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1. Introduction

It is well known that the diffusive logistic or

Verhulst equation is a scalar reaction diffu-

sion equation with a simple hump nonlinearity

(quadratic nonlinearity in the classical case).

This equation describes the immigration of a

species into a territory or the advance of an ad-

vantageous gene into a population. The equa-

tion provides the classical example for traveling

fronts in parabolic equations, and it forms the

nucleus of more complex multi-species mod-

els in ecology, pattern formation and epidemi-

ology. In order to consider the case where

the population individuals switch between mo-

bile and stationary states during their lifetime,

Lewis and Schmitz (1996) presented and anal-

ysed the following reaction-diffusion model



{
∂tv = D∆v − µv − γ2v + γ1w,
∂tw = rw(1− w/K)− γ1w + γ2v,

(1)

where v(t, x) and w(t, x) are spatial densities
of migrating and sedentary subpopulations, re-
spectively, D is diffusion coefficient of migrat-
ing subpopulation, γ1 and γ2 are transition rates
between two states. In model (1), the mi-
grants have a positive mortality µ while the
sedentary subpopulation reproduces (with the
intrinsic growth rate r) and is subject to a fi-
nite carrying capacity K. They determined the
minimal speed for traveling waves under the as-
sumption that the emigration rate is less than
the intrinsic growth rate for the sedentary class
(γ1 < r). Recently, Hadeler and Lewis (2002)
studied, among others, the spread rate for the
system (1) in the general case. We note that
the existence and nonexistence of monotone
traveling wave, and hence the existence of min-
imal wave speed, for system (1) need to be
investigated further.



The purpose of this work is to use the theory

developed in a number of papers for nonlin-

ear integral equations to study the asymptotic

speed of spread and monotone traveling waves

of system (1). For convenience and other pos-

sible applications, we then consider the follow-

ing general diffusive logistic equation with a

sedentary compartment
{

∂tv(t, x) = D∆v(t, x)− rv(t, x) + f(w(t, x)),
∂tw(t, x) = g(w(t, x)) + βv(t, x),

(2)

with initial conditions

v(0, x) = φ1(x) ≥ 0, w(0, x) = φ2(x) ≥ 0, x ∈ Rn,

(3)

where D, r and β are positive constants, and

the conditions on functions f and g are to be

specified in section 3.



2. Preliminaries

In this section, based on the paper [H. R. Thieme,

X.-Q. Zhao, J. Differential Equations, (2003)],

we present the preliminary results that will be

used in the subsequent sections.

Consider nonlinear integral equations

u(t, x) = u0(t, x)+
∫ t

0

∫

Rn
F (u(t−s, x−y), s, y) dyds,

(4)

where F : R2
+ × Rn → R is continuous in u and

Borel measurable in (s, y), and u0 : R+×Rn →
R+ is Borel measurable and bounded. Assume

that

(A) There exists a function k : R+×Rn → R+

such that

(A1) k∗ :=
∫∞
0

∫
Rn k(s, x) dxds < ∞.



(A2) 0 ≤ F (u, s, x) ≤ uk(s, x), ∀u, s ≥ 0, x ∈ Rn.

(A3) For every compact interval I in (0,∞),

there exists some ε > 0 such that

F (u, s, x) ≥ εk(s, x), ∀u ∈ I, s ≥ 0, x ∈ Rn.

(A4) For every ε > 0, there exists some δ > 0

such that

F (u, s, x) ≥ (1−ε)uk(s, x), ∀u ∈ [0, δ], s ≥ 0, x ∈ Rn.

(A5) For every w > 0, there exists some Λ > 0

such that

|F (u, s, x)− F (v, s, x)| ≤ Λ|u− v|k(s, x),
∀u, v ∈ [0, w], s ≥ 0, x ∈ Rn.

To obtain asymptotic properties of the solu-

tions of equation (4), we make a couple of

assumptions concerning k.



(B) k : R+ × Rn → R+ is a Borel measurable

function such that

(B1) k∗ :=
∫∞
0

∫
Rn k(s, y) dyds ∈ (1,∞).

(B2) There exists some λ♦ > 0 such that
∫ ∞
0

∫

Rn
eλ♦y1k(s, y) dyds < ∞,

where y1 is the first coordinate of y.

