Estimates of error norms in the conjugate gradient algorithm

Gérard MEURANT

October, 2008
1. Error norms in solving linear systems
2. Formulas for the A–norm of the error in CG
3. Estimates of the A–norm of the error
4. Estimates of the l_2 norm of the error
5. Relation with finite element problems
6. Numerical experiments
Error norms in solving linear systems

Let A be an SPD matrix of order n and \tilde{x} an approximate solution of

$$Ax = c$$

The residual r is defined as

$$r = c - A\tilde{x}$$

The error ϵ being defined as $\epsilon = x - \tilde{x}$

$$\epsilon = A^{-1}r$$

The A–norm of the error is

$$\|\epsilon\|_A^2 = \epsilon^T A \epsilon = r^T A^{-1} A A^{-1} r = r^T A^{-1} r$$

and the l_2 norm is $\|\epsilon\|^2 = r^T A^{-2} r$
bounds can be obtained by running \(N \) iterations of the Lanczos algorithm

\[
\| \mathbf{r} \|^2 (e^1)^T (J_N)^{-i} e^1
\]

however, it does not make to much sense to run Lanczos to bound the error norm of CG!

What can we do for CG?
Formulas for the A–norm of the error in CG

Theorem

The square of the A–norm of the error at CG iteration k is given by

$$
\| \epsilon^k \|^2_A = \| r^0 \|^2 \left[(J_n^{-1} e^1, e^1) - (J_k^{-1} e^1, e^1) \right]
$$

where n is the order of the matrix A and J_k is the Jacobi matrix of the Lanczos algorithm whose coefficients can be computed from those of CG. Moreover

$$
\| \epsilon^k \|^2_A = \| r^0 \|^2 \left[\sum_{j=1}^n \frac{[(z_{(n)}^j)_1]^2}{\lambda_j} - \sum_{j=1}^k \frac{[(z_{(k)}^j)_1]^2}{\theta_{j}^{(k)}} \right]
$$

where $z_{(k)}^j$ is the jth normalized eigenvector of J_k corresponding to the eigenvalue $\theta_{j}^{(k)}$.
Proof.
We have $A\epsilon^k = r^k = r^0 - AV_k y^k$ where V_k is the matrix of the
Lanczos vectors and y^k is the solution of $J_k y^k = \|r^0\| e^1$

$$\|\epsilon^k\|_A^2 = (A\epsilon^k, \epsilon^k) = (A^{-1} r^0, r^0) - 2(r^0, V_k y^k) + (AV_k y^k, V_k y^k)$$

But $A^{-1} V_n = V_n J_n^{-1}$

$$r^0 = \|r^0\| v^1 = \|r^0\| V_n e^1$$

Therefore

$$A^{-1} r^0 = \|r^0\| A^{-1} V_n e^1 = \|r^0\| V_n J_n^{-1} e^1$$

and

$$(A^{-1} r^0, r^0) = \|r^0\|^2 (V_n J_n^{-1} e^1, V_n e^1) = \|r^0\|^2 (J_n^{-1} e^1, e^1)$$
Since $r^0 = \|r^0\| v^1 = \|r^0\| V_k e^1$

\[(r^0, V_k y^k) = \|r^0\| e^1, J_k^{-1} e^1)\]

Finally

\[(A V_k y^k, V_k y^k) = (V_k^T A V_k y^k, y^k) = (J_k y^k, y^k) = \|r^0\| e^1, J_k^{-1} e^1)\]

The second relation is obtained by using the spectral decomposition of J_n and J_k.

