
Communication-Avoiding Algorithms
for Linear Algebra, ML and Beyond

Jim Demmel, EECS & Math Depts., UC Berkeley
And many, many others …

Presenter
Presentation Notes
1 hour including questions

2

Why avoid communication? (1/3)
Algorithms have two costs (measured in time or energy):
1. Arithmetic (FLOPS)
2. Communication: moving data between

– levels of a memory hierarchy (sequential case)
– processors over a network (parallel case).

CPU
Cache

DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

Why avoid communication? (2/3)
• Running time of an algorithm is sum of 3 terms:

– # flops * time_per_flop
– # words moved / bandwidth
– # messages * latency

3

communication

• Time_per_flop (𝛾𝛾) << 1/ bandwidth (𝛽𝛽) << latency (𝛼𝛼)

Data from
Patterson &
Hennessey, 2019

Presenter
Presentation Notes
Data from Patterson & Hennessey, 20192008 DARPA Exascale report has similar prediction:Gap between DRAM access time and flops will increase 100x over coming decade to balance power usage between processors, DRAM2011 NRC Report: “The Future of Computing Performance: Game Over or Next Level?”Millett and FullerData from Patterson & Hennessey, 2019Add back up energy detail slide

Why avoid communication? (3/3)
Same story for saving energy

65nm

11nm

Presenter
Presentation Notes
Change legends (65nm -> 11nm)

Goals

6

• Redesign algorithms to avoid communication
• Between all memory hierarchy levels

• L1 L2 DRAM network, etc

• Attain lower bounds if possible
• Classical algorithms often far from lower bounds
• Large speedups and energy savings possible

• Automate implementation of
communication-avoiding (CA) algorithms

Presenter
Presentation Notes
2008 DARPA Exascale report has similar prediction:Gap between DRAM access time and flops will increase 100x over coming decade to balance power usage between processors, DRAM

• Doing same operations, just in a different order
– Up to 12x faster for 2.5D dense matmul on 64K core IBM BG/P
– Up to 100x faster for 1.5D sparse-dense matmul on 1536 core Cray XC30
– Up to 6.2x faster for 2.5D All-Pairs-Shortest-Path on 24K core Cray XE6
– Up to 11.8x faster for direct N-body on 32K core IBM BG/P

• Mathematically identical answer, but different algorithm
– Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU

– Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere
– Up to 4.2x faster for BiCGStab (MiniGMG bottom solver) on 24K core Cray XE6
– Up to 5.1x faster for coordinate descent LASSO on 3K core Cray XC30

• Different algorithm, different approximate answer
– Up to 16x faster for SVM on a 1536 core Cray XC30
– Up to 135x faster for ImageNet training on 2K Intel KNL nodes

Sample Speedups

7

Presenter
Presentation Notes
P. Koanantool, K. Yelick, othersSparse*dense arises in applications like: machine learning, interior point methods, AMG100x speedup vs 2.5D matmul, on 1536 cores of Cray XC30, Edison at NERSCC = A*B, A is 66K x 172K, B is 172K x 66K, density of A .0038%Arises in inverse covariance matrix estimation in fMRI, genomics(functional magnetic resonance imaging)8 best paper prizes2 thesis prizes Email from Aditya, 16 July 2017: coordinate descent CA-SVM was up to 5.2x faster than non-CA on 3k cores of Cray XC30.

• Doing same operations, just in a different order
– Up to 12x faster for 2.5D dense matmul on 64K core IBM BG/P
– Up to 100x faster for 1.5D sparse-dense matmul on 1536 core Cray XC30
– Up to 6.2x faster for 2.5D All-Pairs-Shortest-Path on 24K core Cray XE6
– Up to 11.8x faster for direct N-body on 32K core IBM BG/P

• Mathematically identical answer, but different algorithm
– Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU

– Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere
– Up to 4.2x faster for BiCGStab (MiniGMG bottom solver) on 32K core Cray XE6
– Up to 5.1x faster for coordinate descent LASSO on 3K core Cray XC30

• Different algorithm, different approximate answer
– Up to 16x faster for SVM on a 1536 core Cray XC30
– Up to 135x faster for ImageNet training on 2K Intel KNL nodes

Sample Speedups

8

Ideas adopted by Nervana, “deep learning” startup,
acquired by Intel in August 2016

