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”Curiosity is part of human nature. Unfortu-

nately, the established religions no longer pro-
vide the answers that are satisfactory, and that
translates into a need for certainty and truth.

And that is what makes mathematics work,
makes people commit their lives to it.

It is the desire for truth and the response to
the beauty and elegance of mathematics that

drives mathematicians”

Landon Clay (Wealthy mutual fund magnate

and Harvard English graduate.)
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Millennium Prize Problems

“To celebrate mathematics in the new millen-
nium, CMI identifies seven old and important
mathematics questions that resisted all past
attempts to solve them. Clay Mathematics In-
stitute designates the $7 million prize fund for
their solution, with $1 million allocated to each
Millennium Prize Problem.

The Clay Mathematics Institute (CMI) is a pri-
vate, non-profit foundation, dedicated to in-
crease and to disseminate mathematical knowl-
edge. The formation of CMI grew from the
vision of Boston businessman Landon T. Clay
working together with mathematician Arthur
M. Jaffe: mathematics embodies the quintessence
of human knowledge; mathematics reaches into
every field of human endeavor; and the fron-
tiers of mathematical understanding evolve to-
day in deep and unfathomable ways.



Fundamental advances in mathematical knowl-
edge go hand in hand with discoveries in all

fields of science.

Technological applications of mathematics un-

derpin our daily life, including our ability to
communicate and to travel, our health and

well-being, our security, and our global pros-
perity.

The evolution of mathematics today will re-
main a central ingredient in shaping our world

tomorrow. To appreciate the scope of mathe-
matical truth challenges the capabilities of the

human mind.

CMI attempts to further the beauty, the power,

and the universality of mathematical thought.
Toward this end, CMI currently pursues a series

of programs.”
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“It still remains true that, with negative theo-
rems such as this, transforming personal con-

victions into objective ones requires deterringly
detailed work. To visualize the whole variety of
cases, one would have to display a large num-

ber of equations by curves; each curve would
have to be drawn by its points, and determin-

ing a single point alone requires lengthy com-
putations.You do not see from Fig. 4 in my

first paper of 1799 , how much work was re-
quired for a proper drawing of that curve.”

K. F. Gauss (1777-1855)







The Problems



1. BIRCH AND SWINNERTON-DYER

CONJECTURE

Mathematicians have always been fascinated
by the problem of describing all solutions in

whole numbers x,y,z to algebraic equations like

x2 + y2 = z2

Euclid gave the complete solution for that equa-

tion, but for more complicated equations this
becomes extremely difficult.

Indeed, in 1970 Yu. V. Matiyasevich showed
that Hilbert’s tenth problem is unsolvable, i.e.,

there is no general method for determining
when such equations have a solution in whole

numbers.



But in special cases one can hope to say some-

thing. When the solutions are the points of an
abelian variety, the Birch and Swinnerton-Dyer

conjecture asserts that the size of the group of
rational points is related to the behavior of an

associated zeta function ζ(s) near the point
s=1.

In particular this amazing conjecture asserts
that if ζ(1) is equal to 0, then there are an

infinite number of rational points (solutions),
and conversely, if ζ(1) is not equal to 0, then

there is only a finite number of such points.



Too Obscure to EVEN STATE

2. HODGE CONJECTURE

In the twentieth century mathematicians dis-
covered powerful ways to investigate the shapes
of complicated objects. The basic idea is to
ask to what extent we can approximate the
shape of a given object by gluing together sim-
ple geometric building blocks of increasing di-
mension.a

This technique turned out to be so useful that
it got generalized in many different ways, even-
tually leading to powerful tools that enabled
mathematicians to make great progress in cat-
aloging the variety of objects they encountered
in their investigations.

Unfortunately, the geometric origins of the pro-
cedure became obscured in this generalization.



In some sense it was necessary to add pieces
that did not have any geometric interpretation.

The Hodge conjecture asserts that for particu-
larly nice types of spaces called projective alge-

braic varieties, the pieces called Hodge cycles
are actually (rational linear) combinations of

geometric pieces called algebraic cycles.



