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Why avoid communication? (1/3)
Algorithms have two costs (measured in time or energy):
1. Arithmetic (FLOPS)
2. Communication: moving data between 

– levels of a memory hierarchy (sequential case) 
– processors over a network (parallel case). 
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Why avoid communication? (2/3)
• Running time of an algorithm is sum of 3 terms:

– # flops * time_per_flop
– # words moved / bandwidth
– # messages * latency
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communication

• Time_per_flop (𝛾𝛾) <<  1/ bandwidth (𝛽𝛽) <<  latency (𝛼𝛼)

Data from 
Patterson & 
Hennessey, 2019
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2008 DARPA Exascale report has similar prediction:
Gap between DRAM access time and flops will increase 
100x over coming decade to balance power usage between 
processors, DRAM

2011 NRC Report: “The Future of Computing Performance: Game Over or Next Level?”
Millett and Fuller

Data from Patterson & Hennessey, 2019

Add back up energy detail slide



Why avoid communication? (3/3)
Same story for saving energy

65nm

11nm
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Goals
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• Redesign algorithms to avoid communication
• Between all memory hierarchy levels 

• L1         L2         DRAM          network,  etc

• Attain lower bounds if possible
• Classical algorithms often far from lower bounds
• Large speedups and energy savings possible

• Automate implementation of           
communication-avoiding (CA) algorithms
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• Doing same operations, just in a different order
– Up to 12x faster for 2.5D dense matmul on 64K core IBM BG/P
– Up to 100x faster for 1.5D sparse-dense matmul on 1536 core Cray XC30
– Up to 6.2x faster for 2.5D All-Pairs-Shortest-Path on 24K core Cray XE6
– Up to 11.8x faster for direct N-body on 32K core IBM BG/P

• Mathematically identical answer, but different algorithm
– Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU

– Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere
– Up to 4.2x faster for BiCGStab (MiniGMG bottom solver) on 24K core Cray XE6
– Up to 5.1x faster for coordinate descent LASSO on 3K core Cray XC30

• Different algorithm, different approximate answer
– Up to 16x faster for SVM on a 1536 core Cray XC30
– Up to  135x faster for ImageNet training on 2K Intel KNL nodes

Sample Speedups 
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100x speedup vs 2.5D matmul, on 1536 cores of Cray XC30, Edison at NERSC
C = A*B, A is 66K x 172K,  B is 172K x 66K, density of A .0038%
Arises in inverse covariance matrix estimation in fMRI, genomics
(functional magnetic resonance imaging)


8 best paper prizes
2 thesis prizes 
Email from Aditya, 16 July 2017: coordinate descent CA-SVM was up to 5.2x faster than non-CA on 3k cores of Cray XC30.
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Ideas adopted by Nervana, “deep learning” startup,
acquired by Intel in August 2016

SIAG on Supercomputing Best Paper Prize, 2016
(D., Grigori, Hoemmen, Langou)

Released in LAPACK 3.7, 2016

IPDPS 2015 Best Paper Prize (You, D. Czechowski, Song, Vuduc)

ICPP 2018 Best Paper Prize (You, Zhang, Hsieh, D., Keutzer)

2019: Idea (LARS) adopted by industry standard benchmark MLPerf

LAPACK 3.10: Householder Reconstruction, 2021

Kwasniewski, Hoefler, et al (Best Student Paper, SC’19)
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Yang You et al: Runner up for Best Student Paper at SC’19, Large Batch Training for LSTM and Beyond


8 best paper prizes
2 thesis prizes 
Email from Aditya, 16 July 2017: coordinate descent CA-SVM was up to 5.2x faster than non-CA on 3k cores of Cray XC30.



Outline
• Linear Algebra

– Communication Lower Bounds for classical direct linear 
algebra

– CA 2.5D Matmul
– TSQR - Tall-Skinny QR 
– Iterative Methods for linear algebra

• Machine Learning
– Training Neural Nets – “ImageNet training in minutes”
– Convolutional Neural Nets

• And Beyond
– Extending communication lower bounds and                         

optimal algorithms to general loop nests
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Summary of CA Linear Algebra
• “Direct” Linear Algebra

• Lower bounds on communication for linear algebra 
problems like Ax=b, least squares, Ax = λx, SVD, etc

• Mostly not attained by algorithms in standard libraries
• LAPACK, ScaLAPACK, … 

• New algorithms needed to attain these lower bounds
• New numerical properties, ways to encode answers, 

data structures, not just loop transformations
• Autotuning to find optimal implementation (eg GPTune)
• Sparse matrices: depends on sparsity structure

