Discrete ill–posed problems

Gérard MEURANT

October, 2008
1 Introduction to ill-posed problems
2 Tikhonov regularization
3 The L–curve criterion
4 Generalized cross-validation
5 Comparisons of methods
Introduction to ill–posed problems

We speak of a discrete ill–posed problem (DIP) when the solution is sensitive to perturbations of the data

Example:

\[
A = \begin{pmatrix} 0.15 & 0.1 \\ 0.16 & 0.1 \\ 2.02 & 1.3 \end{pmatrix}, \quad c + \Delta c = A \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0.01 \\ -0.032 \\ 0.01 \end{pmatrix}
\]

The solution of the perturbed least squares problem (rounded to 4 decimals) using the QR factorization of \(A\) is

\[
x_{QR} = \begin{pmatrix} -2.9977 \\ 7.2179 \end{pmatrix}
\]

Why is it so?
The SVD of A is

$$U = \begin{pmatrix} -0.0746 & 0.7588 & -0.6470 \\
-0.0781 & -0.6513 & -0.7548 \\
-0.9942 & -0.0058 & 0.1078 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 2.4163 & 0 \\
0 & 0.0038 \\
0 & 0 \end{pmatrix}$$

$$V = \begin{pmatrix} -0.8409 & -0.5412 \\
-0.5412 & 0.8409 \end{pmatrix}$$

The component $(u^2)^T \Delta c/\sigma_2$ (u^2 being the second column of U) corresponding to the smallest nonzero singular value is large being 6.2161

This gives the large change in the solution
\[Ax \approx c = \bar{c} - e \]

where \(A \) is a matrix of dimension \(m \times n \), \(m \geq n \) and the right hand side \(\bar{c} \) is contaminated by a (generally) unknown noise vector \(e \)

- The standard solution of the least squares problem
 \[\min ||c - Ax|| \] (even using backward stable methods like QR)
 may give a vector \(x \) severely contaminated by noise
- This may seem hopeless
- The solution is to modify the problem by regularization
- We have to find a balance between obtaining a problem that we can solve reliably and obtaining a solution which is not too far from the solution without noise
Tikhonov regularization

Replace the LS problem by

$$\min_x \{ \| c - Ax \|^2 + \mu \| x \|^2 \}$$

where $\mu \geq 0$ is a regularization parameter to be chosen.

For some problems (particularly in image restoration) it is better to consider

$$\min_x \{ \| c - Ax \|^2 + \mu \| Lx \|^2 \}$$

where L is typically the discretization of a derivative operator of first or second order.

The solution x_μ of the problem solves the linear system

$$(A^T A + \mu I)x = A^T c$$
The main problem is to choose μ

- If μ is too small the solution is contaminated by the noise in the right hand side
- If μ is too large the solution is a poor approximation of the original problem
- Many methods have been devised for choosing μ
- Most of these methods lead to the evaluation of bilinear forms with different matrices
Some methods for choosing μ

- Morozov’s discrepancy principle
 Ask for the norm of the residual to be equal to the norm of the noise vector
 \[\| c - A(A^TA + \mu I)^{-1}A^Tc \| = \| e \| \]

- The Gfrerer/Raus method
 \[\mu^3 c^T (AA^T + \mu I)^{-3} c = \| e \|^2 \]

- The quasi–optimality criterion
 \[\min \left[\mu^2 c^T A(A^TA + \mu I)^{-4} A^T c \right] \]
The L–curve criterion

- plot the curve \((\|x_\mu\|, \|b - Ax_\mu\|)\) obtained by varying the value of \(\mu \in [0, \infty)\) in log–log scale
- In most cases this curve is shaped as an “L”
- \textbf{Lawson and Hanson} proposed to choose the value \(\mu_L\) corresponding to the “corner” of the L–curve (the point of maximal curvature (see also Hansen; Hansen and O’Leary))
- This is done to have a balance between \(\mu\) being too small and the solution contaminated by the noise, and \(\mu\) being too large giving a poor approximation of the solution. The “vertex” of the L–curve gives an average value between these two extremes
An example of L–curve

The L-curve for the Baart problem, $m = n = 100$, noise $= 10^{-3}$
How to locate the corner of the L–curve?

see Hansen and al.

