Control Charts Based on Likelihood Ratio For Preliminary Analysis of Linear Profile

Zhaojun Wang

Department of Statistics
School of Mathematical Sciences
Tianjin 300071
zjwang@nankai.edu.cn

(Joint work with Changliang Zou & Yi Dai)

Outline

- Background & Motivation
 (Phase I & Phase II)
- Control Charts for Linear Profile
- Our Proposed CUSUM Charts
- Performance Comparison
- Conclusion & Consideration
- And then...

Background & Motivation

Phase II control charts

* Definition

The distribution of the quality characteristic is completely known.

* Goal

To detect the shifts in the process mean and/or variance, quickly.

* Methods

· Shewhart charts (Shewhart 1924)

$$LCL = \mu - 3\frac{\sigma}{\sqrt{n}}, \ CL = \mu, \ UCL = \mu + 3\frac{\sigma}{\sqrt{n}}$$

- · Shewhart chart with Runs Rules (Champ & Woodall 1987): T(k, m, a, b) (k of the last m standardized sample means fall in the interval (a, b))
- · Exponentially Weighted Moving Average (EWMA, Robert 1959)

$$Y_n = (1 - \lambda)Y_{n-1} + \lambda \bar{X}_n, Y_0 = \mu.$$

· Cumulative Sum (CUSUM, Page 1954)

$$S_n^+ = \max\{0, S_{n-1}^+ + \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} - k\}, \ S_0^+ = 0,$$

$$S_n^- = \min\{0, S_{n-1}^- + \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} + k\}, \ S_0^- = 0.$$

· Others (Adaptive EWMA, Double EWMA, Dual EWMA, Weighted CUSUM,...)

Phase I control charts

* Definition

The historical data is used to decide if the process is statistically in control and to estimate the parameters of the process.

- · Stage 1 (retrospective): To test if the process is statistically in control.
- · Stage 2 (prospective): To estimate the unknown parameters.

* Methods

- · X and MR charts (Nelson 1982) Shewhart Chart: 3σ principle
- · LRT chart (Sullivan & Woodall 1996)

$$lr(n_1, n) = -2(l_0 - l_1) = n \log[\widehat{\sigma}_n^2(\widehat{\sigma}_{n_1}^2)^{-\frac{n_1}{n}}(\widehat{\sigma}_{n_2}^2)^{-\frac{n_2}{n}}]$$

= $V_{lrt} + M_{lrt}$.

where
$$l_i = \max_{H_i} \log L(\mu, \sigma^2 | x), i = 0, 1.$$

 CUSUM chart (Koning & Does 2000) The model is considered to be

$$X_i = \mu + i\theta + \epsilon_i$$
.

The CUSUM statistics are given by

$$S_{i}^{+} = \max\{0, S_{i-1}^{+} + \sqrt{i(i-1)}(Y_{i} - f\sqrt{i(i-1)})\}$$

$$S_{i}^{-} = \max\{0, S_{i-1}^{-} + \sqrt{i(i-1)}(-Y_{i} - f\sqrt{i(i-1)})\}$$
where $Y_{i} = \sqrt{\frac{i-1}{i}}(X_{i} - \bar{X}_{i-1})$ is the standardized residual.

(It's a LIMP test for this trend model)

(It's a UMP test for this trend model)

· Others (Brown, Durbin, & Evans 1975, Quesenberry 1991, Wavelet Method)

BDE:
$$\frac{1}{S_n} \sum_{j=1}^i Y_j$$

Queseberry:
$$Q_i = \Phi^{-1} \left(G_i - 2 \left(\frac{Y_i}{S_{i-1}} \right) \right)$$

· Structural Model for AR(1) (Boyles 2000)

Control Charts for Linear Profile

The Model of Linear Profile

The process quality is characterized by a relationship between a response and one explanatory variable as follows:

$$\begin{cases} Y_{ij} = A_{0j} + A_{1j}X_i + \epsilon_{ij}, \\ \epsilon_{ij} \sim N(0, \sigma_j^2), \ i = 1, 2, \dots, n, \ j = 1, 2, \dots, k. \end{cases}$$

* In-control:

$$A_{0j} = A_0, A_{1j} = A_1, \sigma_j = \sigma, \ j = 1, \dots, k$$

* Out-of-control:

$$A_{0j} = A_0, A_{1j} = A_1, \sigma_j = \sigma, \ j = 1, \dots, k_1,$$

 $A_{0j} = A'_0, A_{1j} = A'_1, \sigma_j = \sigma', \ j = k_1 + 1, \dots, k_1 + k_2.$

- The Methods for the Linear profile (Phase I)
 - $*T^2$ charts (Stover & Brill 1998, Kang & Albin 2000)
 - * EWMA charts (Kim, Mahmoud, & Woodall 2003)
 - · Three EWMA charts.
 - · R Chart.
 - * Shewhart charts (Mahmoud & Woodall 2004)
 - · Three Shewhart charts.
 - · F-test based on a multiple regression model.