This formula is the link between CG and Gauss quadrature. It shows that the square of the A–norm of the error is the remainder of a Gauss quadrature rule for computing $(A^{-1} r^0, r^0)$.
Estimates of the A–norm of the error

At CG iteration k we do not know $(J_n^{-1})_{1,1}$

Let d be a given delay integer, an approximation of the A–norm of the error at iteration $k - d$ is obtained by

$$\|\epsilon^{k-d}\|_A^2 \approx \|r^0\|^2((J_k^{-1})_{(1,1)} - (J_{k-d}^{-1})_{(1,1)})$$

This can also be understood as writing

$$\|\epsilon^{k-d}\|_A^2 - \|\epsilon^k\|_A^2 = \|r^0\|^2((J_k^{-1})_{(1,1)} - (J_{k-d}^{-1})_{(1,1)})$$

and supposing that $\|\epsilon^k\|_A$ is negligible against $\|\epsilon^{k-d}\|_A$

Another interpretation is to consider that having a Gauss rule with $k - d$ nodes at iteration $k - d$, we use another more precise Gauss quadrature with k nodes to estimate the error of the quadrature rule.
We have to be careful in computing \((J_k^{-1})_{(1,1)} - (J_{k-d}^{-1})_{(1,1)}\)

Let \(j_k = J_k^{-1}e^k\) be the last column of the inverse of \(J_k\); Using the Sherman–Morrison formula

\[
(J_{k+1}^{-1})_{1,1} = (J_k^{-1})_{1,1} + \frac{\eta_{k+1}^2 (j_kj_k^T)_{1,1}}{\alpha_{k+1} - \eta_{k+1}^2 (j_k)_k}
\]

Cholesky factorization of \(J_k\) whose diagonal elements are \(\delta_1 = \alpha_1\) and

\[
\delta_i = \alpha_i - \frac{\eta_i^2}{\delta_{i-1}}, \quad i = 2, \ldots, k
\]

Then

\[
(j_{k})_{1} = (-1)^{k-1} \frac{\eta_2 \cdots \eta_k}{\delta_1 \cdots \delta_k}, \quad (j_{k})_{k} = \frac{1}{\delta_k}
\]
Let $b_k = (J_k^{-1})_{1,1}$

$$b_k = b_{k-1} + f_k, \quad f_k = \frac{\eta_k^2 c_{k-1}^2}{\delta_{k-1}(\alpha_k \delta_{k-1} - \eta_k^2)} = \frac{c_k^2}{\delta_k}$$

where

$$c_k = \frac{\eta_2 \cdots \eta_{k-1}}{\delta_1 \cdots \delta_{k-2}} \frac{\eta_k}{\delta_{k-1}} = c_{k-1} \frac{\eta_k}{\delta_{k-1}}$$

Since J_k is positive definite, $f_k > 0$

Moreover

$$c_k = \frac{\eta_2 \cdots \eta_k}{\delta_1 \cdots \delta_{k-1}} = \frac{\|r^{k-1}\|}{\|r^0\|}$$

and $\gamma_{k-1} = 1/\delta_k$ where γ_{k-1} is the CG parameter

($=(r^{k-1}, r^{k-1})/(p^{k-1}, Ap^{k-1})$)
Therefore

$$\| \epsilon^{k-d} \|_A^2 \approx \sum_{j=k-d}^{k-1} \gamma_j \| r^j \|_2^2$$

This gives a lower bound of the error norm

Other bounds can be obtained with the Gauss–Radau and Gauss–Lobatto quadrature rules

Algorithm CGQL

Let x^0 be given, $r^0 = b - Ax^0$, $p^0 = r^0$, $\beta_0 = 0$, $\alpha_{-1} = 1$, $c_1 = 1$

For $k = 1, \ldots$ until convergence

$$\gamma_{k-1} = \frac{(r^{k-1}, r^{k-1})}{(p^{k-1}, Ap^{k-1})}$$

$$\alpha_k = \frac{1}{\gamma_{k-1}} + \frac{\beta_{k-1}}{\gamma_{k-2}}$$
CGQL (2)

if $k = 1$

$$f_1 = \frac{1}{\alpha_1}$$
$$\delta_1 = \alpha_1$$
$$\bar{\delta}_1 = \alpha_1 - \lambda_m$$
$$\tilde{\delta}_1 = \alpha_1 - \lambda_M$$

else

$$c_k = c_{k-1} \frac{\eta_k}{\delta_{k-1}} = \frac{\|r^{k-1}\|}{\|r^0\|}$$
$$\delta_k = \alpha_k - \frac{\eta_k^2}{\delta_{k-1}} = \frac{1}{\gamma_{k-1}}$$