SIAG on Supercomputing Best Paper Prize, 2016
(D., Grigori, Hoemmen, Langou)

Released in LAPACK 3.7, 2016

IPDPS 2015 Best Paper Prize (You, D. Czechowski, Song, Vuduc)

ICPP 2018 Best Paper Prize (You, Zhang, Hsieh, D., Keutzer)

2019: Idea (LARS) adopted by industry standard benchmark MLPerf

LAPACK 3.10: Householder Reconstruction, 2021

Kwasniewski, Hoefler, et al (Best Student Paper, SC’19)

Presenter
Presentation Notes
P. Koanantool, K. Yelick, othersSparse*dense arises in applications like: machine learning, interior point methods, AMG100x speedup vs 2.5D matmul, on 1536 cores of Cray XC30, Edison at NERSCC = A*B, A is 66K x 172K, B is 172K x 66K, density of A .0038%Arises in inverse covariance matrix estimation in fMRI, genomics(functional magnetic resonance imaging)Yang You et al: Runner up for Best Student Paper at SC’19, Large Batch Training for LSTM and Beyond8 best paper prizes2 thesis prizes Email from Aditya, 16 July 2017: coordinate descent CA-SVM was up to 5.2x faster than non-CA on 3k cores of Cray XC30.

Outline
• Linear Algebra

– Communication Lower Bounds for classical direct linear
algebra

– CA 2.5D Matmul
– TSQR - Tall-Skinny QR
– Iterative Methods for linear algebra

• Machine Learning
– Training Neural Nets – “ImageNet training in minutes”
– Convolutional Neural Nets

• And Beyond
– Extending communication lower bounds and

optimal algorithms to general loop nests
9

Outline
• Linear Algebra

– Communication Lower Bounds for classical direct linear
algebra

– CA 2.5D Matmul
– TSQR - Tall-Skinny QR
– Iterative Methods for linear algebra

• Machine Learning
– Training Neural Nets – “ImageNet training in minutes”
– Convolutional Neural Nets

• And Beyond
– Extending communication lower bounds and

optimal algorithms to general loop nests
11

Summary of CA Linear Algebra
• “Direct” Linear Algebra

• Lower bounds on communication for linear algebra
problems like Ax=b, least squares, Ax = λx, SVD, etc

• Mostly not attained by algorithms in standard libraries
• LAPACK, ScaLAPACK, …

• New algorithms needed to attain these lower bounds
• New numerical properties, ways to encode answers,

data structures, not just loop transformations
• Autotuning to find optimal implementation (eg GPTune)
• Sparse matrices: depends on sparsity structure

• Ditto for “Iterative” Linear Algebra
13

Presenter
Presentation Notes
Sparse matrices: mention diagonal,Sparse x dense matmul (fMRI, 100x faster)Cholesky with large separators

Lower bound for all “n3-like” linear algebra

• Holds for
– Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …
– Some whole programs (sequences of these operations,

no matter how individual ops are interleaved, eg Ak)
– Dense and sparse matrices (where #flops << n3)
– Sequential and parallel algorithms
– Some graph-theoretic algorithms (eg Floyd-Warshall)

14

• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2)

#messages_sent (per processor) = Ω(#flops (per processor) / M3/2)

• Parallel case: assume either load or memory balanced

Lower bound for all “n3-like” linear algebra

• Holds for
– Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …
– Some whole programs (sequences of these operations,

no matter how individual ops are interleaved, eg Ak)
– Dense and sparse matrices (where #flops << n3)
– Sequential and parallel algorithms
– Some graph-theoretic algorithms (eg Floyd-Warshall)

15

• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2)

#messages_sent ≥ #words_moved / largest_message_size

• Parallel case: assume either load or memory balanced

Presenter
Presentation Notes
APSP talk Tuesday, session 12, Edgar Solomonik, Aydin Buluc

Lower bound for all “n3-like” linear algebra

• Holds for
– Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …
– Some whole programs (sequences of these operations,

no matter how individual ops are interleaved, eg Ak)
– Dense and sparse matrices (where #flops << n3)
– Sequential and parallel algorithms
– Some graph-theoretic algorithms (eg Floyd-Warshall)

16

• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2)

#messages_sent (per processor) = Ω(#flops (per processor) / M3/2)