For details: Woodall et al (2004) (JQT: Journal of Quality Technology)

Our Proposed CUSUM Charts

Outline

- Some notations
- The limit distribution of $lr(k_1n, kn)$
- the expectation & variance of $lr(k_1n, \infty)$
- Our proposed CUSUM chart
- The design of our proposed CUSUM chart
- The detecting ability for intercept, slope, and variance

Some notations

Historical Data:

$$\{(x_i, y_{ij}), i = 1, \dots, n, j = 1, \dots, k\}$$

Mean & Variance:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}, \qquad S_{xx} = \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$\bar{y}_{kn} = \frac{1}{kn} \sum_{j=1}^{k} \sum_{i=1}^{n} y_{ij}, \qquad S_{xy(kn)} = \sum_{j=1}^{k} \sum_{i=1}^{n} (x_{i} - \bar{x}) y_{ij}$$

$$\bar{y}_{k_{1}n} = \frac{1}{k_{1}n} \sum_{j=1}^{k_{1}} \sum_{i=1}^{n} y_{ij}, \qquad S_{xy(k_{1}n)} = \sum_{j=1}^{k_{1}} \sum_{i=1}^{n} (x_{i} - \bar{x}) y_{ij}$$

$$\bar{y}_{k_{2}n} = \frac{1}{k_{2}n} \sum_{j=k_{1}+1}^{k} \sum_{i=1}^{n} y_{ij}, \qquad S_{xy(k_{2}n)} = \sum_{j=k_{1}+1}^{k} \sum_{i=1}^{n} (x_{i} - \bar{x}) y_{ij}$$

Estimations (MLE):

$$\widehat{\sigma}_{kn}^2 = \frac{1}{kn} \sum_{i=1}^{k} \sum_{i=1}^{n} (y_{ij} - \widehat{A}_{0(kn)} - \widehat{A}_{1(kn)} x_i)^2$$

$$\widehat{A}_{1(kn)} = \frac{S_{xy(kn)}}{kS_{xx}}, \ \widehat{A}_{0(kn)} = \overline{y}_{kn} - \widehat{A}_{1(kn)}\overline{x}$$

Maximized Likelihood:

$$l_0 = -\frac{kn}{2}\log(2\pi) - \frac{kn}{2}\log(\widehat{\sigma}_{kn}^2) - \frac{kn}{2},$$

$$l_1 = -\frac{kn}{2}\log(2\pi) - \frac{k_1n}{2}\log(\widehat{\sigma}_{k_1n}^2) - \frac{k_2n}{2}\log(\widehat{\sigma}_{k_2n}^2) - \frac{kn}{2}.$$

Likelihood Ratio Statistic:

$$lr(k_1n, kn) = -2(l_0 - l_1) = kn \log[\widehat{\sigma}_{kn}^2 (\widehat{\sigma}_{k_1n}^2)^{-\frac{k_1}{k}} (\widehat{\sigma}_{k_2n}^2)^{-\frac{k_2}{k}}]$$

- The limit distribution of $lr(k_1n,kn)$ $lr(k_1n,kn) \xrightarrow{\mathcal{L}} \chi^2(3)$, as $k_1,k_2 \to \infty$. (n is fixed) As $k_2 \to \infty$ (n and k_1 is fixed) $lr(k_1n,kn) \xrightarrow{\mathcal{P}} z_1 - k_1n \log \frac{z_1}{k_1n} + z_2 + z_3 - k_1n$, where $z_1 \sim \chi^2(k_1n-2)$, $z_2,z_3 \sim \chi^2(1)$, z_1,z_2 and z_3 are independent.

— The expectation & variance of $lr(k_1n, \infty)$

$$E[lr(k_1n, \infty)] = k_1 n \left[\log(\frac{k_1n}{2}) - \psi_0(\frac{k_1n - 2}{2})\right],$$

$$Var[lr(k_1n, \infty)] = (k_1n)^2 \psi_1(\frac{k_1n - 2}{2}) - 2k_1n,$$

where $\psi_0(\cdot)$ and $\psi_1(\cdot)$ are, respectively, the digamma and trigamma function.

$$\psi_0(z+1) = \psi_0(z) + \frac{1}{z}, \ \psi_0(1) = -\gamma, \ \psi_0(\frac{1}{2}) = -\gamma - 2\log 2,$$
$$\psi_1(z+1) = \psi_1(z) - \frac{1}{z^2}, \ \psi_1(1) = \frac{\pi^2}{6}, \ \psi_1(\frac{1}{2}) = \frac{\pi^2}{2},$$

Table 1 The expectation and variance of lr(jn, kn) and $lr(jn, \infty)$ for n = 10, k = 20

$T(f(t), h(t))$ and $T(f(t), \infty)$ for $h' = 10, h' = 20$											
j	E[lr(jn,kn)]	Var[lr(jn,kn)]	$E[lr(jn,\infty)]$	$Var[lr(jn,\infty)]$							
1	3.54	8.41	3.53	8.38							
2	3.24	7.02	3.24	7.00							
3	3.16	6.66	3.15	6.64							
4	3.12	6.49	3.11	6.47							
5	3.09	6.39	3.09	6.37							
6	3.08	6.34	3.07	6.30							
7	3.07	6.32	3.06	6.26							
8	3.06	6.30	3.06	6.22							
9	3.06	6.27	3.05	6.20							
10	3.05	6.25	3.04	6.18							