- Easy if we know the SVD of A
- Otherwise compute points on the L–curve and use interpolation
- However, computing a point on the L–curve is expensive
- Alternative, L–ribbon approximation (Calvetti, Golub and Reichel)
The L–ribbon

\[
\|x_\mu\|^2 = c^T A (A^T A + \mu I)^{-2} A^T c
\]

and

\[
\|c - Ax_\mu\|^2 = c^T c + c^T A (A^T A + \mu I)^{-1} A^T A (A^T A + \mu I)^{-1} A^T c
\]
\[
-2c^T A (A^T A + \mu I)^{-1} A^T c
\]

By denoting \(K = A^T A\) and \(d = A^T c\)

\[
\|c - Ax_\mu\|^2 = c^T c + d^T K (K + \mu I)^{-2} d - 2d^T (K + \mu I)^{-1} d
\]
Define

\[\phi_1(t) = (t + \mu)^{-2} \]
\[\phi_2(t) = t(t + \mu)^{-2} - 2(t + \mu)^{-1} \]

we are interested in \(s_i = d^T \phi_i(K)d, \ i = 1, 2 \)

We can obtain bounds using the Golub–Kahan bidiagonalization algorithm

At iteration \(k \), the algorithm computes a Jacobi matrix \(J_k = B_k^T B_k \) and the Gauss rule gives

\[I_G^k(\phi_i) = \|d\|^2 (e_1)^T \phi_i(J_k)e_1 \]

We can also use the Gauss–Radau rule with a prescribed node \(a = 0 \)

\[I_{GR}^k(\phi_i) = \|d\|^2 (e_1)^T \phi_i(\hat{J}_k)e_1 \]
\(\hat{J}_k = \hat{B}_k^T \hat{B}_k \) where \(\hat{B}_k \) is obtained from \(B_k \) by setting the last diagonal element \(\delta_k = 0 \)

Theorem

\[
I_k^G(\phi_1) \leq s_1 \leq I_k^{GR}(\phi_1)
\]

where

\[
I_k^G(\phi_1) = \|d\|^2(e^1)^T(B_k^T B_k + \mu I)^{-2}e^1
\]
\[
I_k^{GR}(\phi_1) = \|d\|^2(e^1)^T(\hat{B}_k^T \hat{B}_k + \mu I)^{-2}e^1
\]

\[
I_k^{GR}(\phi_2) \leq s_2 \leq I_k^G(\phi_2)
\]

where

\[
I_k^G(\phi_2) = \|d\|^2[(e^1)^T B_k^T B_k(B_k^T B_k + \mu I)^{-2}e^1 - 2(e^1)^T(B_k^T B_k + \mu I)^{-1}e^1]
\]
\[
I_k^{GR}(\phi_2) = \|d\|^2[(e^1)^T \hat{B}_k^T \hat{B}_k(\hat{B}_k^T \hat{B}_k + \mu I)^{-2}e^1 - 2(e^1)^T(\hat{B}_k^T \hat{B}_k + \mu I)^{-1}e^1]
\]
\[x^- (\mu) = \sqrt{I_k^G(\phi_1)}, \quad x^+ (\mu) = \sqrt{I_k^{GR}(\phi_1)} \]

\[y^- (\mu) = \sqrt{c^T c + I_k^{GR}(\phi_2)}, \quad y^+ (\mu) = \sqrt{c^T c + I_k^G(\phi_2)} \]

For a given value of \(\mu > 0 \) the bounds are

\[x^- (\mu) \leq \| x_\mu \| \leq x^+ (\mu), \quad y^- (\mu) \leq \| c - Ax_\mu \| \leq y^+ (\mu) \]