• Ditto for “Iterative” Linear Algebra 
13
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Sparse x dense matmul (fMRI, 100x faster)
Cholesky with large separators



Lower bound for all “n3-like” linear algebra

• Holds for
– Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …
– Some whole programs (sequences of  these operations, 

no matter how individual ops are interleaved, eg Ak)
– Dense and sparse matrices (where #flops  <<  n3 )
– Sequential and parallel algorithms
– Some graph-theoretic algorithms (eg Floyd-Warshall)
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• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2 )

#messages_sent (per processor) = Ω(#flops (per processor) / M3/2 )

• Parallel case: assume either load or memory balanced
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• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2 )

#messages_sent ≥  #words_moved / largest_message_size

• Parallel case: assume either load or memory balanced

Presenter
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APSP talk Tuesday, session 12, Edgar Solomonik, Aydin Buluc
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• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2 )

#messages_sent (per processor) = Ω(#flops (per processor) / M3/2 )

• Parallel case: assume either load or memory balanced

SIAM SIAG/Linear Algebra Prize, 2012
(Ballard, D., Holtz, Schwartz)
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SUMMA– n x n matmul on P1/2 x P1/2 grid
(nearly) optimal using minimum memory M=O(n2/P) 

For k=0 to n/b-1   … b = block size = #cols in A(i,k) =  #rows in B(k,j)
for all i = 1 to P1/2 

owner of A(i,k) broadcasts it to whole processor row (using binary tree)
for all j = 1 to  P1/2

owner of B(k,j) broadcasts it to whole processor column (using bin. tree)
Receive A(i,k) into Acol
Receive B(k,j) into Brow
C_myproc = C_myproc + Acol * Brow

* =
i

j

A(i,k)

k
k

B(k,j)

C(i,j)

Brow

Acol



Summary of dense parallel algorithms 
attaining communication lower bounds

• Assume nxn matrices on P processors
• Minimum Memory per processor =  M = O(n2 / P)
• Recall lower bounds:

#words_moved =   Ω( (n3/ P)  / M1/2 )  =  Ω( n2 /  P1/2 )               
#messages            =   Ω( (n3/ P)  / M3/2 )  =  Ω( P1/2 )

• SUMMA attains this lower bound
• Does ScaLAPACK attain these bounds?

• For #words_moved: mostly, except nonsym. Eigenproblem
• For #messages: asymptotically worse, except Cholesky

• New algorithms attain all bounds, up to polylog(P) factors
• Cholesky, LU, QR, Sym. and Nonsym eigenproblems, SVD

Can we do Better?
20
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n=12000, b=500, 6 threads
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Can we do better?

• Aren’t we already optimal?
• Why assume M = O(n2/p), i.e. minimal?

– Lower bound still true if more memory
– Can we attain it?

• Special case: “3D Matmul”
– Uses M = O(n2/p2/3 ) 
– Dekel, Nassimi, Sahni [81], Bernsten [89],                        

Agarwal, Chandra, Snir [90], Johnson [93],                        
Agarwal, Balle, Gustavson, Joshi, Palkar [95]

• Not always p1/3 times as much memory available…

21
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2.5D Matrix Multiplication 

• Assume can fit cn2/P data per processor, c > 1
• Processors form (P/c)1/2 x  (P/c)1/2 x  c  grid

c

(P/c)1/2

Example: P =  32,  c = 2

22



2.5D Matrix Multiplication 

• Assume can fit cn2/P data per processor, c > 1
• Processors form (P/c)1/2 x  (P/c)1/2 x  c  grid

k

j

Initially P(i,j,0) owns A(i,j) and B(i,j)
each of size n(c/P)1/2 x n(c/P)1/2

(1)  P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
(2)  Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of  Σm A(i,m)*B(m,j)
(3)  Sum-reduce partial sums Σm A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C(i,j)

23



Same idea extends to LU, QR, other algorithms
Matmul achieves perfect strong scaling in time and energy

2.5D Matmul on BG/P, 16K nodes / 64K cores
c = 16 copies

12x faster

2.7x faster

Distinguished Paper Award, EuroPar’11 (Solomonik, D.)

24Kwasniewski, Hoefler, et al (Best Student Paper, SC’19)
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TSQR: QR of a Tall, Skinny matrix
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W =

Q00 R00
Q10 R10
Q20 R20
Q30 R30

W0
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Q20
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= = .