• Parallel case: assume either load or memory balanced

SIAM SIAG/Linear Algebra Prize, 2012
(Ballard, D., Holtz, Schwartz)

Outline
• Linear Algebra

– Communication Lower Bounds for classical direct linear
algebra

– CA 2.5D Matmul
– TSQR - Tall-Skinny QR
– Iterative Methods for linear algebra

• Machine Learning
– Training Neural Nets – “ImageNet training in minutes”
– Convolutional Neural Nets

• And Beyond
– Extending communication lower bounds and

optimal algorithms to general loop nests
17

19

SUMMA– n x n matmul on P1/2 x P1/2 grid
(nearly) optimal using minimum memory M=O(n2/P)

For k=0 to n/b-1 … b = block size = #cols in A(i,k) = #rows in B(k,j)
for all i = 1 to P1/2

owner of A(i,k) broadcasts it to whole processor row (using binary tree)
for all j = 1 to P1/2

owner of B(k,j) broadcasts it to whole processor column (using bin. tree)
Receive A(i,k) into Acol
Receive B(k,j) into Brow
C_myproc = C_myproc + Acol * Brow

* =
i

j

A(i,k)

k
k

B(k,j)

C(i,j)

Brow

Acol

Summary of dense parallel algorithms
attaining communication lower bounds

• Assume nxn matrices on P processors
• Minimum Memory per processor = M = O(n2 / P)
• Recall lower bounds:

#words_moved = Ω((n3/ P) / M1/2) = Ω(n2 / P1/2)
#messages = Ω((n3/ P) / M3/2) = Ω(P1/2)

• SUMMA attains this lower bound
• Does ScaLAPACK attain these bounds?

• For #words_moved: mostly, except nonsym. Eigenproblem
• For #messages: asymptotically worse, except Cholesky

• New algorithms attain all bounds, up to polylog(P) factors
• Cholesky, LU, QR, Sym. and Nonsym eigenproblems, SVD

Can we do Better?
20

Presenter
Presentation Notes
ScaLAPACK assumes best block size chosenMany references, blue are oursLU: uses tournament pivoting, different stability, speedup up to 29X predicted on exascaleQR uses TSQR, speedup up to 8x on Intel Clovertown, 13x on Tesla, up on cloudSymeig uses variant of SBR, speedup up to 30x on AMD Magny-Cours, vs ACML 4.4n=12000, b=500, 6 threadsNonsymeig, uses randomization in two ways

Can we do better?

• Aren’t we already optimal?
• Why assume M = O(n2/p), i.e. minimal?

– Lower bound still true if more memory
– Can we attain it?

• Special case: “3D Matmul”
– Uses M = O(n2/p2/3)
– Dekel, Nassimi, Sahni [81], Bernsten [89],

Agarwal, Chandra, Snir [90], Johnson [93],
Agarwal, Balle, Gustavson, Joshi, Palkar [95]

• Not always p1/3 times as much memory available…

21

Presenter
Presentation Notes
Uses P^(1/3) as much memory as minimal

2.5D Matrix Multiplication

• Assume can fit cn2/P data per processor, c > 1
• Processors form (P/c)1/2 x (P/c)1/2 x c grid

c

(P/c)1/2

Example: P = 32, c = 2

22

2.5D Matrix Multiplication

• Assume can fit cn2/P data per processor, c > 1
• Processors form (P/c)1/2 x (P/c)1/2 x c grid

k

j

Initially P(i,j,0) owns A(i,j) and B(i,j)
each of size n(c/P)1/2 x n(c/P)1/2

(1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
(2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of Σm A(i,m)*B(m,j)
(3) Sum-reduce partial sums Σm A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C(i,j)

23

Same idea extends to LU, QR, other algorithms
Matmul achieves perfect strong scaling in time and energy

2.5D Matmul on BG/P, 16K nodes / 64K cores
c = 16 copies

12x faster

2.7x faster

Distinguished Paper Award, EuroPar’11 (Solomonik, D.)

