Some sufficient conditions for a planar graph to be of Class 1\(^1\)

Peter Che Bor Lam\(^2\), Jiazhuang Liu\(^3\), Wai Chee Shiu\(^2\) and Jianliang Wu\(^3\)

Abstract

In this paper, we first give some upper bounds on the number of edges for two classes of planar graphs. Then using these upper bounds, we obtain some sufficient conditions for a planar graph to be of Class 1.

Key words and phrases: chromatic index, planar graph, Class 1 graph.

AMS 1991 Subject Classifications: 05C15, 05C78

1. Introduction

The chromatic index of a graph \(G\), denoted by \(\chi'(G)\), is the smallest \(k\) for which the edges of \(G\) can be colored by \(k\) colors such that no two adjacent edges have the same color. Vizing (1964) proved that for any simple graph \(G\), \(\chi'(G)\) is either \(\Delta\) or \(\Delta + 1\), where \(\Delta(G)\), or \(\Delta\) for simplicity, is the maximum degree of \(G\). A graph \(G\) is said to be of Class 1 or of Class 2 if \(\chi'(G) = \Delta\) or \(\Delta + 1\) respectively. However, the problem of classifying a graph is \(NP\)-complete - see Hoyler (1981). In fact, even planar graphs have not been completely classified. In this paper, we first give some upper bounds on the number of edges for two types of planar graphs. Using these bounds, we obtain some sufficient conditions for a planar graph to be of Class 1.

All graphs considered in this paper are finite, simple planar graphs. \(G = (V, E, F)\) denotes a plane graph, with \(V\), \(E\) and \(F\) being the set of vertices, edges and faces of \(G\) respectively. The degree of a vertex \(v \in V\), denoted by \(d_G(v)\), is the number of vertices in \(G\) adjacent to \(v\). The degree of a face \(f \in F\), denoted by \(d_G(f)\) is the number of edges incident with \(f\), where cut edges are counted twice. The order of the sets \(V\), \(E\) and \(F\) are denoted by \(\nu\), \(\varepsilon\) and \(\phi\) respectively. Moreover, the number of vertices or faces having degree \(i\) is denoted by \(\nu_i\) or \(\phi_i\) respectively. Undefined symbols and concepts are referred to [5].

\(^1\)Research is partially supported by FRG, Hong Kong Baptist University; RGC Grant, Hong Kong; and by the Doctoral Foundation of the Education Commission of The Peoples’ Republic of China.
\(^2\)Department of Mathematics, Hong Kong Baptist University
\(^3\)Institute of Mathematics, Shandong University, Jinan, 250100, P. R. China
Steinberg [2] first considered an analogous problem in vertex coloring. He conjectured
that every planar graph without 4- and 5-cycle is 3-colorable. In 1990, Erdős [3] proposed
to relax Steinberg’s conjecture by asking if there exists an integer \(k \geq 5 \) such that every
planar graph without \(i \)-cycle, where \(4 \leq i \leq k \), is 3-colorable. In 1996, Borodin [4] proved
that \(k = 9 \) is acceptable. However, the smallest value for \(k \) has not yet been determined.
We shall tackle the edge coloring problem along this line of thought.

2. Lemmas

Definition [6] Let \(G \) be a connected graph with \(\chi'(G) = \Delta + 1 \). We say that \(G \) is critical
if \(\chi'(G - e) < \chi'(G) \) for any edge \(e \) of \(G \). A \(\Delta \)-critical graph is one that is \(\Delta(G) = \Delta \) and
critical. Obviously, every graph with \(\chi'(G) = \Delta(G) + 1 \) has a \(\Delta \)-critical subgraph.

Lemma 1 [6] Let \(G \) be a simple planar graph without loops. If \(G \) is \(\Delta \)-critical, then
\[
\varepsilon \geq \begin{cases}
(5\upsilon + 1)/4 & \text{if } \Delta = 3; \\
5\upsilon/3 & \text{if } \Delta = 4; \\
2\upsilon + 1 & \text{if } \Delta = 5; \\
(9\upsilon + 1)/4 & \text{if } \Delta = 6; \\
5\upsilon/2 & \text{if } \Delta = 7.
\end{cases}
\]

Since it is known that every planar graph with \(\Delta \geq 8 \) is of Class 1 (see [6]), we only
consider graphs with \(3 \leq \Delta \leq 7 \) in this paper.