Calvetti, Golub and Reichel defined the L–ribbon as the union of rectangles for all \(\mu > 0 \)

\[\bigcup_{\mu > 0} \{ \{ x(\mu), y(\mu) \} : x^- (\mu) \leq x(\mu) \leq x^+ (\mu), \ y^- (\mu) \leq y(\mu) \leq y^+ (\mu) \} \]

Then, we have to select a point (a value of \(\mu \)) inside the L–ribbon
The L–curvature

Another possibility is to obtain bounds of the curvature (in log–log scale) and to look for the maximum

\[C_\mu = 2 \frac{\rho''\eta' - \rho'\eta''}{((\rho')^2 + (\eta')^2)^{3/2}} \]

where \(I \) denotes differentiation with respect to \(\mu \) and

\[\rho(\mu) = \frac{1}{2} \log \| c - Ax_\mu \| = \log \mu^2 c^T \phi(AA^T)c \]
\[\eta(\mu) = \frac{1}{2} \log \| x_\mu \| = \log c^T A\phi(A^TA)A^Tc \]

where \(\phi(t) = (t + \mu)^{-2} \)
The first derivatives can be computed as

$$\rho'(\mu) = \frac{c^T A(A^T A + \mu I)^{-3} A^T c}{\mu c^T (A A^T + \mu I)^{-2} c}$$

$$\eta'(\mu) = -\frac{c^T A(A^T A + \mu I)^{-3} A^T c}{c^T A(A^T A + \mu I)^{-2} A^T c}$$

The numerator is more complicated

$$\rho' \eta'' - \rho'' \eta' = \left(\frac{c^T A(A^T A + \mu I)^{-3} A^T c}{\mu c^T (A A^T + \mu I)^{-2} c \cdot c^T A(A^T A + \mu I)^{-2} A^T c} \right)^2$$

$$\left(\frac{c^T (A A^T + \mu I)^{-2} c \cdot c^T A(A^T A + \mu I)^{-2} A^T c}{c^T (A A^T + \mu I)^{-2} c \cdot c^T A(A^T A + \mu I)^{-2} A^T c} \right)$$

$$+ 2 \mu c^T (A A^T + \mu I)^{-3} c \cdot c^T A(A^T A + \mu I)^{-2} A^T c$$

$$- 2 \mu c^T (A A^T + \mu I)^{-2} c \cdot c^T A(A^T A + \mu I)^{-3} A^T c$$
Locating the corner of the L–curve

- Using the SVD (Hansen): 1c
- Pruning algorithm (Hansen, Jensen and Rodriguez): 1p
- Rotating the L–curve (GM): 1c1
- Finding an interval where $\log \| x_\mu \|$ and $\log \| c - Ax_\mu \|$ are almost constant (GM): 1c2
L-curve algorithms, Baart problem, $n = 100$

<table>
<thead>
<tr>
<th>noise</th>
<th>meth</th>
<th>μ</th>
<th>$|c - Ax|$</th>
<th>$|x - x_0|$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3}</td>
<td>opt</td>
<td>2.4990×10^{-8}</td>
<td>9.8720×10^{-4}</td>
<td>1.5080×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>lc</td>
<td>4.5414×10^{-9}</td>
<td>9.8524×10^{-4}</td>
<td>1.6030×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>lp</td>
<td>8.2364×10^{-9}</td>
<td>9.8545×10^{-4}</td>
<td>1.5454×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>lc1</td>
<td>6.3232×10^{-9}</td>
<td>9.8534×10^{-4}</td>
<td>1.5669×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>lc2</td>
<td>5.8203×10^{-12}</td>
<td>9.8463×10^{-4}</td>
<td>4.1492×10^{-1}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1297×10^{-8}</td>
<td>9.8996×10^{-4}</td>
<td>1.5153×10^{-1}</td>
</tr>
</tbody>
</table>
L-curve algorithms, Phillips problem, $n = 200$