(B3) There exist numbers σ2 > σ1 > 0, ρ > 0

such that

k(s, x) > 0, ∀s ∈ (σ1, σ2), |x| ∈ [0, ρ).

(B4) k is isotropic.

Here a function k : [0,∞)×Rn → R is said to be

isotropic if for almost all s > 0, k(s, x) = k(s, y)



whenever |x| = |y|. For a fixed z ∈ Rn with

|z| = 1, define

K(c, λ) :=
∫ ∞
0

∫

Rn
e−λ(cs−z·y)k(s, y) dyds,

∀c ≥ 0, λ ≥ 0,

where · means the usual inner product on Rn.

Assume that k is isotropic, there holds

K(c, λ) =
∫ ∞
0

∫

Rn
e−λ(cs+y1)k(s, y) dyds,

where y1 is the first coordinate of y. Define

c∗ := inf{c ≥ 0 : K(c, λ) < 1 for some λ > 0}.
The following result is useful for the computa-

tion of c∗.

Proposition 2.1. Let (B) hold and assume

that lim infλ↗λ#(c)K(c, λ) ≥ k∗ for every c > 0.

Then there exists a unique λ∗ ∈ (0, λ#(c∗))
such that K(c∗, λ∗) = 1 and K(c∗, λ) > 1 for



λ 6= λ∗. Moreover, c∗ and λ∗ are uniquely de-
termined as the solutions of the system

K(c, λ) = 1,
d

dλ
K(c, λ) = 0.

Definition 2.1. A number c∗ > 0 is called
the asymptotic speed of spread for a function
u : R+ × Rn → R+ if limt→∞, |x|≥ct u(t, x) = 0
for every c > c∗, and there exists some ū > 0
such that limt→∞, |x|≤ct u(t, x) = ū for every c ∈
(0, c∗).

The following two results show that c∗ defined
above is the asymptotic speed of spread for
solutions of (4).

Theorem 2.1. Let (A) and (B) hold and let
u(t, x) be a solution of (4) with u0(t, x) being
admissible. Then limt→∞, |x|≥ct u(t, x) = 0 for
each c > c∗.

Theorem 2.2. Let (A) and (B) hold and
let u0 : R+ × Rn → R+ be a bounded and



Borel measurable function with the property

that u0(t, x) ≥ η > 0, ∀t ∈ (t1, t2), |x| ≤ η, for

appropriate t2 > t1 ≥ 0 and η > 0. Also, let

u be a bounded solution of (4) and u∞ :=

lim supt→∞ supx∈Rn u(t, x). Assume that F ( · , s, x)
is monotone increasing on [0, u∞] for each (s, x) ∈
R+ × Rn and limt→∞ u0(t, x) = 0 uniformly in

x ∈ Rn. Let u∗ > 0 be such that F̃ (u) :=∫∞
0

∫
Rn F (u, s, y) dyds > u whenever u ∈ (0, u∗)

and F̃ (u) < u whenever u ∈ (u∗, u∞]. Then we

have limt→∞,|x|≤ct u(t, x) = u∗, ∀c ∈ (0, c∗).

Next we consider the limiting equation of (4)

with n = 1

u(t, x) =
∫ ∞
0

∫

R
F (u(t− s, x− y), s, y) dyds. (5)

A solution u(t, x) of (5) is said to be a traveling

wave solution if it is of the form u(t, x) = U(x+

ct). The parameter c is called the wave speed,

and the function U(·) is called the wave profile.



Here, we require the following conditions on

the wave profile:

U(·) is positive and bounded on R, and

lim
ξ→−∞

U(ξ) = 0. (6)

The following two results deal with the exis-

tence and nonexistence of traveling wave solu-

tions of (5).

Theorem 2.3. Let (A2) and (B) with n = 1

hold. Assume that there exists some u∗ > 0

such that F̃ (u∗) = u∗ and F̃ (u) > u for all

u ∈ (0, u∗), where F̃ (u) :=
∫∞
0

∫
R F (u, s, y) dyds.