Lemma 2 Suppose \(k \geq 4 \). If \(G \) is a connected planar graph without two triangles
sharing a common edge and without \(i \)-cycles, where \(3 < i < k \), then
\[
\varepsilon \leq \frac{3k}{2k-3} (\upsilon - 2).
\]

Proof We consider a fixed embedding of \(G \) into the plane. Since \(G \) has no two triangles
sharing a common edge, \(\varepsilon \geq 3\phi_3 \) and
\[
2\varepsilon = 3\phi_3 + \sum_{i=k}^{\infty} i\phi_i \quad (1)
\]
\[
\phi \leq \frac{k+3}{3k-3} \cdot \varepsilon.
\]
That is \(\phi \leq \frac{k+3}{3k-3} \cdot \varepsilon \). Since \(G \) is a plane graph, by Euler’s formula, we have
\[
2 = v - \varepsilon + \phi \leq v - \varepsilon + \frac{k+3}{3k} \cdot \varepsilon,
\]
and therefore
\[
\varepsilon \leq \frac{3k}{2k-3} (v-2).
\]

Lemma 3 Suppose \(k \geq 4 \). If \(G \) is a connected planar graph without two 3-cycles sharing a common vertex and without \(i \)-cycles, where \(3 < i < k \), then
\[
\varepsilon \leq \frac{4k-3}{3(k-2)} - \frac{2k}{k-2}.
\]

Proof As in Lemma 2, we consider a fixed embedding of \(G \) into the plane. Since \(G \) has no two triangles sharing a common vertex, \(v \geq 3\phi_3 \) and similar to (1), we have
\[
2\varepsilon \geq \left(k \sum_{i=3}^{\infty} \phi_i \right) - (k-3)\phi_3
\]
\[
\geq k\phi - \frac{k-3}{3} v.
\]
That is \(\phi \leq \frac{2}{k} \cdot \varepsilon + \frac{k-3}{3k} v \). Since \(G \) is a plane graph, by Euler’s formula, we have
\[
2 = v - \varepsilon + \phi \leq v - \varepsilon + \frac{2}{k} \cdot \varepsilon + \frac{k-3}{3k} v,
\]
and therefore
\[
\varepsilon \leq \frac{4k-3}{3(k-2)} v - \frac{2k}{k-2}.
\]

3. Sufficient Conditions

The following theorem states several sufficient conditions for a planar graph to be of Class 1.

Theorem 4 Suppose \(G \) is a connected planar graph. Then \(\chi'(G) = \Delta(G) \) if one of the following conditions is satisfied:
1. $\Delta \geq 6$ and G has no 4-cycle,
2. $\Delta \geq 6$ and no two triangles of G sharing one common vertex,
3. $\Delta \geq 7$ and no two triangles of G sharing one common edge,
4. $\Delta \geq 5$ and G has no 4-cycle and 5-cycle,
5. $\Delta \geq 4$ and G has no i-cycle, where $4 \leq i \leq 14$,
6. $\Delta \geq 5$ and G has no 4-cycle and has no two triangles sharing a common vertex,
7. $\Delta \geq 4$ and G has no 4-through 6-cycle and has no two triangles sharing a common vertex.

Proof (1) Suppose G is a graph satisfying conditions of this part and $\chi'(G) = \Delta + 1$. Without loss of generality, we may assume that G is Δ-critical. By Lemma 1, we have

$$\varepsilon \geq \frac{9\nu + 1}{4}.$$

Letting $k = 5$ in Lemma 2, we have $\varepsilon \leq \frac{15(\nu - 2)}{7}$. If $\nu \geq 2$, then

$$\varepsilon \leq \frac{15}{7}(\nu - 2) < \frac{9\nu + 1}{4} \leq \varepsilon.$$

This contradiction completes the proof of this part.

(2) Again, as in (1), suppose G is a graph satisfying conditions of this part and is Δ-critical. By Lemma 1, we have $\varepsilon \geq \frac{9\nu + 1}{4}$. Also, since G has no two triangles sharing a common vertex, by Lemma 3, letting $k = 4$, we have $\varepsilon \leq \frac{13\nu - 24}{6}$. If $\nu \geq 2$, then

$$\varepsilon \leq \frac{13\nu - 24}{6} < \frac{9\nu + 1}{4} \leq \varepsilon.$$

The contradiction completes the proof of this part.

(3) - (6) The proof of these parts is similar to above and therefore is omitted.

References