R00
R10
R20
R30

R00
R10
R20
R30

=
Q01 R01
Q11 R11
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TSQR: QR of a Tall, Skinny matrix
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W =

Q00 R00
Q10 R10
Q20 R20
Q30 R30
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= = .
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Output =  { Q00, Q10, Q20, Q30, Q01, Q11, Q02, R02 }



TSQR: An Architecture-Dependent Algorithm

W = 

W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02
Parallel:

W = 

W0
W1
W2
W3

R01 R02

R00

R03

Sequential:

W = 

W0
W1
W2
W3

R00
R01

R01

R11
R02

R11

R03

Dual Core:

Can choose reduction tree dynamically
Multicore / Multisocket / Multirack / Multisite / Out-of-core:  ?

29
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TSQR Performance Results
• Parallel

– Intel Clovertown
– Up to 8x speedup (8 core, dual socket, 10M x 10)

– Pentium III cluster, Dolphin Interconnect, MPICH
• Up to 6.7x speedup (16 procs, 100K x 200)

– BlueGene/L
• Up to 4x speedup (32 procs, 1M x 50)

– Tesla C 2050 / Fermi
• Up to 13x (110,592 x 100)

– Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
– Cloud – 1.6x slower than just accessing data twice (Gleich and Benson)

• Sequential  
– “Infinite speedup” for out-of-core on PowerPC laptop

• As little as 2x slowdown vs (predicted) infinite DRAM
• LAPACK with virtual memory never finished

• SVD costs  about the same
• Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer, others

30
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SIAG on Supercomputing Best Paper Prize, 2016
(D., Grigori, Hoemmen, Langou)

In LAPACK 3.7.0, 2016
LAPACK 3.10: Householder Reconstruction, 2021
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Avoiding Communication in Iterative Linear Algebra

• k-steps of iterative solver for sparse Ax=b or Ax=λx
– Does k SpMVs with A and starting vector
– Many such “Krylov Subspace Methods”

• Conjugate Gradients (CG), GMRES, Lanczos, Arnoldi, … 
• Goal: minimize communication

– Assume matrix “well-partitioned”
– Serial implementation

• Conventional: O(k) moves of data from slow to fast memory
• New: O(1) moves of data – optimal

– Parallel implementation on p processors
• Conventional: O(k log p) messages  (k SpMV calls, dot prods)
• New: O(log p) messages - optimal

• Lots of speed up possible (modeled and measured)
– Price: some redundant computation
– Challenges: Poor partitioning, Preconditioning, Num. Stability34
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GMRES: [Walker, 88], [Joubert and Carey, 92], [Bai et al., 94]



Minimizing Communication of GMRES to solve Ax=b

• GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2

Standard GMRES
for i=1 to k

w = A · v(i-1)   … SpMV
MGS(w, v(0),…,v(i-1))
update v(i), H

endfor
solve LSQ problem with H

Communication-avoiding GMRES
W = [ v, Av, A2v, … , Akv ]
[Q,R] = TSQR(W)  

…  “Tall Skinny QR”
build H from R 
solve LSQ problem with H

•Oops – W from power method, precision lost!
•Fix: replace W by [v, p1(A)v, p2(A)v, …, pk(A)v]

35

Sequential case: #words moved decreases by a factor of k
Parallel case: #messages decreases by a factor of k

•Up to 2.3x speedup for GMRES on 8 core Intel Clovertown
•Up to 4.2x speedup for BiCGStab on 24K core Cray XE6

(Hoemmen)

(Carson)
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Training Neural Nets by
Mini-Batch Stochastic Gradient Descent (SGD)

• Iterate:
– Pick a mini-batch of B data points
– Update weights 𝑊𝑊 = 𝑊𝑊 − 𝜂𝜂 � ∇𝐿𝐿 𝑊𝑊

• 𝜂𝜂 = learning rate
• ∇𝐿𝐿 𝑊𝑊 = gradient

• Data parallel version on P processors
– Data partitioned, each processor gets B/P points
– 𝑊𝑊𝑖𝑖 replicated
– Each processor computes ∇𝐿𝐿 𝑊𝑊 𝑖𝑖 wrt its data
– All-reduce: each processor computes  
𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑖𝑖 - (𝜂𝜂/P) � Σ𝑖𝑖=1𝑃𝑃 ∇𝐿𝐿 𝑊𝑊 𝑖𝑖

(You, Zhang, Hsieh, D., Keutzer, IPDPS 18)

42
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SGD: 𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑖𝑖 - (𝜂𝜂/P) � Σ𝑖𝑖=1𝑃𝑃 ∇𝐿𝐿 𝑊𝑊 𝑖𝑖

• Increase P to go faster: What are the bottlenecks?
• B/P decreases ⇒ less work per processor 