$$f_k = \frac{\eta_k^2 c_{k-1}^2}{\delta_{k-1}(\alpha_k \delta_{k-1} - \eta_k^2)} = \gamma_{k-1} c_k^2$$
CGQL (3)

\[\bar{\delta}_k = \alpha_k - \lambda_m - \frac{\eta_k^2}{\bar{\delta}_{k-1}} = \alpha_k - \bar{\alpha}_{k-1} \]

\[\delta_k = \alpha_k - \lambda_M - \frac{\eta_k^2}{\delta_{k-1}} = \alpha_k - \alpha_{k-1} \]

end

\[x^k = x^{k-1} + \gamma_{k-1}p^{k-1} \]

\[r^k = r^{k-1} - \gamma_{k-1}Ap^{k-1} \]

\[\beta_k = \frac{(r^k, r^k)}{(r^{k-1}, r^{k-1})} \]

\[\eta_{k+1} = \frac{\sqrt{\beta_k}}{\gamma_{k-1}} \]

\[p^k = r^k + \beta_k p^{k-1} \]
\[\bar{\alpha}_k = \lambda_m + \frac{\eta_{k+1}^2}{\delta_k} \]

\[\tilde{\alpha}_k = \lambda_M + \frac{\eta_{k+1}^2}{\delta_k} \]

\[\check{\alpha}_k = \frac{\bar{\delta}_k \delta_k}{\delta_k - \bar{\delta}_k} \left(\frac{\lambda_M}{\bar{\delta}_k} - \frac{\lambda_m}{\delta_k} \right) \]

\[\check{\eta}_{k+1}^2 = \frac{\bar{\delta}_k \delta_k}{\delta_k - \bar{\delta}_k} (\lambda_M - \lambda_m) \]

\[\check{f}_k = \frac{\eta_{k+1}^2 c_k^2}{\delta_k (\bar{\alpha}_k \delta_k - \eta_{k+1}^2)} \]

\[f_k = \frac{\eta_{k+1}^2 c_k^2}{\delta_k (\alpha_k \delta_k - \eta_{k+1}^2)} \]

\[\check{f}_k = \frac{\check{\eta}_{k+1}^2 c_k^2}{\delta_k (\check{\alpha}_k \delta_k - \check{\eta}_{k+1}^2)} \]
CGQL (5)

if $k > d$

$$g_k = \sum_{j=k-d+1}^{k} f_j$$

$$s_{k-d} = \| r^0 \|^2 g_k$$

$$\bar{s}_{k-d} = \| r^0 \|^2 (g_k + \bar{f}_k)$$

$$\hat{s}_{k-d} = \| r^0 \|^2 (g_k + \hat{f}_k)$$

end
Proposition

Let J_k, \tilde{J}_k, \bar{J}_k and \hat{J}_k be the tridiagonal matrices of the Gauss, Gauss–Radau (with b and a as prescribed nodes) and the Gauss–Lobatto rules.

Then, if $0 < a = \lambda_m \leq \lambda_{\text{min}}(A)$ and $b = \lambda_M \geq \lambda_{\text{max}}(A)$,

- $\|r_0\|((J_k^{-1})_{1,1}), \|r_0\|((\tilde{J}_k^{-1})_{1,1})$ are lower bounds of $\|e_0\|^2_A = r_0A^{-1}r_0$,
- $\|r_0\|((\bar{J}_k^{-1})_{1,1})$ and $\|r_0\|((\hat{J}_k^{-1})_{1,1})$ are upper bounds of $r_0A^{-1}r_0$

Theorem

At iteration number k of CGQL, s_{k-d} and \bar{s}_{k-d} are lower bounds of $\|\epsilon^{k-d}\|^2_A$, \tilde{s}_{k-d} and \hat{s}_{k-d} are upper bounds of $\|\epsilon^{k-d}\|^2_A$.
Preconditioned CG

For the preconditioned CG algorithm, the formula to consider is

\[\| \epsilon^k \|_A^2 = (z^0, r^0)((J_{n-1})_{1,1} - (J_{k-1})_{1,1}) \]

where \(Mz^0 = r^0 \), \(M \) being the preconditioner, a symmetric positive definite matrix that is chosen to speed up the convergence.