24Kwasniewski, Hoefler, et al (Best Student Paper, SC’19)

Presenter
Presentation Notes
SC’11 paper about need to fully utilize 3D torus network on BG/P to get this to work

Outline
• Linear Algebra

– Communication Lower Bounds for classical direct linear
algebra

– CA 2.5D Matmul
– TSQR - Tall-Skinny QR
– Iterative Methods for linear algebra

• Machine Learning
– Training Neural Nets – “ImageNet training in minutes”
– Convolutional Neural Nets

• And Beyond
– Extending communication lower bounds and

optimal algorithms to general loop nests
25

TSQR: QR of a Tall, Skinny matrix

27

W =

Q00 R00
Q10 R10
Q20 R20
Q30 R30

W0
W1
W2
W3

Q00
Q10

Q20
Q30

= = .

R00
R10
R20
R30

R00
R10
R20
R30

=
Q01 R01
Q11 R11

Q01
Q11

= . R01
R11

R01
R11

= Q02 R02

TSQR: QR of a Tall, Skinny matrix

28

W =

Q00 R00
Q10 R10
Q20 R20
Q30 R30

W0
W1
W2
W3

Q00
Q10

Q20
Q30

= = .

R00
R10
R20
R30

R00
R10
R20
R30

=
Q01 R01
Q11 R11

Q01
Q11

= . R01
R11

R01
R11

= Q02 R02

Output = { Q00, Q10, Q20, Q30, Q01, Q11, Q02, R02 }

TSQR: An Architecture-Dependent Algorithm

W =

W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02
Parallel:

W =

W0
W1
W2
W3

R01 R02

R00

R03

Sequential:

W =

W0
W1
W2
W3

R00
R01

R01

R11
R02

R11

R03

Dual Core:

Can choose reduction tree dynamically
Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

29

Presenter
Presentation Notes
Oldest reference for idea of tree: Golub/Plemmons/Sameh 1988,But didn’t avoid communication

TSQR Performance Results
• Parallel

– Intel Clovertown
– Up to 8x speedup (8 core, dual socket, 10M x 10)

– Pentium III cluster, Dolphin Interconnect, MPICH
• Up to 6.7x speedup (16 procs, 100K x 200)

– BlueGene/L
• Up to 4x speedup (32 procs, 1M x 50)

– Tesla C 2050 / Fermi
• Up to 13x (110,592 x 100)

– Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
– Cloud – 1.6x slower than just accessing data twice (Gleich and Benson)

• Sequential
– “Infinite speedup” for out-of-core on PowerPC laptop

• As little as 2x slowdown vs (predicted) infinite DRAM
• LAPACK with virtual memory never finished

• SVD costs about the same
• Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer, others

30

Presenter
Presentation Notes
Transition: TSQR -> CAQRCloud: Hadoop and Python based Dumbo MapReduce interface on 40-core mapreduce cluster at Stanford

TSQR Performance Results
• Parallel

– Intel Clovertown
– Up to 8x speedup (8 core, dual socket, 10M x 10)

– Pentium III cluster, Dolphin Interconnect, MPICH
• Up to 6.7x speedup (16 procs, 100K x 200)

– BlueGene/L
• Up to 4x speedup (32 procs, 1M x 50)

– Tesla C 2050 / Fermi
• Up to 13x (110,592 x 100)

– Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
– Cloud – 1.6x slower than just accessing data twice (Gleich and Benson)

• Sequential
– “Infinite speedup” for out-of-core on PowerPC laptop

• As little as 2x slowdown vs (predicted) infinite DRAM
• LAPACK with virtual memory never finished

• SVD costs about the same
• Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer, others

31

SIAG on Supercomputing Best Paper Prize, 2016
(D., Grigori, Hoemmen, Langou)

In LAPACK 3.7.0, 2016
LAPACK 3.10: Householder Reconstruction, 2021

Presenter
Presentation Notes
Transition: TSQR -> CAQRCloud: Hadoop and Python based Dumbo MapReduce interface on 40-core mapreduce cluster at Stanford

Outline
• Linear Algebra

– Communication Lower Bounds for classical direct linear
algebra

– CA 2.5D Matmul
– TSQR - Tall-Skinny QR
– Iterative Methods for linear algebra

• Machine Learning
– Training Neural Nets – “ImageNet training in minutes”
– Convolutional Neural Nets

• And Beyond
– Extending communication lower bounds and

optimal algorithms to general loop nests
32

Avoiding Communication in Iterative Linear Algebra

• k-steps of iterative solver for sparse Ax=b or Ax=λx
– Does k SpMVs with A and starting vector
– Many such “Krylov Subspace Methods”

