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norms ||7.,|| = ||Ax,;, — b|| can be obtained for some A having any
given eigenvalues (Greenbaum, Ptak, Strako$, 1996).
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[p(A)]]2 < 11.08|p[lw(a)

I.e., the conjecture is true if we replace 2 by 11.08.

“The estimate 11.08 is not optimal. There is no doubt
that refinements are possible which would decrease this
bound. We are convinced that our estimate is very
pessimistic, but to improve it drastically (recall that our
conjecture is that 11.08 can be replaced by 2), it is clear
that we have to find a completely different method.”

- Michel Crouzeix, “Numerical range and functional
calculus in Hilbert space”, J. Funct. Anal. 244 (2007).
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Special Cases

The conjecture is known to hold for certain restricted classes of polynomials
p € P™ or matrices A € C"*",
Let 7(A) = max;cwa) |¢| (numerical radius) and D = open unit disk

B p(Q)=¢™
[A™] < 20(A™) < 27 (A)™ = 2maxcerwa [C7)
(power inequality, Berger 1965, Pearcy 1966)
B W(A)=D:
e if |[Bl| <1, then [[p(B)| < sup.c5 |p(¢)| (von Neumann, 1951)
o if r(A) <1, then A=TBT ! with |B]| <1 and ||T||||T Y <2
(Okubo and Ando, 1975), so ||p(A)|| < 2||p(B)]|
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The extreme points of a convex set are those that cannot be
expressed as a convex combination of two other points in the set.

Based on R. Kippenhahn (1951), C.R. Johnson (1978) observed that
the extreme points of W (A) can be characterized as

ext W(A) = {zg =vpAvg : 0 € [0,2m)}

where vy Is a normalized eigenvector corresponding to the largest
eigenvalue of the Hermitian matrix

1/ . |
Hy = 5 (GZQA + e_wA*) .

The proof uses a supporting hyperplane argument.
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expressed as a convex combination of two other points in the set.

Based on R. Kippenhahn (1951), C.R. Johnson (1978) observed that
the extreme points of W (A) can be characterized as

ext W(A) = {zg =vpAvg : 0 € [0,2m)}

where vy Is a normalized eigenvector corresponding to the largest
eigenvalue of the Hermitian matrix
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Hy = 5 (GZQA + e_wA*) .

The proof uses a supporting hyperplane argument.

Thus, we can compute as many extreme points as we like.
Continuing with the previous example...
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Johnson’s Algorithm Finds the Extreme Points

3 6 01[3.99,5.3]
2 -
1+ 0
6 00 [5.3,211
of 6 01 [2.29,3.99]
6 0 [0,0.96]
1k 0
ot
sl 6 [1[0.96,2.29]
1 0 1 2 3 4 5

The extreme points of W(A) lie in the union of 5 connected sets
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The extreme points of W(A) lie in the union of 5 connected sets

But how can we do this accurately, automatically and efficiently?12 »
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Chebfun

Chebfun (Trefethen et al, 2004—present) represents real- or
complex-valued functions on real intervals to machine precision
accuracy using Chebyshev interpolation.

The necessary degree of the polynomial is determined automatically.
For example, representing sin(mx) on [—1,1] to machine precision
requires degree 19.

Most MATLAB functions are overloaded to work with chebfun’s.

Applying Chebfun's fov to compute the boundary of W (A) for the
previous example...
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Nonsmoothness of the Crouzeix Ratio

There are three possible sources of nonsmoothness in f

B When the max value of |p(z)| on bd W (A) is attained at more
than one point z (the most important, as this frequently occurs
at apparent minimizers)

B Even if such z is unique, when the normalized vector v for which
v*Av = z is not unique up to a scalar, implying that the
maximum eigenvalue of the corresponding Hy matrix has
multiplicity two or more (does not seem to occur at minimizers)

B When the maximum singular value of p(A) has multiplicity two
or more (does not seem to occur at minimizers)

In all of these cases the gradient of f is not defined.
But in practice, none of these cases ever occur, except the first one
in the limit.
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BFGS

BFGS (Broyden, Fletcher, Goldfarb and Shanno, all independently in
1970), is the standard quasi-Newton algorithm for minimizing
smooth (continuously differentiable) functions.