Weather Forecasting!

3. NAVIER-STOKES EQUATIONS

Waves follow our boat as we meander across

the lake, and turbulent air currents follow our
flight in a modern jet.

Mathematicians and physicists believe that an
explanation for and the prediction of both the

breeze and the turbulence can be found through
an understanding of solutions to the Navier-

Stokes equations.

Although these equations were written down in

the 19th Century, our understanding of them
remains minimal. The challenge is to make

substantial progress toward a mathematical the-
ory which will unlock the secrets hidden in the

Navier-Stokes equations.









A Canadian Connection

Formulated in large measure by Stephen Cook
(1971).

4. P VS NP

Suppose that you are organizing housing ac-
commodations for a group of four hundred
university students. Space is limited and only
one hundred of the students will receive places
in the dormitory. To complicate matters, the
Dean has provided you with a list of pairs of
incompatible students, and requested that no
pair from this list appear in your final choice.

This is an example of what computer scien-
tists call an NP-problem, since it is easy to
check if a given choice of one hundred stu-
dents proposed by a coworker is satisfactory
(i.e., no pair from taken from your coworker’s



list also appears on the list from the Dean’s
office), however the task of generating such a
list from scratch seems to be so hard as to be
completely impractical.

Indeed, the total number of ways of choosing
one hundred students from the four hundred
applicants is greater than the number of atoms
in the known universe!

Thus no future civilization could ever hope to
build a supercomputer capable of solving the
problem by brute force; that is, by checking
every possible combination of 100 students.
However, this apparent difficulty may only re-
flect the lack of ingenuity of your programmer.

In fact, one of the outstanding problems in
computer science is determining whether ques-
tions exist whose answer can be quickly checked,
but which require an impossibly long time to
solve by any direct procedure.



Problems like the one listed above certainly
seem to be of this kind, but so far no one has

managed to prove that any of them really are
so hard as they appear, i.e., that there really

is no feasible way to generate an answer with
the help of a computer. Stephen Cook and

Leonid Levin formulated the P (i.e., easy to
find) versus NP (i.e., easy to check) problem

independently in 1971.
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The First to Go?

5. POINCARE CONJECTURE

If we stretch a rubber band around the surface
of an apple, then we can shrink it down to a

point by moving it slowly, without tearing it
and without allowing it to leave the surface.

On the other hand, if we imagine that the same
rubber band has somehow been stretched in
the appropriate direction around a doughnut,

then there is no way of shrinking it to a point
without breaking either the rubber band or the

doughnut.

We say the surface of the apple is ”simply con-

nected,” but that the surface of the doughnut
is not.



Henri Poincaré (1856–1910)

Elected to all five divisions of the French Academy
of Sciences

– Geometry

– Mechanics

– Physics

– Geography

– Navigation

From MathWorld

Poincare Conjecture

In its original form, the Poincare conjecture
states that every simply connected closed three-
manifold is homeomorphic to the three- sphere



(in a topologist’s sense) , where a three-sphere
is simply a generalization of the usual sphere
to one dimension higher. More colloquially,
the conjecture says that the three-sphere is the
only type of bounded three-dimensional space
possible that contains no holes. This conjec-
ture was first proposed in 1904 by H. Poincare,
and subsequently generalized to the conjecture
that every compact n-manifold is homotopy-
equivalent to the n-sphere iff it is homeomor-
phic to the n-sphere. The generalized state-
ment reduces to the original conjecture for n
= 3.

The Poincare conjecture has proved a thorny
problem ever since it was first proposed, and
its study has led not only to many false proofs,
but also to a deepening in the understanding
of the topology of manifolds (Milnor). One of
the first incorrect proofs was due to Poincare
himself, stated four years prior to formulation



of his conjecture, and to which Poincare sub-

sequently found a counterexample. In 1934,
Whitehead proposed another incorrect proof,
then discovered a counterexample (the White-

head link) to his own theorem.