• Conjugate Gradients (CG), GMRES, Lanczos, Arnoldi, …
• Goal: minimize communication

– Assume matrix “well-partitioned”
– Serial implementation

• Conventional: O(k) moves of data from slow to fast memory
• New: O(1) moves of data – optimal

– Parallel implementation on p processors
• Conventional: O(k log p) messages (k SpMV calls, dot prods)
• New: O(log p) messages - optimal

• Lots of speed up possible (modeled and measured)
– Price: some redundant computation
– Challenges: Poor partitioning, Preconditioning, Num. Stability34

Presenter
Presentation Notes
Well – partitioned = modest surface-to-volume ratioSee bebop.cs.berkeley.eduCG: [van Rosendale, 83], [Chronopoulos and Gear, 89]GMRES: [Walker, 88], [Joubert and Carey, 92], [Bai et al., 94]

Minimizing Communication of GMRES to solve Ax=b

• GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2

Standard GMRES
for i=1 to k

w = A · v(i-1) … SpMV
MGS(w, v(0),…,v(i-1))
update v(i), H

endfor
solve LSQ problem with H

Communication-avoiding GMRES
W = [v, Av, A2v, … , Akv]
[Q,R] = TSQR(W)

… “Tall Skinny QR”
build H from R
solve LSQ problem with H

•Oops – W from power method, precision lost!
•Fix: replace W by [v, p1(A)v, p2(A)v, …, pk(A)v]

35

Sequential case: #words moved decreases by a factor of k
Parallel case: #messages decreases by a factor of k

•Up to 2.3x speedup for GMRES on 8 core Intel Clovertown
•Up to 4.2x speedup for BiCGStab on 24K core Cray XE6

(Hoemmen)

(Carson)

Presenter
Presentation Notes
2.3x for pwtk from Boeing, s=5, stiffness matrix of pressurized windtunnel, n = 218k, nnz = 11.5M4.2x for bottom solve of miniGMG benchmark, s=4, monomial basisCA-Preconditioners: s-Step Krylov Subspace Methods as Bottom Solvers for Geometric Multigrid, Williams et al Laura Grigori – ILU0 SC18 – Idomura et al MG preconditioned CACG Yamazaki, Heroux, - Domain decomp CA

36

CA-BiCGStab

Outline
• Linear Algebra

– Communication Lower Bounds for classical direct linear
algebra

– CA 2.5D Matmul
– TSQR - Tall-Skinny QR
– Iterative Methods for linear algebra

• Machine Learning
– Training Neural Nets – “ImageNet training in minutes”
– Convolutional Neural Nets

• And Beyond
– Extending communication lower bounds and

optimal algorithms to general loop nests
37

Training Neural Nets by
Mini-Batch Stochastic Gradient Descent (SGD)

• Iterate:
– Pick a mini-batch of B data points
– Update weights 𝑊𝑊 = 𝑊𝑊 − 𝜂𝜂 � ∇𝐿𝐿 𝑊𝑊

• 𝜂𝜂 = learning rate
• ∇𝐿𝐿 𝑊𝑊 = gradient

• Data parallel version on P processors
– Data partitioned, each processor gets B/P points
– 𝑊𝑊𝑖𝑖 replicated
– Each processor computes ∇𝐿𝐿 𝑊𝑊 𝑖𝑖 wrt its data
– All-reduce: each processor computes
𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑖𝑖 - (𝜂𝜂/P) � Σ𝑖𝑖=1𝑃𝑃 ∇𝐿𝐿 𝑊𝑊 𝑖𝑖

(You, Zhang, Hsieh, D., Keutzer, IPDPS 18)

42

Presenter
Presentation Notes
Eta can also incorporate momentum and weight decayL = loss function

SGD: 𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑖𝑖 - (𝜂𝜂/P) � Σ𝑖𝑖=1𝑃𝑃 ∇𝐿𝐿 𝑊𝑊 𝑖𝑖

• Increase P to go faster: What are the bottlenecks?
• B/P decreases ⇒ less work per processor

– Small matrix operations ⇒ locally communication bound
• Cost of each reduction Σ𝑖𝑖∇𝐿𝐿(𝑊𝑊)𝑖𝑖 grows
• Solution: increase B along with P

– Maintain B/P ⇒ maintain processor efficiency
– Try to converge in same #epochs (passes over data)