The Gauss rule estimate is

\[\| \epsilon^{k-d} \|_A^2 \approx \sum_{j=k-d}^{k-1} \gamma_j(z^j, r^j) \]
Estimates of the l_2 norm of the error

Theorem

$$
\| \epsilon^k \|^2 = \| r^0 \|^2 [(e^1, J_n^{-2} e^1) - (e^1, J_k^{-2} e^1)] \\
+ (-1)^k 2 \eta_{k+1} \frac{\| r^0 \|}{\| r_k \|} (e^k, J_k^{-2} e^1) \| \epsilon^k \|^2_A
$$

Corollary

$$
\| \epsilon^k \|^2 = \| r^0 \|^2 [(e^1, J_n^{-2} e^1) - (e^1, J_k^{-2} e^1)] - 2 \frac{(e^k, J_k^{-2} e^1)}{(e^k, J_k^{-1} e^1)} \| \epsilon^k \|^2_A
$$

This can be computed introducing a delay and using a QR factorization of J_k
Relation with finite element problems

Suppose we want to solve a PDE

\[L u = f \quad \text{in } \Omega \]

\(\Omega \) being a two or three–dimensional bounded domain, with appropriate boundary conditions on \(\Gamma \) the boundary of \(\Omega \).

As a simple example, consider the PDE

\[-\Delta u = f, \quad u|_{\Gamma} = 0 \]

This problem is naturally formulated in the Hilbert space \(H^1_0(\Omega) \)

\[a(u, v) = (f, v), \quad \forall v \in V = H^1_0(\Omega) \]

where \(a(u, v) \) is a self–adjoint bilinear form
\[a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx \]

and

\[(f, v) = \int_{\Omega} fv \, dx \]

There is a unique solution \(u \in H^1_0(\Omega) \)
The approximate solution is sought in a finite dimensional subspace \(V_h \subset V \) as

\[a(u_h, v_h) = (f, v_h), \ \forall v_h \in V_h \]

The simplest method triangulates the domain \(\Omega \) (with triangles or tetrahedrons of maximal diameter \(h \)) and uses functions which are linear on each element
Using basis functions ϕ_i which are piecewise linear and have a value 1 at vertex i and 0 at all the other vertices

$$v_h(x) = \sum_{j=1}^{n} v_j \phi_j(x)$$

The approximated problem is equivalent to a linear system $Au = c$, where

$$[A]_{i,j} = a(\phi_i, \phi_j), \quad c_i = (f, \phi_i)$$

The matrix A is symmetric and positive definite. The solution of the finite dimensional problem is

$$u_h(x) = \sum_{j=1}^{n} u_j \phi_j(x)$$

We use CG to solve the linear system
We have two sources of errors, the difference between the exact and approximate solution $u - u_h$ and $u_h - u_h^{(k)}$, the difference between the approximate solution and its CG computed value (not speaking of rounding errors)

Of course, we desire the components of $u - u_h^{(k)}$ to be small. This depends on h and on the CG stopping criterion

The problem of finding an appropriate stopping criterion has been studied by Arioli and al

Let $\|v\|_a^2 = a(v, v)$ and $u^*_h \in V_h$ be such that

$$\|u_h - u^*_h\|_a^2 \leq h^2 t \|u_h\|_a^2$$

Then

$$\|u - u^*_h\|_a \leq \|u - u_h\|_a + \|u_h - u^*_h\|$$

$$\leq h^t \|u\|_a + (1 + h^t) \|u - u_h\|_a$$
If $t > 0$ and $h < 1$

$$\|u - u_h^*\|_a \leq h^t \|u\|_a + 2\|u - u_h\|_a$$

Therefore, if $u_h^* = u_h^{(k)}$ and we choose $\|u_h - u_h^*\|_a$ such that $h^t \|u\|_a$ is of the same order as $\|u - u_h\|_a$ we have

$$\|u - u_h^*\|_a \approx \|u - u_h\|_a$$

We have

$$\|v_h^{(k)}\|_a = \|v^k\|_A$$

Let ζ_k be an estimate of $\|\varepsilon^k\|_A^2$, Arioli’s stopping test is

If $\zeta_k \leq \eta^2 ((u^k)^T r^0 + c^T u^0)$ then stop

The parameter η is chosen as h or η^2 as the maximum area of the triangles in 2D
Numerical experiments