The n = 2 case is classical (and was known
to 19th century mathematicians), n = 3 (the
original conjecture) remains open, n = 4 was
proved by Freedman (1982) (for which he was
awarded the 1986 Fields medal), n = 5 was
demonstrated by Zeeman (1961), n = 6 was
established by Stallings (1962), and was shown
by Smale in 1961 (although Smale subsequently
extended his proof to include all ).

In April 2002, M. J. Dunwoody produced a
five-page paper that purports to prove the con-
jecture. However, Dunwoody’s manuscript was
quickly found to be fundamentally flawed (Weis-
stein 2002). A much more promising result
has been reported by Perelman (2002, 2003;
Robinson 2003). Perelman’s work appears to
establish a more general result known as the
Thurston’s geometrization conjecture, from which
the Poincare conjecture immediately follows
(Weisstein 2003). Mathematicians familiar with
Perelman’s work describe it as well thought-
out and expect that it will be difficult to locate
any substantial mistakes (Robinson 2003).



6. RIEMANN HYPOTHESIS

Some numbers have the special property that

they cannot be expressed as the product of two
smaller numbers, e.g., 2, 3, 5, 7, etc. Such

numbers are called prime numbers, and they
play an important role, both in pure mathe-
matics and its applications.

The distribution of such prime numbers among
all natural numbers does not follow any regular

pattern, however the German mathematician
G.F.B. Riemann (1826 - 1866) observed that

the frequency of prime numbers is very closely
related to the behavior of an elaborate function

ζ(s) called the Riemann Zeta function.



The Riemann hypothesis asserts that all inter-
esting solutions of the equation

ζ(s) = 0

lie on a straight line. This has been checked for
the first 1,500,000,000 solutions. A proof that
it is true for every interesting solution would

shed light on many of the mysteries surround-
ing the distribution of prime numbers.





In search of grand unified theories.

“ I can safely say that no one understands

quantum mechanics”

Richard Feynman (1965)

“ (quantum field theory) a twentieth century
scientific theory that uses twenty-first century

mathematics”

Edward Witten

7 YANG-MILLS THEORY

The laws of quantum physics stand to the

world of elementary particles in the way that
Newton’s laws of classical mechanics stand to

the macroscopic world.



Almost half a century ago, Yang and Mills in-
troduced a remarkable new framework to de-
scribe elementary particles using structures that
also occur in geometry.

Quantum Yang-Mills theory is now the founda-
tion of most of elementary particle theory, and
its predictions have been tested at many ex-
perimental laboratories, but its mathematical
foundation is still unclear.

The successful use of Yang-Mills theory to de-
scribe the strong interactions of elementary
particles depends on a subtle quantum me-
chanical property called the ”mass gap:” the
quantum particles have positive masses, even
though the classical waves travel at the speed
of light. This property has been discovered by
physicists from experiment and confirmed by
computer simulations, but it still has not been
understood from a theoretical point of view.



Progress in establishing the existence of the

Yang-Mills theory and a mass gap and will re-
quire the introduction of fundamental new ideas

both in physics and in mathematics.



More about the RIEMANN HYPOTHESIS

Ask any professional mathematician to name

the most important unsolved problem of math-
ematics and the answer is virtually certain to
be, “the Riemann Hypothesis.”

Keith Devlin – The Millennium Problems –
2002



On the Number of Prime Numbers less

than a Given Quantity.

(Ueber die Anzahl der Primzahlen unter

einer gegebenen Grösse.)

Bernhard Riemann

[Monatsberichte der Berliner Akademie,

November 1859.]

Translated by David R. Wilkins

”One now finds indeed approximately this num-
ber of real roots within these limits, and it is
very probable that all roots are real. Certainly

one would wish for a stricter proof here; I have
meanwhile temporarily put aside the search for

this after some fleeting futile attempts, as it
appears unnecessary for the next objective of

my investigation.”
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The Holy Grail

The Holy Grail in mathematics is the Riemann
Hypothesis. Ths problem was formulated in
1859 by Bernard Riemann, one of the extraor-
dinary talents of the 19th century.

The Riemann Hypothesis makes a very pre-
cise connection between two seemingly unre-
lated objects, and if solved, would tell us some-
thing profound about the nature of mathemat-
ics and, in particular, numbers. Why is the
Riemann Hypothesis so important?

