Multilevel Monte Carlo Methods for Boundary Value Problems with Gaussian Parameters

Claude J. Gittelson

Seminar for Applied Mathematics, ETH Zurich, Switzerland

Multilevel Monte Carlo methods emerged recently as highly efficient solvers for a large variety of stochastic equations. We consider an elliptic boundary value problem depending on a matrix-valued log-Gaussian field, and show how the multilevel Monte Carlo approach is able to combine the truncation of a series representation of this random field, a finite element approximation and Monte Carlo sampling to solve this stochastic problem in essentially the same complexity as a single deterministic problem. Despite its simplicity, arguably due to its simplicity, this method has a wide range of applicability with respect to both the type of partial differential equation and the randomness in the equation.