<table>
<thead>
<tr>
<th>noise</th>
<th>meth</th>
<th>μ</th>
<th>$|c - Ax|$</th>
<th>$|x - x_0|$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3}</td>
<td>opt</td>
<td>8.5392×10^{-7}</td>
<td>9.9864×10^{-4}</td>
<td>7.3711×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>lc</td>
<td>7.1966×10^{-10}</td>
<td>8.5111×10^{-4}</td>
<td>5.3762×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>lp</td>
<td>4.5729×10^{-10}</td>
<td>8.3869×10^{-4}</td>
<td>6.8849×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>lc1</td>
<td>3.6084×10^{-10}</td>
<td>8.3172×10^{-4}</td>
<td>7.8603×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>lc2</td>
<td>1.0250×10^{-9}</td>
<td>8.6013×10^{-4}</td>
<td>4.4563×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>2.9147 \times 10^{-7}</td>
<td>9.7098×10^{-4}</td>
<td>1.3595×10^{-2}</td>
<td></td>
</tr>
</tbody>
</table>
L-ribbon

<table>
<thead>
<tr>
<th>Ex</th>
<th>noise</th>
<th>nb it</th>
<th>μ</th>
<th>nb it no reorth.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baart</td>
<td>10^{-7}</td>
<td>11</td>
<td>6.0889×10^{-17}</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>10^{-5}</td>
<td>9</td>
<td>6.1717×10^{-13}</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>10^{-3}</td>
<td>8</td>
<td>6.3232×10^{-9}</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10^{-1}</td>
<td>6</td>
<td>7.2928×10^{-5}</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5</td>
<td>3.260×10^{-2}</td>
<td>5</td>
</tr>
</tbody>
</table>
Generalized cross-validation

GCV comes from statistics (Golub, Heath and Wahba)

The regularized problem is written as

$$\min \{ ||c - Ax||^2 + m\mu ||x||^2 \}$$

where \(\mu \geq 0 \) is the regularization parameter and the matrix \(A \) is \(m \) by \(n \)

The GCV estimate of the parameter \(\mu \) is the minimizer of

$$G(\mu) = \frac{\frac{1}{m}(I - A(A^TA + m\mu I)^{-1}A^T)c||^2}{\left(\frac{1}{m}\text{tr}(I - A(A^TA + m\mu I)^{-1}A^T)\right)^2}$$
If we know the SVD of A and $m \geq n$ this can be computed as

$$G(\nu) = \frac{m \left\{ \sum_{i=1}^{r} d_i^2 \left(\frac{\nu}{\sigma_i^2 + \nu} \right)^2 + \sum_{i=r+1}^{m} d_i^2 \right\}}{[m - n + \sum_{i=1}^{r} \frac{\nu}{\sigma_i^2 + \nu}]^2}$$

where $\nu = m \mu$

- G is almost constant when ν is very small or large, at least in log–log scale
- When $\nu \to \infty$, $G(\nu) \to \|c\|^2 / m$
- When $\nu \to 0$ the situation is different wether $m = n$ or not
An example of GCV function

GCV function for the Baart problem, $m = n = 100$, noise = 10^{-3}
GCV functions for the Bäär problem, $m = n = 100$ for different noise levels
The main problem is that the GCV function is usually quite flat near the minimum.