It works by building an approximation to the Hessian of the function
using gradient differences, and has a well known superlinear
convergence property under a regularity condition.

Although its global convergence theory is limited to the convex case
(Powell, 1976), it generally finds local minimizers efficiently in the
nonconvex case too, although there are pathological
counterexamples.

Remarkably, this property seems to extend to nonsmooth functions
too, with a linear rate of local convergence, although the convergence
theory is extremely limited (Lewis and Overton, 2013). It builds a
very ill conditioned “Hessian” approximation, with “infinitely large”
curvature in some directions and finite curvature in other directions.
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~N O O b W3

f is the lowest value f(p, A) found over 100 runs
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Is the Ratio 0.5 Attained?

Crabb (1970) implicitly showed that the ratio 0.5 is attained if p(¢) = ("' and
A is the n by n matrix T 0 V3 7
: 1
- 0 2 } . .
B = if n =2, or if n > 2
{ 0 0 )
V2
0

for which W (A) is the closed unit disk D. More generally, get f = 0.5 if
p(¢) = (¢ —=XA)""" and

A =M + aUdiag(Eg, BJU",
where o # 0, U is a unitary matrix and W (B) C D.
A)

Conjecture: these are the only cases where f(p,
polynomial p.

= 0.5, allowing any

Known to be true if we restrict p(¢) = ("' (Salemi, using Crabb)

However, this is not true if we allow p to be any analytic function.
(Crouzeix has a complete analysis for n = 3.)
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Crabb (1970) implicitly showed that the ratio 0.5 is attained if p(¢) = ("' and
A is the n by n matrix T 0 V3 7
: 1
- 0 2 } . .
B = if n =2, or if n > 2
{ 0 0 )
V2
0

for which W (A) is the closed unit disk D. More generally, get f = 0.5 if
p(¢) = (¢ —=XA)""" and

A =M + aUdiag(Eg, BJU",
where o # 0, U is a unitary matrix and W (B) C D.
A)

Conjecture: these are the only cases where f(p,
polynomial p.

= 0.5, allowing any

Known to be true if we restrict p(¢) = ("' (Salemi, using Crabb)

However, this is not true if we allow p to be any analytic function.
(Crouzeix has a complete analysis for n = 3.)

Note: f is nonsmooth at these pairs (p, A) because |p| is constant on the
boundary of W (A).
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How Could we Recognize such Minimizers?

Since U could be any unitary matrix, how could we recognize such
minimizers? The end result of our calculations is a Hessenberg
matrix that looks like nothing special.

Using the GNSD (Generalized Null Space Decomposition), aka
Staircase Form (Kublanovskaya 1966, Ruhe 1970, Golub-Wilkinson
1976, Van Dooren 1979, Kagstrom-Ruhe 1980, Edelman-Ma 2000,
Guglielmi-Overton-Stewart 2015)...

We find that computed minimizers have the form

A = M + aUdiag(Z, B)\U! + E,

p(C) — Cn—l(C - )\)n—l + ...+ Cl(C — >\) + Co

where k > 2 (usually k = 2), o # 0, U is orthogonal, W(B) C D,
|E|| is small and |c;| is small for j > k.
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T T
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The apparently locally optimal matrix A is nearly unitarily similar to a block
diagonal matrix with a 2 x 2 block A11 and a 14 x 14 block Ass.

Black dashed curves show boundaries of field of values of final computed A;; and Aa2o

Solid blue curve is boundary of field of values of final computed A
Blue asterisks are eigenvalues of final computed A
Small red circles are roots of final computed p
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What if we Fix p and Optimize over A?

Experiments fixing p with degree m and optimizing over A with
order > m + 1 led us to:

Theorem 1. For any fixed polynomial p of degree m > 1, there
exists a divergent sequence {A*)} of order n = m + 1 for which
f(p, A®)) = 0.5 as k — oo. Furthermore, we can choose A®*) so
{W (A% is a sequence of disks with radius — co.

