4.1 If \(s(x) = 1 - x/100, 0 \leq x \leq 100 \), calculate

a. \(\mu(x) \)

b. \(F_X(x) \)

c. \(f_X(x) \)

d. \(\Pr(10 < X < 40) \).

4.2 Confirm that \(k\bar{q}_0 = -\Delta s(k) \), and that \(\sum_{k=0}^{\infty} k\bar{q}_0 = 1 \).

4.3 On the basis of Life Table in Chapter 4,

a. Compare the value of \(5\bar{q}_0 \) and \(5\bar{q}_5 \).

b. Evaluate the probability that (25) will die between ages 80 and 85.

4.4 Let the random variable \(K^*(x) = K(x), K(x) = 0, 1, 2, \ldots, n - 1 \)

\[= n, K(x) = n, n + 1, \ldots \]

and denote \(\mathbb{E}[K^*(x)] \) by \(e_{x|n} \). This expectation is called a temporary curtate life expectancy. Show that

a. \(e_{x|n} = \sum_{k=0}^{n-1} k\bar{q}_x + n\bar{p}_x = \sum_{k=0}^{n} k\bar{p}_x \).

b. \(\text{Var}[K^*(x)] = \sum_{k=0}^{n-1} k^2\bar{q}_x + n^2\bar{p}_x - (e_{x|n})^2 = \sum_{k=0}^{n} (2k+1)k\bar{p}_x - (e_{x|n})^2 \).

4.5 If the random variable \(T(x) \) has d.f. given by

\[F_T(t) = \begin{cases} \frac{t}{100-x} & 0 \leq t < 100 - x \\ 1 & t \geq 100 - x \end{cases} \]

Calculate

a. \(\mathbb{E}[T(x)] \), b. \(\text{Var}[T(x)] \), c. \(\text{median}[T(X)] \).

4.6 If \(\mu(x) = \mu \), a positive constant, for all \(x > 0 \), show that \(\bar{A}_x = \mu/(\mu + \delta) \).

4.7 Assume mortality is described by \(l_x = 100 - x \) for \(0 \leq x \leq 100 \) and that the force of interest is \(\delta = 0.05 \).
a. Calculate $A_{40.25}^1$.

b. Determine the actuarial present value for a 25-year term insurance with benefit amount for death at time t, $b_t = e^{0.05t}$, for a person age 40 at policy issue.

4.8 The random variable Z is the present-value random variable for a whole life insurance of unit amount payable at the moment of death and issued to (x). If $\delta = 0.05$ and $\mu_x(t) = 0.01$:

a. Display the formula for the p.d.f of Z.

b. Calculate $\bar{A}_x = E[Z]$ and $\text{Var}(Z)$.

4.9 The random variable Z is the present-value random variable for an n-year endowment insurance. Exhibit the d.f. of Z in terms of the d.f. of T.