For large problems we cannot use the SVD:

- First we approximate the trace in the denominator $\rightarrow \tilde{G}$
- Then using the Golub–Kahan bidiagonalization algorithms we can obtain bounds of all the terms in \tilde{G}
- Finally we have to locate the minimum of the lower and/or upper bounds.
Proposition

Let B be a symmetric matrix of order n with $\text{tr}(B) \neq 0$.
Let \mathcal{Z} be a discrete random variable with values 1 and -1 with equal probability 0.5 and let z be a vector of n independent samples from \mathcal{Z}.
Then $z^T B z$ is an unbiased estimator of $\text{tr}(B)$.

$$E(z^T B z) = \text{tr}(B)$$

$$\text{var}(z^T B z) = 2 \sum_{i \neq j} b_{i,j}^2$$

where $E(\cdot)$ denotes the expected value and var denotes the variance.
For GCV we just use one vector z.
G (plain) and \tilde{G} (dotted) functions for the Baart problem,

$m = n = 100$, noise $= 10^{-3}$
$G (\nu)$, $G_t (\nu)$

G (plain) and \tilde{G} (dotted) functions for the Baart problem,

$m = n = 100$, $noise = 10^{-1}$
The Golub and Von Matt algorithm

Let \(s_z(\nu) = z^T(A^T A + \nu l)^{-1}z \), where \(z \) is a random vector. Using Gauss and Gauss–Radau we can obtain

\[
g_z(\nu) \leq s_z(\nu) \leq r_z(\nu)
\]

We can also bound \(s_c^{(p)}(\nu) = c^T A(A^T A + \nu l)^{-p} A^T c, \quad p = 1, 2 \) satisfying

\[
g_c^{(p)}(\nu) \leq s_c^{(p)}(\nu) \leq r_c^{(p)}(\nu)
\]

We want to compute approximations of

\[
\tilde{G}(\mu) = m \frac{c^T c - s_c^{(-1)}(\nu) - \nu s_c^{(-2)}(\nu)}{(m - n + \nu s_z(\nu))^2}
\]
We define

\[L_0(\nu) = m \frac{c^T c - r_c^{(-1)}(\nu) - \nu r_c^{(-2)}(\nu)}{(m - n + \nu r_z(\nu))^2} \]

\[U_0(\nu) = m \frac{c^T c - g_c^{(-1)}(\nu) - \nu g_c^{(-2)}(\nu)}{(m - n + \nu g_z(\nu))^2} \]

These quantities \(L_0 \) and \(U_0 \) are lower and upper bounds for the estimate of \(G(\mu) \).

We can also compute estimates of the derivatives of \(L_0 \) and \(U_0 \).

These bounds improve with the number of Lanczos iterations.
They first do $k_{min} = \lceil 3 \log \min(m, n) \rceil$ Lanczos iterations.

Then the global minimizer $\hat{\nu}$ of $U_0(\nu)$ is computed.

If one can find a ν such that $0 < \nu < \hat{\nu}$ and $L_0(\nu) > L_0(\hat{\nu})$, the algorithm stops and return $\hat{\nu}$.

Otherwise, the algorithm executes one more Lanczos iteration and repeats the convergence test.

Von Matt computed the minimum of the upper bound:

- By sampling the function on 100 points with an exponential distribution.
- If the neighbors of the minimum do not have the same values, he looked at the derivative and sought for a local minimum in either the left or right interval depending on the sign of the derivative.
- The local minimum is found by using bisection.
The upper bound does not have the right asymptotic behavior when \(m = n \) and \(\nu \to 0 \)

\[G \text{ (plain) and } \tilde{G} \text{ (dashed) functions and upper bounds for the Baart problem, } m = n = 100, \text{ noise } = 10^{-3} \]
To obtain a better behavior we add a term $\|c\|^2$ to the denominator.

G (plain) and \tilde{G} (dashed) functions and upper bounds for the Baart problem, $m = n = 100$, noise $= 10^{-3}$
Optimization of the algorithm

- We choose a (small) value of ν (denoted as ν_0)
- When
\[
\left| \frac{U_k^0(\nu_0) - U_{k-1}^0(\nu_0)}{U_{k-1}^0(\nu_0)} \right| \leq \epsilon_0
\]
we start computing the minimum of the upper bound

The algorithm for finding the minimum is modified as follows

- We work in log–log scale and compute only a minimizer of the upper bound
- We evaluate the numerator of the approximation by computing the SVD of B_k once per iteration
- We compute 50 samples of the function on a regular mesh
- We locate the minimum, say the point k, we then compute again 50 samples in the interval $[k-1 \ k+1]$
We use the Von Matt algorithm for computing a local minimum in this interval.