However, 0.5 is not attained.
Experiments fixing p with degree m and optimizing over A with
order < m led us to:

Theorem 2. Fix p to have degree m with at least two distinct roots.
Then, for all n with 2 < n < m, there exists a convergent sequence
of n x n matrices { A%} for which the Crouzeix ratio

f(p, A(k)) — 0.5. Furthermore, we can choose A() so {W(A(k))} is
a sequence of disks shrinking to a root of p.
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Theorem 2. Fix p to have degree m with at least two distinct roots.
Then, for all n with 2 < n < m, there exists a convergent sequence

of n x n matrices {A*)} for which the Crouzeix ratio
f(p, A¥)) — 0.5. Furthermore, we can choose A% so {IW (A%} is
a sequence of disks shrinking to a root of p.

However, 0.5 is not attained.
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The Clarke Subdifferential

Crouzeix's Conjecture Assume h : R™ — R is locally Lipschitz, and
o of let D ={x € R™ : h is differentiable at x}.

the Crouzeix Ratio f

Rademacher’'s Theorem: R™\ D has measure zero.

Nonsmooth Analysis
of the Crouzeix Ratio
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derivative = +— h/(x;d) is upper semicontinuous there for every fixed

direction d.
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Simplest Case where Crouzeix Ratio is Nonsmooth

Optimize over complex monic linear polynomials p(z) = ¢+ z and
complex matrices with order n = 2. Let f(p, A) = f(c, A), where
now f:C x C?*? 5 R.

. . A 0 2 — .
Let ¢ =0 (p(2) = 2) and A = [ 0 0 ] so W(A) = D, the unit

disk, and hence [p(z)| is maximized everywhere on the unit circle,
with f nonsmooth at (¢, A) and f(¢, A) =1/2.
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Concluding Remarks
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A

(¢, A) is a Nonsmooth Stationary Point of f(-,-)

Corollary.

0cdf(éA)

Proof: the vectors inside the convex hull defined by § = 0, 27 /3 and

47 /3 sum to zero.
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A

(¢, A) is a Nonsmooth Stationary Point of f(-,-)

Corollary. )
0e€df(c,A)

Proof: the vectors inside the convex hull defined by § = 0, 27 /3 and
47 /3 sum to zero.

Actually, we knew this must be true as Crouzeix's conjecture is
known to hold for n = 2, and hence (¢, A) is a global minimizer of
f(-, ), but we can extend the result to larger values of m, n, for
which we don’t know whether the conjecture holds.
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so, for any n, the pair (¢, A) is a nonsmooth stationary point of f.

Proof. The convex combination

n

1

R Z (Y2kr /(nt1)5 Yokr/(n+1))
k=0

IS Zero.

This is a necessary condition for (¢, A) to be a local (or global)
minimizer of f on R™ T x R™”*™  This is a new result for n > 2.
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Corollary. )
0e€df(c,A)

so, for any n, the pair (¢, A) is a nonsmooth stationary point of f.

Proof. The convex combination

n

1

R Z (Y2kr /(nt1)5 Yokr/(n+1))
k=0

IS Zero.

This is a necessary condition for (¢, A) to be a local (or global)
minimizer of f on R™ T x R™”*™  This is a new result for n > 2.
And by regularity, it implies that the directional derivative
f'(-,d) > 0 for all directions d.
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(w.r.t the polynomial-matrix space).
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(w.r.t the polynomial-matrix space).

Optimizing over p and A, BFGS mostly converged either to
nonsmooth stationary values of f associated with the Crabb matrix
(with field of values a disk), or smooth stationary values with “ice
cream cone” fields of values.

Using nonsmooth variational analysis, we proved Clarke stationarity
of the Crouzeix ratio, with value 0.5, at pairs (p, A), where p is the
monomial 2™ and A is a C-matrix of order m -+ 1, a necessary
condition for local or global optimality.

The results strongly support Crouzeix's conjecture: the globally
minimal value of the Crouzeix ratio f(p, A) is 0.5.
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Saying Thanks in Chebfun

%» define and plot a chebfun with 87 pieces
%s=scribble (’Thanks for your attention’);
Nonsmooth %plot(s,’b’,’LineWidth’,2), axis equal
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<~ Or, More Circularly

Crouzeix's Conjecture plot (eXp(Bl*S) s ‘m’ s ’LineWidth’ ,2) , axis equal
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