 1 ≤ i < j ≤ n but
real gaussian for 1 ≤ i = j ≤ n. (In all cases, the
coefficients have mean zero and variance 1.)
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Many other random matrix models are of interest, but to
focus the talk we shall only discuss these particular ones.
Discrete random matrices arise naturally in numerical
linear algebra (as a model for rounding errors), while
continuous random models arise naturally in various
physical settings (e.g. spectra of atoms).
The gaussian models are particularly tractable due to their
group invariance properties. For instance, the GUE
ensemble is invariant under conjugations by the unitary
group U(n), and GOE is similarly invariant under the
orthogonal group O(n).
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Eigenvalues

Given an n× n random matrix An, we let λ1(An), . . . , λn(An)
be the n (generalised) eigenvalues of An. In symmetric or
Hermitian models, these eigenvalues will be real, and we
can order them: λ1(An) ≤ . . . ≤ λn(An). In the iid random
matrix model, the eigenvalues will be complex and
unordered; but one can then define the singular values
0 ≤ σn(An) ≤ . . . ≤ σ1(An) (the eigenvalues of (AnA∗n)1/2).
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Eigenvalues cont.

Eigenvalues and singular values are related to many other
important matrix quantities, such as the determinant

|det(An)| =
n∏

i=1

|λi(An)| =
n∏

i=1

σi(An)

or the trace

tr(An) =
n∑

i=1

λi(An).

For this and other reasons, it is of interest to understand
the distribution of these numbers.
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Universality

In accordance with the invariance principle, many facts
about the distribution of eigenvalues and singular values of
random matrices seem to be universal in the limit n→∞ -
they do not depend on the precise matrix model used.
Thus, for instance, continuous and discrete random
matrices often have the same statistics in the
high-dimensional limit.
This phenomenon has been observed numerically for
many decades. More recently, rigorous explanations of this
phenomenon have been found (and there is still work to be
done in some cases).
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Many distributions of empirically observed eigenvalues
(e.g. atomic spectra) obey the same statistics as random
matrix models. The universality phenomenon provides a
partial explanation of this fact.
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Wigner’s semicircular law

The most well-known example of universality is for the bulk
distribution of eigenvalues of Wigner matrices:

Wigner’s semicircular law For a Wigner symmetric or
Hermitian random matrix An, the normalised eigenvalues

1√
nλ1(An), . . . ,

1√
nλn(An) are asymptotically distributed

according to the semicircular distribution 1
2π (4− x2)

1/2
+ dx .

Established by Wigner for GOE in 1955, and then
repeatedly generalised (the version above was established
by Pastur in 1977). Many, many further refinements and
proofs.
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Normalised eigenvalue distribution of a random 100× 100 GUE
matrix. (Image by Alan Edelman.)
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Marchenko-Pastur quarter-circle law

There is an analogous law for bulk distribution of singular
values of iid matrices:

Quarter-circle law For an iid random matrix An, the
normalised singular values 1√

nσ1(An), . . . ,
1√
nσn(An) are

asymptotically distributed according to the quarter-circle
distribution 1

π (4− x2)1/21[0,2](x) dx .
Established by Marchenko and Pastur in 1967. Again,
many further refinements and proofs. (This law has an
equivalent formulation in terms of eigenvalues of
covariance matrices, known as (a special case of) the
Marchenko-Pastur law.)
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Normalised singular distribution of a 100× 100 iid gaussian
matrix. (Image by Antonio Tulino)
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Circular law

As for the bulk distribution of eigenvalues of iid matrices, we
have

Circular law For an iid random matrix An, the normalised
eigenvalues 1√

nλ1(An), . . . ,
1√
nλn(An) are asymptotically

distributed according to the circular law 1
π1x2+y2≤1 dxdy .

Established for gaussian matrices by Mehta in 1967.
Generalised by many authors (Girko, Bai, Bai-Silverstein,
Götze-Tikhomirov, Pan-Zhou, Tao-Vu); the result above is
due to Tao-Vu-Krishnapur, 2008.
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Normalised eigenvalue distribution of a 5000× 5000 iid
Bernoulli matrix. (Image by Phillip Wood)
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Tracy-Widom law

Instead of the bulk distribution, one can ask for finer information
about individual eigenvalues, which is harder. A typical result is

Tracy-Widom law For a Wigner Hermitian matrix An, the
normalised largest eigenvalue (λn(An)− 2

√
n)/n1/6 is

asymptotically distributed according to the Tracy-Widom
law F2(x) dx = det(1− K ) dx , where K is the integral
operator with Airy kernel Ai(x) Ai′(y)−Ai′(x) Ai(y)

x−y .
Established for GUE by Tracy and Widom in 1994. Not fully
resolved in general, but known for symmetric decaying
distributions (Sinai-Soshnikov 1998, Soshnikov 1999,
Ruzmaikina 2006, Khorunzhiy 2009) and decaying
distributions with vanishing third moment (Tao-Vu 2009).
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Normalised largest eigenvalue of GUE matrices. (Image by
Alan Edelman et al..)