After locating a minimum ν_k with a value of the upper bound U^0_k at iteration k, the stopping criteria is

$$\left| \frac{\nu_k - \nu_{k-1}}{\nu_{k-1}} \right| + \left| \frac{U^0_k - U^0_{k-1}}{U^0_{k-1}} \right| \leq \epsilon$$
GCV algorithms, Baart problem

<table>
<thead>
<tr>
<th>noise</th>
<th>μ</th>
<th>$|c - Ax|$</th>
<th>$|x - x_0|$</th>
<th>t (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-7}</td>
<td>$9.6482 , 10^{-15}$</td>
<td>$9.8049 , 10^{-8}$</td>
<td>$5.9424 , 10^{-2}$</td>
<td>0.38</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>$9.7587 , 10^{-12}$</td>
<td>$9.8566 , 10^{-6}$</td>
<td>$6.5951 , 10^{-2}$</td>
<td>0.18</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>$1.2018 , 10^{-8}$</td>
<td>$9.8573 , 10^{-4}$</td>
<td>$1.5239 , 10^{-1}$</td>
<td>0.16</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>$1.0336 , 10^{-7}$</td>
<td>$9.8730 , 10^{-2}$</td>
<td>1.6614</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>noise</th>
<th>μ</th>
<th>$|c - Ax|$</th>
<th>$|x - x_0|$</th>
<th>t (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-7}</td>
<td>$1.0706 , 10^{-14}$</td>
<td>$9.8058 , 10^{-8}$</td>
<td>$5.9519 , 10^{-2}$</td>
<td>0.18</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>$1.0581 , 10^{-11}$</td>
<td>$9.8588 , 10^{-6}$</td>
<td>$6.5957 , 10^{-2}$</td>
<td>0.27</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>$1.3077 , 10^{-8}$</td>
<td>$9.8582 , 10^{-4}$</td>
<td>$1.5205 , 10^{-1}$</td>
<td>0.14</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>$1.1104 , 10^{-7}$</td>
<td>$9.8736 , 10^{-2}$</td>
<td>1.6227</td>
<td>--</td>
</tr>
</tbody>
</table>
GCV algorithms, Phillips problem

<table>
<thead>
<tr>
<th>noise</th>
<th>μ</th>
<th>$|c - Ax|$</th>
<th>$|x - x_0|$</th>
<th>t (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vm</td>
<td>10^{-7}</td>
<td>8.7929×10^{-11}</td>
<td>9.0162×10^{-8}</td>
<td>2.2391×10^{-4}</td>
</tr>
<tr>
<td></td>
<td>10^{-5}</td>
<td>4.5432×10^{-9}</td>
<td>9.0825×10^{-6}</td>
<td>2.2620×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>10^{-3}</td>
<td>4.3674×10^{-7}</td>
<td>9.7826×10^{-4}</td>
<td>1.0057×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>10^{-1}</td>
<td>3.8320×10^{-5}</td>
<td>9.8962×10^{-2}</td>
<td>9.3139×10^{-2}</td>
</tr>
<tr>
<td>gm-opt</td>
<td>10^{-7}</td>
<td>1.6343×10^{-10}</td>
<td>1.1260×10^{-7}</td>
<td>2.2163×10^{-4}</td>
</tr>
<tr>
<td></td>
<td>10^{-5}</td>
<td>5.3835×10^{-9}</td>
<td>9.1722×10^{-6}</td>
<td>2.1174×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>10^{-3}</td>
<td>4.1814×10^{-7}</td>
<td>9.7737×10^{-4}</td>
<td>1.0375×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>10^{-1}</td>
<td>4.1875×10^{-5}</td>
<td>9.9016×10^{-2}</td>
<td>9.0659×10^{-2}</td>
</tr>
</tbody>
</table>
Comparisons of methods

