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The term Helmholtz-type decomposition of H(curl,Ω) refers to stable splittings of the form

H(curl,Ω) = (H1(Ω))3 + gradH1(Ω).

First mentioned in a work by Birman and Solomyak [1], splittings of this type have quickly become a
key tool in both the theoretical and numerical analysis of spaces of curl-conforming vectorfields and
related variational boundary value problems. They and their discrete counterparts proved instrumental
in

• the investigation of extension theorems and trace spaces for H(curl,Ω) [2],

• the derivation and regularity and compactness results [4],

• the analysis of boundary integral formulations related to Maxwell’s equations [3,8],

• the development of weighted regularization techniques for Lagrangian finite element schemes for
electromagnetics boundary value problems [5],

• the design of auxiliary space preconditioners for H(curl,Ω)-elliptic variational boundary value
problems [9].

• the subspace correction theory of multigrid methods for edge elements [6,7,10].

First, my presentation will outline proofs of the existence of continuous Helmholtz-type decomposi-
tions. Then some of the applications listed above will be addressed. Next, I am going to introduct
discrete Helmholtz-type decompositions. Finally, their use for finite element theory will be elaborated.
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