1. (20 marks) Let p and q be the propositions,

\[p : \text{It is below freezing.} \]
\[q : \text{It is snowing.} \]

Write these propositions using p and q and logical connectives.

(a) It is not below freezing and it is not snowing. (5 marks)
Sol: $\neg p \land \neg q$.

(b) If it is below freezing, it is also snowing. (5 marks)
Sol: $p \land q$.

(c) It is below freezing but not snowing. (5 marks)
Sol: $p \land \neg q$.

(d) That it is below freezing is necessary and sufficient for it to be snowing. (5 marks)
Sol: $p \leftrightarrow q$.

2. (20 marks) Show that $(p \rightarrow q) \land (q \rightarrow \gamma) \rightarrow (p \rightarrow \gamma)$ is a tautology.
Sol: Shown in the table below, the proposition is always true for any (p, q, r), so is a tautology.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>$(p \to q) \land (q \to r)$</th>
<th>$p \to r$</th>
<th>$(p \to q) \land (q \to r) \to (p \to r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

3. (20 marks) In a standard deck of 52 playing cards, each of the 4 suits $\clubsuit, \diamondsuit, \heartsuit,$ and \spadesuit contains 13 values including 2-10, J, Q, K and A. If five cards are selected, find the number of combinations of

(a) 5 hearts (\heartsuit); (8 marks)
Sol: $C_{13}^5 = 1287$.

(b) a pair of Ks and three other cards of different values. (12 marks)
Sol: $C_4^2 \times C_{48}^3 = 103776$.

4. (20 marks) Prove that $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$. Using set Identities
Sol: By De Morgan’s laws, it can be derived,
\[A \cap B \cap C = A \cap B \cup C = A \cup B \cup C. \]

5. (20 marks) Let \(m, n \) be two positive integers. Consider two set
\(A = \{ a_1, a_2, \ldots, a_m \}, B = \{ b_1, b_2, \ldots, b_n \}. \) How many functions can be defined from \(A \) to \(B \) if
(a) no restriction when \(m \geq n \) (10 marks)?
Sol: \(n^m. \)
(b) the functions are bijection functions when \(m = n \) ? (10 marks)
Sol: \(m! \) (or \(n! \)).