Moreover, suppose that F ( · , s, x) is increas-

ing on [0, u∗] for each (s, x) ∈ R+ × R, and

F (u, s, x) ≥ (u − buσ)k(s, x),∀u ∈ [0, δ], (s, x) ∈
R+ × R, for appropriate δ ∈ (0, u∗], σ > 1 and

b > 0. Then for each c > c∗, there exists a

monotone traveling wave solution of (5) with

speed c and connecting 0 and u∗.



Theorem 2.4. Let (A) and (B) hold. Then

for each c ∈ (0, c∗), there exists no traveling

wave solution of (5) and (6) with speed c.

Finally, we consider nonlinear integral equa-

tions

u(t, x) = u0(t, x) +
∫ t

0
e−asf0(u(t− s, x))ds

+
∫ t

0

∫

Rn
F0

(
u(t− s, x− y), s, y

)
dyds (7)

where a > 0, f0 ∈ C(R+,R), F0 : R2
+×Rn → R is

continuous in u and Borel measurable in (s, y),

and u0 : R+ × Rn → R+ is Borel measurable

and bounded. We assume that

(H1) f0 ∈ C1(R+,R+), f ′0(u) ≥ 0 and f0(u) ≤
f ′0(0)u for all u ≥ 0.

(H2) F0(u, s, x) satisfies (A1)-(A5), and the as-

sociated k0(s, x) satisfies (B2)-(B4).



Using the measure integral for Dirac function

δ(x) on Rn, we write equation (7) as

u(t, x) = u0(t, x)

+
∫ t

0

∫

Rn
e−asf0(u(t− s, x− y))δ(y)dyds

+
∫ t

0

∫

Rn
F0

(
u(t− s, x− y), s, y

)
dyds.

It then follows that (7) can be written formally

as the equation (4) with

F (u, s, x) := f0(u)e−asδ(x) + F0(u, s, x),

k(s, x) := f ′0(0)e−asδ(x) + k0(s, x).

Remark 1 By modifying slightly the previous

proofs, we see that Theorems 2.1–2.4 in this

section remain valid for equation (7) provided

that assumptions (H1), (H2) and (B1) hold.

Note that in all integral computations it is un-

derstood that
∫
Rn φ(x− y)δ(y)dy = φ(x).



3. The spreading speed

Motivated by the biological model (1), we im-

pose the following conditions on equation (2).

(C1) f : R+ → R+ is Lipschitz continuous and

nondecreasing, differentiable at 0, f(0) =

0, f(u) > 0,∀u > 0, and f is sublinear on

R+ in the sense that f(θw) ≥ θf(w) for any

θ ∈ (0,1), w ∈ R+.

(C2) g : R+ → R is continuously differentiable,

g(0) = 0, strictly sublinear on R+ in the

sense that g(θw) > θg(w) for any θ ∈ (0,1), w >

0.

(C3) βf ′(0)+rg′(0) > 0, and there exists w∗ > 0

such that rg(w∗) + βf(w∗) = 0.



Consider the reaction system associated with

(2)
{

dv
dt = −rv + f(w),
dw
dt = g(w) + βv.

(8)

Because of assumptions (C1)–(C3) on f and g,

system (8) is cooperative on R2
+, and admits

a positive equilibrium (f(w∗)
r , w∗). Also, two

roots of the characteristic equation associated

with the linearization at zero equilibrium of (8)

are

λ± =
g′(0)− r ±

√
[g′(0)− r]2 + 4[βf ′(0) + rg′(0)]

2
,

and hence, λ+ > 0 and λ− < 0. It is easy to see

that every solution to (8) with nonnegative ini-

tial value remains nonnegative. Also, system

(8) admits a unique steady state (f(w∗)
r , w∗),

which is globally asymptotically stable in R2
+\{0}.

By the standard comparison arguments, it fol-

lows that solutions to (8) are uniformly bounded

on R2
+.



Let X := BUC(Rn,R2) be the Banach space

of all bounded and uniformly continuous func-

tions from Rn to R2 with the usual supreme

norm, and

X+ = {(φ1, φ2) ∈ X : φi(x) ≥ 0, ∀x ∈ Rn, i = 1,2}.
Then X+ is a positive cone of X, and its in-

duced partial ordering makes X into a Banach

lattice.