– Small matrix operations ⇒ locally communication bound
• Cost of each reduction Σ𝑖𝑖∇𝐿𝐿(𝑊𝑊)𝑖𝑖 grows
• Solution: increase B along with P

– Maintain B/P ⇒ maintain processor efficiency
– Try to converge in same #epochs (passes over data)

• Same overall work, fewer reductions

• Oops: Convergence can be much worse
– Convergence rate, test accuracy

43
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Improving SGD convergence as B grows

• Facebook’s strategy: adjust learning rate 𝜂𝜂
– Increase B to kB ⇒ increase 𝜂𝜂 to k𝜂𝜂
– Warmup rule: Start with smaller 𝜂𝜂, then increase

• Only worked up to B=1K for AlexNet (tried lots of 
tuning)

• Fix: Add Layer-wise Adaptive Rate Scaling (LARS)
– ∥ 𝑊𝑊 ∥∕∥ ∇𝐿𝐿(𝑊𝑊) ∥ can vary by 233x between AlexNet

layers
– Let 𝜂𝜂 be proportional to ∥ 𝑊𝑊 ∥∕∥ ∇𝐿𝐿(𝑊𝑊) ∥
– (You, Gitman, Ginsburg, 2017)
– Also need momentum, weight decay

44
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ImageNet Training in Minutes

Batch Size Epochs Top-1 Accuracy Platform Time

256 100 58.7% 8-core  + K20 GPU 144 hrs

512 100 58.8% DGX-1 station 6h 10m

4096 100 58.4% DGX-1 station 2h 19m

32k 100 58.6% 512 KNLs 24m

32k 100 58.6% 1024 CPUs 11m

Speedup for AlexNet (for batchsize = 32K, changed LRN to BN)

Batch Size Epochs Top-1 Accuracy Platform Time

32 90 75.3% CPU + M40 GPU 336h

256 90 75.3% 16 KNLs 45h

32K 90 75.4% 512 KNLs 60m

32K 90 75.4% 1600 CPUs 32m

32K 90 75.4% 2048 KNLs 20m

Speedup for ResNet50

45

135x
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LRN = local response normalization – normalize in small windows
Yang will update data
135x going from 16 KNLs to 2K KNLs for ResNet50, 2^7 = 128x #procs
Superlinear speedup from local matmuls



ImageNet Training in Minutes

• Best Paper Prize at ICPP 2018
• Open Source in Caffe, NVIDIA Caffe,      

Facebook Caffe 2 (PyTorch)
• Media coverage by CACM, EureKalert, Intel, 

NSF, Science Daily, Science NewsLine, etc. 
• Subsequent work at Tencent reached 4 minutes
• LARS adopted by industry standard benchmark 

MLPerf in 2019

46
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What CNNs compute

C

H
W SR

Image

X

R S R S

C
…K

Filter

=

H
W

K

Out

B copies B copies

for k=1:K,    for h=1:H,    for w=1:W,    for r=1:R,                       
for s=1:S,     for c=1:C,    for b=1:B

Out(k, h, w, b) += Image(r+w, s+h, c, b) * Filter( k, r, s, c )



What CNNs compute

C

HσH
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X
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C
…K

Filter

=

H
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K

Out

B copies B copies

for k=1:K,    for h=1:H,    for w=1:W,    for r=1:R,                       
for s=1:S,     for c=1:C,    for b=1:B

Out(k, h, w, b) += Image(r+σWw, s+σHh, c, b) * Filter( k, r, s, c )



Communication Lower Bound for CNNs
• Let N = #iterations = KHWRSCB, M = cache size
• #words moved = Ω( max(   … 5 terms

BKHW,              …   size of Out
σHσWBCWH,    ...   size of Image
CKRS,                ...   size of Filter
N/M,                 ...   lower bound for large loop bounds
N/(M1/2 (RS/(σHσW))1/2 )  ... lower bound for small filters)

• Any one of 5 terms may be largest 
• Bottommost bound beats matmul by factor (RS/(σHσW))1/2 

– Applies in common case when data does not fit in cache, but one RxS 
filter does

– Tile needed to attain N/M too big to fit in loop bounds  
• Thm: Always attainable! (computer generated proof)

– Beats im2col in data movement for various practical sizes
• Improved constants to appear in PASC‘22
• Chen/Han/Wang (arxiv:1911.05662v3): HW accelerator   

Presenter
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Outline
• Linear Algebra