F3, \(d = 1 \), \(\log_{10} \) of the \(A \)-norm of the error (plain), Gauss (dashed), Gauss–Radau(\(\lambda_{\text{min}} \)) (dot–dashed)
F3, $d = 5$, zoom of \log_{10} of the A–norm of the error (plain), Gauss (dashed), Gauss–Radau (dot–dashed)
For the Gauss–Radau upper bound we use a value of $a = 0.02$ whence the smallest eigenvalue is $\lambda_{min} = 0.025$.

F4, $n = 900, \ d = 1, \ \log_{10}$ of the A–norm of the error (plain), Gauss (dashed), Gauss–Radau (dot–dashed)
Adaptive algorithm for the smallest eigenvalue

F4, $n = 900$, $d = 1$, est. of λ_{min}, \log_{10} of the A–norm of the error (plain), Gauss (dashed), Gauss–Radau (dot–dashed)
Another example

\[-\text{div}(\lambda(x, y)\nabla u) = f, \quad u|_{\Gamma} = 0\]

Finite differences in the unit square

\[\lambda(x, y) = \frac{1}{(2 + p \sin \frac{x}{\eta})(2 + p \sin \frac{y}{\eta})}\]

We use $p = 1.8$ and $\eta = 0.1$

We compute f such that the solution is $u(x, y) = \sin(\pi x) \sin(\pi y)$
CG2, $d = 1$, $n = 10000$, \log_{10} of the A–norm of the error (plain), Gauss (dashed), Gauss–Radau (dot–dashed), $a = 10^{-4}$, $\lambda_{\text{min}} = 2.3216 \times 10^{-4}$
CG2, $d = 1$, $n = 10000$, IC(0), \log_{10} of the A–norm of the error (plain), Gauss (dashed)
Since we are using finite difference and we have multiplied the right hand side by h^2, we modify the Arioli’s criteria to

If $\zeta_k \leq 0.1 \times (1/n)^2((x^k)^T r^0 + c^T x^0)$ then stop

where ζ_k is an estimate of $\|\epsilon^k\|_A^2$

When using $n = 10000$, the A–norm of the difference between the “exact” solution of the linear system (obtained by Gaussian elimination) and the discretization of u is $n_u = 5.6033 \times 10^{-5}$

With the stopping criterion, we do 226 iterations and we have $n_x = 9.5473 \times 10^{-5}$

Using an incomplete Cholesky preconditioner IC(0) we do 47 iterations and obtain $n_x = 5.6033 \times 10^{-5}$
Anti–Gauss estimates

- Anti–Gauss quadrature rules can also be used to obtain estimates of the A–norm of the error
- Using the anti–Gauss rule is interesting since it does not need any estimate of the smallest eigenvalue of A
- Anti–Gauss estimates may fail since sometimes we have to take square roots of negative values

We use the generalized anti–Gauss rule with a parameter γ:

- We start from a value γ_0
- When at some iteration we find a value $\delta_k < 0$ in the Cholesky factorization of the Jacobi matrix we decrease the value of γ until we find a positive definite matrix
- At most we will find $\gamma = 0$ and recover the Gauss rule
F4, $d = 1$, $n = 900$, \log_{10} of the A–norm of the error (plain), anti–Gauss
$\gamma_0 = 1$ (dashed), $\gamma_0 = 0.7$ (dot–dashed)
Bound of the l_2 norm of the error

F4, $d = 1$, $n = 900$, \log_{10} of the l_2 norm of the error (plain), Gauss (dashed)

B. Fischer and G.H. Golub, *On the error computation for polynomial based iteration methods*, in Recent advances in

G.H. Golub and G. Meurant, Matrices, moments and quadrature II or how to compute the norm of the error in iterative methods, BIT, v 37 n 3, (1997), pp 687–705