Terence Tao Random matrices



Introduction
Random matrices

Universality
Proof techniques

Least singular value

Least singular value law For a real iid random matrix An,
the normalised least singular value

√
nσn(An) is

asymptotically distributed according to the law
(1 + x)e−x−x2

dx .
Established for GOE by Edelman in 1991, and in general
by Tao-Vu in 2009.
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Cumulative distribution of normalised singular values of one
thousand 100× 100 Bernoulli and gaussian iid matrices.
(Image by Phillip Wood.)
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Eigenvalue gaps

GUE spacing For a Wigner Hermitian matrix An, the
normalised gap

√
n(λi+1(An)− λi(An)) for a randomly

chosen 1 ≤ i ≤ n is asymptotically distributed according to
the Gaudin distribution d2

dx2 det(1− K )L2([0,x ]), where K

has the sine kernel sinπ(x−y)
π(x−y) .

Established for GOE by Edelman in 1991. Almost proven
in full generality; known for all rapidly decreasing
distributions by Erdős-Ramirez-Schlein-Tao-Vu-Yau (2009).
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Cumulative distribution of eigenvalue spacings of five hundred
100× 100 GUE matrices. (Image by Peter Kostelec.)
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Many, many techniques go into the proofs of these facts. We
will discuss just two key tools:

Linear algebra identities that relate eigenvalues and
singular values to more computable quantities, such as
moments, resolvents, determinants, and distances.
The Lindeberg exchange strategy, based on exchanging
an arbitrary distribution with a gaussian one of the same
mean and variance.
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But many other tools are used too...

Symmetry reductions and explicit formulae, Lie groups
Asymptotics of orthogonal polynomials, Riemann-Hilbert
problems
Free probability
Dyck paths, combinatorics
Stieltjes transform, complex analysis
Concentration of measure, high-dimensional geometry
Inverse Littlewood-Offord theorems, additive combinatorics
Estimation of eigenvalues by random sampling
Dyson Brownian motion
Ornstein-Uhlenbeck process
Cauchy interlacing law
. . .
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Linear algebra identities

A surprising amount of mileage can be gained from basic linear
algebra identities such as

tr(Ak ) =
n∑

i=1

λi(A)k

tr((A∗A)k ) =
n∑

i=1

σi(A)2k

log |det(A− zI)| =
n∑

i=1

log |λi(A)− z| =
n∑

i=1

log |σi(A− zI)|

log |det(A)| =
n∑

i=1

log |dist(Xi , span(X1, . . . ,Xi−1))|
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A simple example

Let A = (xij)1≤i,j≤n be an n × n symmetric Bernoulli matrix.
Then

tr(A2) =
n∑

i=1

n∑
j=1

|xij |2 = n2

and thus
n∑

i=1

λi(A)2 = n2.

For non-Bernoulli matrices, one has to use the law of large
numbers (thus linear universality is used to deduce nonlinear
univerality!)
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The Lindeberg strategy

The Lindeberg strategy splits the task of proving a universal law
into two distinct parts:

The gaussian case Show that the law holds when all the
underlying random variables are gaussian. This is usually
achieved by algebraic means, using all the special
properties of gaussians (e.g. the group symmetries of the
gaussian ensembles).
Invariance Show that the limiting distribution is unchanged
when non-gaussian random variables are replaced by
gaussian random variables. This is usually achieved by
analytic means, showing that the error terms caused by
this replacement are asymptotically negligible compared to
the main terms.
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Example: Lindeberg’s proof of the CLT

To give a simple example of the method, suppose one
wants to prove the central limit theorem for the normalised
average S = X1+...+Xn√

n of iid variables X1, . . . ,Xn of mean
zero and variance 1. We replace the Xi by gaussians Yi of
the same mean and variance, and consider the normalised
average T = Y1+...+Yn√

n .

Under mild decay assumptions on X , it will suffice to show
that the moments ESk , ET k asymptotically match as
n→∞ for each k = 0,1,2, . . .. (The decay assumptions
can be removed by a truncation argument.)
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When one expands out the moments ESk , one gets a
linear combination of terms of the form EX a1

i1
. . .X aj

ij
. The

corresponding moment ET k has a similar expansion with
the Xi replaced by Yi .
When all the exponents a1, . . . ,aj are at most 2, then the
term for X and the term for Y are identical (because the
Xi ,Yi are iid and have matching moments to second order).
The terms when one or more of the ai exceed 2 can be
shown to be asymptotically negligible. Putting all this
together, one establishes the central limit theorem.
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