– Communication Lower Bounds for classical direct linear 
algebra

– CA 2.5D Matmul
– TSQR - Tall-Skinny QR 
– Iterative Methods for linear algebra

• Machine Learning
– Training Neural Nets – “ImageNet training in minutes”
– Convolutional Neural Nets

• And Beyond
– Extending communication lower bounds and                         

optimal algorithms to general loop nests
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Communication lower bounds and 
optimal algorithms for general loop nests

• for i = 1:n, for j=1:n, for k = 1:n
C(i,j) = C(i,j) + A(i,k)*B(k,j)

• #Words moved between main memory and cache 
of size M = Ω( 𝑛𝑛3 / 𝑀𝑀1/2 ) , attainable

• For (i1,i2,…ik) ∈ 𝑆𝑆 ⊆ ℤ𝑘𝑘, do something with
– A(i1), B(i2, i3+i4), C(i1-i2, i2+3*i3- 5*i4 +2, …), …

• Thm: #Words moved = Ω( 𝑆𝑆 / 𝑀𝑀𝑒𝑒𝐻𝐻𝐻𝐻𝐻𝐻 )                 
(Christ, D., Knight, Scanlon, Yelick)
– HBL = Hölder / Brascamp / Lieb
– Uses results by Christ, Tao, others

• Thm: There exists an optimal tiling that attains 
this lower bound (D., Rusciano)
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What’s left?
• Dealing with small loop bounds

– Ex: Matvec special case of Matmul, not optimizable
– Special cases: CNNs
– Thm: If all subscripts like (i),(i,j), etc, and S = parallelepiped, 
∃ tighter, attainable lower bound (D., Dinh)

• Dealing with dependencies
– Special cases: Linear algebra outside matmul, Floyd-

Warshall, …
• More realistic performance models than 𝛼𝛼,𝛽𝛽, 𝛾𝛾

– Variable precision
– Heterogeneous processors, accelerators, network 

topologies, differing costs of read and writes, …
• Need to automate! (i.e. compilers)
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For more details

• Bebop.cs.berkeley.edu
– 155 page linear algebra survey in Acta Numerica (2014)
– Book in progress (with Ballard, Carson, Grigori)

• CS267 – Berkeley’s Parallel Computing Course
– Live broadcast in Spring 2021, now in 2022

• www.cs.berkeley.edu/~demmel
• All slides, video available 

– Prerecorded version broadcast since Spring 2013
• www.xsede.org
• Free supercomputer accounts to do homework
• Free autograding of homework
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Summary

Don’t Communic…

61

Time to redesign all 
linear algebra, machine learning, n-body, …  

algorithms and software, and compilers 
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Backup slides



Proof of Communication Lower Bound on C = A·B (1/4) 
• Basic Counting Argument:

– Only M entries of A, B and C are available in cache
– Find an upper bound F on the number of different            

iterations C(i,j) = C(i,j) + A(i,k)*B(k,j) we can perform
– Need to refill cache n3/F times to complete algorithm
– Need to read/write at least M n3/ F words to/from cache

• Represent iterations and data geometrically

CS267 Lecture 7 63
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#flops < F*((T/F)-1) + F = T, oops



Proof of Communication Lower Bound on C = A·B (2/4) 
k

“A face”

“C face”

Cube representing
C(1,1) += A(1,3)·B(3,1)

• If we have at most M “A squares”, “B squares”, and “C squares”
on faces, how many cubes can we have?

i

j

A(2,1)

A(1,3)

B
(1

,3
)

B
(3

,1
)

C(1,1)

C(2,3)

A(1,1) B
(1

,1
)

A(1,2)

B
(2

,1
)
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Proof of Communication Lower Bound on C = A·B (3/4) 

x
z

z

y

x
y

k

A shadow

C shadow

j

i

# cubes in black box with
side lengths x, y and z

= Volume of black box
= x·y·z
= ( xz · zy · yx)1/2

= (#A□s · #B□s · #C□s )1/2

(i,k) is in  A shadow  if (i,j,k) in 3D set 
(j,k) is in B shadow  if (i,j,k) in 3D set 
(i,j)  is in  C shadow  if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
# cubes in 3D set = Volume of 3D set
≤ (area(A shadow) · area(B shadow) ·

area(C shadow)) 1/2
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Proof of Communication Lower Bound on C = A·B (4/4) 

• # loop iterations doable with M words of data = #cubes
≤ (area(A shadow) · area(B shadow) ·area(C shadow)) 1/2

≤ (M · M · M) 1/2 = M 3/2 = F
• Need to read/write at least M n3/ F = Ω(n3/M 1/2) = 

Ω(#loop iterations / M 1/2) words to/from cache
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