Out Proposed CUSUM Chart

The standardized likelihood ratio is defined by

$$slr(jn,kn) = \frac{lr(jn,kn) - E[lr(jn,\infty)]}{\sqrt{Var[lr(jn,\infty)]}}.$$

Define the CUSUM statistic based on slr(jn,kn) as

$$S_j = \max\{0, S_{j-1} + str(jn, kn)\}, \ j = 1, 2, \dots, k-1.$$

where the initial value $S_0 = 0$.

- The design of our proposed CUSUM Chart For given false alarm probability (FAP) α , the decision interval h_{α} is tabulated at Table 2.

Table 2 Simulated h_{α} of our proposed CUSUM chart

				а		•			
\overline{k}	$h_{0.05}$	$h_{0.04}$	$h_{0.03}$	$h_{0.02}$	$h_{0.01}$	$h_{0.0075}$	$h_{0.005}$	$h_{0.0025}$	$h_{0.001}$
10	11.04	11.97	13.27	14.98	17.81	18.85	20.65	23.27	26.19
20	22.60	24.63	26.95	30.49	36.30	38.90	41.67	48.89	56.57
30	33.38	36.28	39.77	45.20	54.53	57.89	63.57	72.52	83.94
40	44.62	48.68	53.78	60.62	71.62	77.22	83.49	94.92	109.4
50	55.92	60.48	66.23	74.87	91.26	98.17	106.3	121.0	139.7

The approximated decision interval h_{α} are given by:

$$h_{\alpha} = -(0.4343 \log \alpha + 0.1843) \cdot k.$$

- The detecting ability for intercept, slope, and variance $lr(k_1n,kn)$ can be partitioned into three terms:

$$I_{lr} = kn \log \left[1 + \frac{k_1 k_2 (\bar{y}_{k_1 n} - \bar{y}_{k_2 n})^2}{k (k_1 \hat{\sigma}_{k_1 n}^2 + k_2 \hat{\sigma}_{k_2 n}^2)} \right],$$

$$V_{lr} = kn \log \left[\frac{k_1 \hat{\sigma}_{k_1 n}^2 + k_2 \hat{\sigma}_{k_2 n}^2}{k} (\hat{\sigma}_{k_1 n}^2)^{-\frac{k_1}{k}} (\hat{\sigma}_{k_2 n}^2)^{-\frac{k_2}{k}} \right],$$

$$S_{lr} = kn \log \left[1 + \left(\frac{k_1 k_2 (\frac{1}{k_1} S_{xy(k_1 n)} - \frac{1}{k_2} S_{xy(k_2 n)})^2}{k^2 n S_{xx}} / (1 + \frac{k_1 k_2 (\bar{y}_{k_1 n} - \bar{y}_{k_2 n})^2}{k (k_1 \hat{\sigma}_{k_1 n}^2 + k_2 \hat{\sigma}_{k_2 n}^2)}) \right) \right],$$

Performance Comparison

Criterion of comparison

$$\mathsf{ATSP} = \sum_{k=1}^{n-1} F(k) \mathsf{TSP}_k,$$

- The Parameters

- $*\alpha = 0.05, k = 20, n = 10$
- * $A_0 = 0, A_1 = 1, \sigma^2 = 1, x = 0(0.2)0.8$
- Competition
 - $*T^2$ (Kang & Albin 2000)
 - * Shewhart & F-test (Mahmoud & Woodall 2000)

Comparisons

- * Scenario 1: One step shift in the intercept, slope, and standard deviation (Figure 1)
- * Scenario 2: One trend shift in the intercept and slope (Figure 2)
- * Scenario 3: Three step shifts: $\delta_1, \delta_2 = 1$, and $\delta_3 \in [-4, 4]$ in slope, deviation, intercept (Figure 3a)
- * Scenario 4: Three step shifts: $\delta_1, \delta_2 = 1$, and $\delta_3 \in [-4, 4]$ in intercept, slope, deviation (Figure 3b)

Figure 1 ATSP's for one step shift in intercept, slope, and standard deviation.

Figure 2 ATSP's for a trend shift in intercept and slope.

Figure 3 The ATSP's for Scenario 3 and Scenario 4.

Conclusion & Consideration

Conclusion

- * Our proposed CUSUM chart has better performance than the others in terms of ATSP.
- * Our proposed CUSUM chart is more robust than others.
- * The criterion for comparison.

Consideration

- * How to generalize it to Phase II
- * How to generalize it to the multivariate case
- * How about EWMA based on the LRT
- * How about the sensitivity of them

And then...

Thank you for coming!

Thank HKBU and Mathematical Certer for supporting!!

Welcome to Nankai University!!!