Baart problem, $n = 100$

<table>
<thead>
<tr>
<th>noise</th>
<th>meth</th>
<th>μ</th>
<th>$|c - Ax|$</th>
<th>$|x - x_0|$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3}</td>
<td>μ opt</td>
<td>2.7826×10^{-8}</td>
<td>2.3501×10^{-3}</td>
<td>1.5084×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>vm</td>
<td>1.2018×10^{-8}</td>
<td>9.8573×10^{-4}</td>
<td>1.5239×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>gm-opt</td>
<td>1.3077×10^{-8}</td>
<td>9.8582×10^{-4}</td>
<td>1.5205×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>gcv</td>
<td>9.4870×10^{-9}</td>
<td>9.8554×10^{-4}</td>
<td>1.5362×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>$disc$</td>
<td>8.4260×10^{-8}</td>
<td>1.0000×10^{-3}</td>
<td>1.5556×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>gr</td>
<td>1.7047×10^{-7}</td>
<td>1.0235×10^{-3}</td>
<td>1.6373×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>lc</td>
<td>4.5414×10^{-9}</td>
<td>9.8524×10^{-4}</td>
<td>1.6028×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>qo</td>
<td>1.2586×10^{-8}</td>
<td>9.8450×10^{-4}</td>
<td>6.6072×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>L-rib</td>
<td>6.3232×10^{-9}</td>
<td>9.8534×10^{-4}</td>
<td>1.5669×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>L-cur</td>
<td>5.8220×10^{-9}</td>
<td>9.8531×10^{-4}</td>
<td>1.5749×10^{-1}</td>
</tr>
</tbody>
</table>
Solutions for the Baart problem, $m = n = 100$, $noise = 10^{-3}$, solid=unperturbed solution, dashed=vm, dot-dashed=gm-opt
Phillips problem, $n = 200$

<table>
<thead>
<tr>
<th>noise</th>
<th>meth</th>
<th>μ</th>
<th>$|c - Ax|$</th>
<th>$|x - x_0|$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-5}</td>
<td>μ opt</td>
<td>1.3725×10^{-7}</td>
<td>2.9505×10^{-14}</td>
<td>1.6641×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>vm</td>
<td>4.5432×10^{-9}</td>
<td>9.0825×10^{-6}</td>
<td>2.2620×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>gm-opt</td>
<td>5.3835×10^{-9}</td>
<td>9.1722×10^{-6}</td>
<td>2.1174×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>gcv</td>
<td>3.1203×10^{-9}</td>
<td>8.9283×10^{-6}</td>
<td>2.6499×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>disc</td>
<td>1.2107×10^{-8}</td>
<td>1.0000×10^{-5}</td>
<td>1.6873×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>gr</td>
<td>4.1876×10^{-8}</td>
<td>1.5784×10^{-5}</td>
<td>1.9344×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>lc</td>
<td>3.6731×10^{-14}</td>
<td>2.4301×10^{-6}</td>
<td>7.9811×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>qo</td>
<td>1.5710×10^{-8}</td>
<td>1.0542×10^{-5}</td>
<td>1.6463×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>L-rib</td>
<td>2.6269×10^{-14}</td>
<td>2.2118×10^{-6}</td>
<td>8.9457×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>L-cur</td>
<td>4.7952×10^{-14}</td>
<td>2.6093×10^{-6}</td>
<td>7.2750×10^{-1}</td>
</tr>
</tbody>
</table>

G.H. Golub and U. von Matt, Generalized cross-validation for large scale problems, in Recent advances in total least squares techniques and errors in variable modeling, S. van Huffel ed., SIAM, (1997), pp 139–148