Why is it the problem that mathematicians
would make a pact with the devil to solve?
There are a number of great old unsolved prob-
lems in mathematics but none of them have
quite the stature of the Riemann Hypothesis –
for a variety of reasons both mathematical and
sociological.



In common with the other old great unsolved
problems, the Riemann Hypothesis is clearly
very hard. It has resisted solution for 150 years
and has been attempted by many of the great-
est minds in mathematics.

David Hilbert one of the seminal figures in
mathematical history and a great mathemati-
cian re raised the problem at the 1900 Interna-
tional Congress of Mathematics, a conference
held every 4 years and the most important in-
ternational mathematics meeting.

Hilbert, who by that time was the pre emi-
nent mathematician of his generation, raised
23 problems that he thought would shape 20th
century mathematics, and in large this proved
to be true. This was somewhat self-fulfilling as
solving a Hilbert problem was a guarantee of
instant fame and perhaps local riches. Many of
Hilbert’s problems have been now been solved.



The most notable recent example being the
Fermat problem solved by Andrew Wiles in
1993–5.

Being one of Hilbert’s 23 problems was enough
to guarantee the Riemann problem being cen-
tral. (But there is now also a million dollar
bounty in the form of the ”Millennium Prize
Problem” of the Clay Mathematics Institute
of Cambridge.)

Solving one of the great unsolved problems in
mathematics is akin to the first ascent of Ever-
est. It is a formidable achievement but after
its conquest there is usually nowhere to go but
down. Some of the great problems proved to
be isolated mountain peaks not connected to
any others.

The Riemann Hypothesis is quite different in
this regard. There is a large body of math-
ematics that would instantly become proved



if the Riemann Hypothesis was solved. We

know many statements of the form ”if the Rie-
mann Hypothesis then the following interest-

ing mathematical statement” and this is quite
different from the solution of problems such as
the Fermat problem. The Riemann Hypothesis

can be formulated in many diverse and seem-
ingly unrelated ways, this is one of its beau-

ties. One formulation is that certain numbers
related to the so called ”Riemann Zeta func-

tion” lie in a certain place and this formulation
can to some extent be checked numerically.

In one of the largest calculations ever done to
date, it was checked that the first hundred bil-

lion of these zeros lie where they are supposed
to lie. So there are a hundred billion pieces of

evidence indicating that the Riemann Hypoth-
esis is true and not a single piece of evidence

indicating that it is false.



The average physicist would be overwhelm-
ingly pleased with this much evidence in its
favor but to the average mathematician this is
hardly evidence at all, merely more than inter-
esting ancillary information.

A proof is required that all of these numbers
lie in the right place, not just the first hundred
billion, and until the proof is provided the Rie-
mann Hypothesis cannot be incorporated into
the corpus of mathematical facts and accepted
as true by mathematicians. (Even though it is
undoubtably true!)

Mathematicians are very fussy about this need
for proof. Mathematics is built brick by brick
and a single misplaced brick, a single wrong
fact, brings the whole edifice down, at least
logically. Any statement you like follows logi-
cally from a single wrong fact, so in the pres-
ence of a single wrong fact, all mathematics is
in question.



Accept for a moment that the Riemann Hy-
pothesis is the greatest unsolved problem in

mathematics and that the greatest achieve-
ment any young graduate student could aspire

to is to solve it.

Why isn’t it better known? Why hasn’t it per-

meated public consciousness? (The way black
holes and unified field theory have, at least to

some extent.) Part of the reason for this is it
is hard to state precisely.

It requires most of an undergraduate degree
in mathematics to be familiar with enough the

objects to even accurately state the Riemann
Hypothesis. Our suspicion is that only a mi-

nority of professional mathematicians –perhaps
a quarter – can accurately state the Riemann

Hypothesis if asked.





Are grand challenge problems good for math-
ematics?

Are grand challenge problems good for math-
ematicians?

Would Nobel prizes in mathematics help or
hurt the field?