Lemma 3.1. Let (C1)–(C3) hold. For any

φ ∈ X+, system (2) has a unique, bounded and

nonnegative mild solution U(t, x, φ) = (v(t, x, φ),

w(t, x, φ)) with U(0, ·, φ) = φ, and the solution

semiflow associated with (2) is monotone on

X+.

In the rest of this section, we will find the

spreading speed c∗ for solutions of system (2).

In order to use the theory prsented in Section



2, we need to reduce (2)–(3) into a scalar in-

tegral equation. Let Γ(t, x − y) be the Green

function associated with the parabolic equa-

tion
{

∂tu = D∆u,
u(0, x) = φ(x), x ∈ Rn, t > 0.

Then ∂tv = D∆v − rv generates a linear semi-

group T (t) : BUC(Rn,R) → BUC(Rn,R), which

is defined by

(T (t)φ)(x) = e−rt
∫

Rn
Γ(t, x− y)φ(y) dy,

∀φ ∈ BUC(Rn,R). (9)

Integrating the first equation of system (2)

∂tv(t, x) = D∆v(t, x)− rv(t, x) + f(w(t, x)),

we have the following abstract integral form

v(t) = T (t)v(0) +
∫ t

0
T (t− s)f(w(s)) ds,



that is,

v(t, x) = e−rt
∫

Rn
Γ(t, x− y)φ1(y) dy

+
∫ t

0
e−r(t−s)

∫

Rn
Γ(t− s, x− y)f(w(s, y)) dyds.

(10)

Given α > 0, we define a nondecreasing func-

tion gα( · ) on R+ by

gα(w) = sup{αu + g(u) : 0 ≤ u ≤ w}, ∀w ≥ 0.

Then, for any bounded solution of (2), we can

choose sufficiently large α > 0 such that the

second equation in system (2)

∂tw(t, x) = g(w(t, x)) + βv(t, x)

takes the form

∂tw(t, x) = −αw(t, x) + gα(w(t, x)) + βv(t, x).

(11)



It follows from (11) that

w(t, x) = e−αtφ2(x) + β
∫ t

0
e−α(t−s)v(s, x) ds

+
∫ t

0
e−α(t−s)

∫

Rn
δ(x− y)gα(w(s, y)) dyds,

(12)

where δ(x) is the Dirac function. After a sub-

stitution, we have
∫ t

0
dse−α(t−s)

∫

Rn
δ(x− y)gα(w(s, y)) dy

=
∫ t

0
ds

∫

Rn
k1(s, x− y)gα(w(t− s, y)) dy,

(13)

where k1(s, x) = e−αsδ(x),∀x ∈ Rn and ∀s ≥ 0.

By (10), we obtain
∫ t

0
e−α(t−s)v(s, x) ds = G(t, x)

+
∫ t

0
dse−α(t−s)e−rs

∫

Rn
Γ(s, x− y)φ1(y) dy

(14)



with

G(t, x) =
∫ t

0
ds

∫

Rn
k2(s, x− y)f(w(t− s, y)) dy,

(15)

where k2(s, x) = e−αs ∫ s
0 e(α−r)s1Γ(s1, x) ds1, ∀x ∈

Rn and ∀s ≥ 0.

Inserting (13)–(15) into (12), we obtain

w(t, x) = w0(t, x)

+
∫ t

0

∫

Rn
Fα(w(t− s, x− y), s, y) dyds, (16)

where

w0(t, x) = e−αtφ2(x)

+β
∫ t

0
dse−α(t−s)e−rs

∫

Rn
Γ(s, x− y)φ1(y) dy

and

Fα(w, s, y) = gα(w)k1(s, y) + βf(w)k2(s, y). (17)

Let α + g′(0) > 0. In view of (17), we define

k(s, y) := g′α(0)k1(s, y) + βf ′(0)k2(s, y). (18)



It follows that assumption (A) holds for (16).

Next, we need to compute some Laplace-like

transforms of integral kernels. For any func-

tion φ : R+ × Rn → R, let

Kφ(c, λ) :=
∫ ∞
0

∫

Rn
e−λ(cs+y1)φ(s, y) dyds, c, λ ≥ 0,

where y1 is the first coordinate of y. It follows

that

Kk(c, λ) =
1

λc + α

(
g′α(0)− βf ′(0)

λ2D − λc− r

)
.

(19)

We define

c∗ := inf{c ≥ 0 : Kk(c, λ) < 1 for some λ > 0}.
According to Proposition 2.1, c∗ can be uniquely

determined as the positive solution of the sys-

tem

Kk(c, λ) = 1,
d

dλ
Kk(c, λ) = 0.



That is, (c∗, λ∗) is the unique positive solution

of the system
{

(g′(0)− λc)(λ2D − λc− r) = βf ′(0),
c(λ2D − λc− r)2 = βf ′(0)(2λD − c).

(20)

Let

P (c, λ) := a3λ3 + a2λ2 + a1λ + a0, (21)

where the coefficients ai (i = 0, · · · ,3) are given

in terms of the original parameters as

a0 = −[βf ′(0) + rg′(0)], a1 = −c[g′(0)− r],

a2 = c2 + Dg′(0), a3 = −cD.

A direct computation shows that (20) is equiv-

alent to

P (c, λ) = 0 and
∂P

∂λ
(c, λ) = 0. (22)

It follows that P (c, λ) has two positive roots

for c > c∗, one positive double root for c = c∗,
and two complex roots for 0 < c < c∗.



We now transform (22) so that it is expressed

in terms of parameter c. Set

P (c, λ) = P1(c, λ)Q1(c, λ) + R1(c, λ),

P1(c, λ) = R1(c, λ)Q2(c, λ) + R2(c),

where P1(c, λ) = ∂P
∂λ(c, λ), Q1(c, λ) and R1(c, λ)

are the quotient and remainder of P (c, λ) di-

vided by P1(c, λ), and Q2(c, λ) and R2(c) are

the quotient and remainder of P1(c, λ) divided

by R1(c, λ), respectively. Clearly, we must have

R2(c
∗) = 0. By direct calculations, we see that

R2(c) = 0 is equivalent to

18a0a1a2a3 − 4a3
2a0 + a2

2a2
1 − 27a2

3a2
0 − 4a3

1a3 = 0,

that is,

ψ(c2) := 18Dc2[c2 + Dg′(0)][g′(0)− r]a0

− 4[c2 + Dg′(0)]3a0

+ c2[c2 + Dg′(0)]2[g′(0)− r]2

− 27D2c2a2
0 − 4Dc4[g′(0)− r]3 = 0.



Sorting out terms with respect to c, we have

ψ(c2) = c6{[g′(0)− r]2 − 4a0} − 4D3g′3(0)a0

+ c4D{18[g′(0)− r]a0 − 4[g′(0)− r]3

− 12g′(0)a0 + 2g′(0)[g′(0)− r]2}
+ c2D2{18g′(0)[g′(0)− r]a0 − 12g′2(0)a0

+ g′2(0)[g′(0)− r]2 − 27a2
0}.

Thus, ψ(c∗2) = 0 and c∗ is the positive square

root of the largest zero of the cubic ψ(x).

The subsequent result shows that c∗ is the

asymptotic speed of spread for solutions of

(2) with initial functions having compact sup-

ports. In order to obtain the convergence for

0 < c < c∗, we need the following additional

condition:

(C4) βf(w)+rg(w) > 0, ∀w ∈ (0, w∗), and βf(w)+

rg(w) < 0, ∀w > w∗.



Theorem 3.1. Let (C1)–(C3) hold and c∗ be
the positive square root of the largest zero of
the cubic ψ(x). Assume that φ = (φ1, φ2) ∈ X+
has the property that φ1(·) + φ2(·) 6≡ 0, and
that for every κ1 > 0, there exists κ2 > 0 such
that φ1(y) + φ2(y) ≤ κ2e−κ1|y|,∀y ∈ Rn. Then
the unique solution u(t, x) = (v(t, x), w(t, x)) of
system (2)-(3) satisfies

(i) limt→∞, |x|≥ct u(t, x) = (0,0), ∀c > c∗.

(ii) If, in addition, (C4) holds, then
limt→∞,|x|≤ct u(t, x) = (v∗, w∗), ∀c ∈ (0, c∗),
where w∗ is the unique positive solution of
rg(w) + βf(w) = 0, and v∗ = f(w∗)

r .

As an application, let us consider system (1),
where D, µ, γ1, γ2, r and K are positive con-
stants. It is easy to verify that system (1) sat-
isfies conditions (C1)–(C4) provided r > µγ1

µ+γ2
.



Setting

ψ0(x) := x3[(r − γ1 − µ− γ2)
2

+ 4(µr + rγ2 − µγ1)]

+ x2D[−18(r − γ1 − µ− γ2)

× (µr + rγ2 − µγ1)

+ 12(r − γ1)(µr + rγ2 − µγ1)

+ 2(r − γ1)(r − γ1 − µ− γ2)
2

− 4(r − γ1 − µ− γ2)
3]

+ xD2[−18(r − γ1)

× (r − γ1 − µ− γ2)(µr + rγ2 − µγ1)

+ 12(r − γ1)
2(µr + rγ2 − µγ1)

+ (r − γ1)
2(r − γ1 − µ− γ2)

2

− 27(µr + rγ2 − µγ1)
2]

+ 4D3(r − γ1)
3(µr + rγ2 − µγ1),

we then have the following result.

Proposition 3.1. Let r > µγ1
µ+γ2

hold, and c∗
be the positive square root of the largest zero

of the cubic ψ0(x). Assume that φ = (φ1, φ2) ∈



X+ has the property that φ1(·)+φ2(·) 6≡ 0, and

that for every κ1 > 0, there exists κ2 > 0 such

that φ1(y) + φ2(y) ≤ κ2e−κ1|y|,∀y ∈ Rn. Then

the unique solution u(t, x) = (v(t, x), w(t, x)) of

system (1) with (3) satisfies

(i) limt→∞, |x|≥ct u(t, x) = (0,0), ∀c > c∗.

(ii) limt→∞,|x|≤ct u(t, x) = (v∗, w∗), ∀c ∈ (0, c∗),
where w∗ = K

(
1− µγ1

r(µ+γ2)

)
and

v∗ = γ1K
µ+γ2

(
1− µγ1

r(µ+γ2)

)
.

Remark 3.1. (22) implies that the spread-

ing speed c∗ of (2) can also be obtained as the

largest value c such that the polynomial P (c, λ)

defined by (21) has a real positive double root.

For system (1), c∗ defined in Proposition 3.1

coincides with the spreading rate c̄ in [3, The-

orem 1].



4. Traveling wave solutions

In this section, we consider the existence and

nonexistence of traveling wave solutions of sys-

tem (2) with n = 1. We will show that there

is a minimal wave speed for monotone travel-

ing waves and it coincides with the spreading

speed c∗ obtained in section 3.

Theorem 4.1. Let (C1)–(C3) hold, and let

c∗, v∗, w∗ be defined as in Theorem 3.1. Then

the following statements are valid:

(i) System (2) with n = 1 admits no traveling

wave solution with wave speed c ∈ (0, c∗).

(ii) Assume in addition that (C4) holds, f ′′(0)

exists, and there exist δ, b, θ > 0 such that

g′(u) − g′(0) ≥ −buθ,∀u ∈ [0, δ]. Then for

every c ≥ c∗, system (2) with n = 1 has a



monotone traveling wave connecting (0,0)

and (v∗, w∗) with speed c.

Returning to system (1), we have the following

result.

Proposition 4.1. Let r > µγ1
µ+γ2

hold, and

let c∗, v∗, w∗ be defined as in Proposition 3.1.

Then the following statements are valid:

(i) System (1) with n = 1 subject to (??) ad-

mits no traveling wave solution with wave

speed c ∈ (0, c∗).

(ii) For every c ≥ c∗, system (1) with n = 1

has a monotone traveling wave connecting

(0,0) and (v∗, w∗) with speed c.



5. Conclusion

In this talk, by applying the theory of asymp-

totic speeds of spread and traveling waves to

the diffusive logistic equation with a seden-

tary compartment, we establish the existence

of minimal wave speed for monotone travel-

ing waves and show that it coincides with the

spreading speed for solutions with initial func-

tions having compact supports.



Thank you!
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