• Same overall work, fewer reductions

• Oops: Convergence can be much worse
– Convergence rate, test accuracy

43

Presenter
Presentation Notes
Test accuracy vs training accuracy

Improving SGD convergence as B grows

• Facebook’s strategy: adjust learning rate 𝜂𝜂
– Increase B to kB ⇒ increase 𝜂𝜂 to k𝜂𝜂
– Warmup rule: Start with smaller 𝜂𝜂, then increase

• Only worked up to B=1K for AlexNet (tried lots of
tuning)

• Fix: Add Layer-wise Adaptive Rate Scaling (LARS)
– ∥ 𝑊𝑊 ∥∕∥ ∇𝐿𝐿(𝑊𝑊) ∥ can vary by 233x between AlexNet

layers
– Let 𝜂𝜂 be proportional to ∥ 𝑊𝑊 ∥∕∥ ∇𝐿𝐿(𝑊𝑊) ∥
– (You, Gitman, Ginsburg, 2017)
– Also need momentum, weight decay

44

Presenter
Presentation Notes
Increase: warmup rule

ImageNet Training in Minutes

Batch Size Epochs Top-1 Accuracy Platform Time

256 100 58.7% 8-core + K20 GPU 144 hrs

512 100 58.8% DGX-1 station 6h 10m

4096 100 58.4% DGX-1 station 2h 19m

32k 100 58.6% 512 KNLs 24m

32k 100 58.6% 1024 CPUs 11m

Speedup for AlexNet (for batchsize = 32K, changed LRN to BN)

Batch Size Epochs Top-1 Accuracy Platform Time

32 90 75.3% CPU + M40 GPU 336h

256 90 75.3% 16 KNLs 45h

32K 90 75.4% 512 KNLs 60m

32K 90 75.4% 1600 CPUs 32m

32K 90 75.4% 2048 KNLs 20m

Speedup for ResNet50

45

135x

Presenter
Presentation Notes
BN = batch normalization – make input at each layer 0 mean, unit varianceLRN = local response normalization – normalize in small windowsYang will update data135x going from 16 KNLs to 2K KNLs for ResNet50, 2^7 = 128x #procsSuperlinear speedup from local matmuls

ImageNet Training in Minutes

• Best Paper Prize at ICPP 2018
• Open Source in Caffe, NVIDIA Caffe,

Facebook Caffe 2 (PyTorch)
• Media coverage by CACM, EureKalert, Intel,

NSF, Science Daily, Science NewsLine, etc.
• Subsequent work at Tencent reached 4 minutes
• LARS adopted by industry standard benchmark

MLPerf in 2019

46

Outline
• Linear Algebra

– Communication Lower Bounds for classical direct linear
algebra

– CA 2.5D Matmul
– TSQR - Tall-Skinny QR
– Iterative Methods for linear algebra

• Machine Learning
– Training Neural Nets – “ImageNet training in minutes”
– Convolutional Neural Nets

• And Beyond
– Extending communication lower bounds and

optimal algorithms to general loop nests
47

Presenter
Presentation Notes
CNNs: inference / training forward pass, large fraction (30%-50%) of training

What CNNs compute

C

H
W

Image

What CNNs compute

C

H
W

Image

R S R S

C
…K

Filter

What CNNs compute

C

H
W SR

Image

X

R S R S

C
…K

Filter

=

H
W

K

Out

What CNNs compute

C

H
W SR

Image

X

R S R S

C
…K

Filter

=

H
W

K

Out

B copies B copies

What CNNs compute

C

H
W SR

Image

X

R S R S

C
…K

Filter

=

H
W

K

Out

B copies B copies

for k=1:K, for h=1:H, for w=1:W, for r=1:R,
for s=1:S, for c=1:C, for b=1:B

Out(k, h, w, b) += Image(r+w, s+h, c, b) * Filter(k, r, s, c)

What CNNs compute

C

HσH
WσW SR

Image

X

R S R S

C
…K

Filter

=

H
W

K

Out

B copies B copies

for k=1:K, for h=1:H, for w=1:W, for r=1:R,
for s=1:S, for c=1:C, for b=1:B

Out(k, h, w, b) += Image(r+σWw, s+σHh, c, b) * Filter(k, r, s, c)

Communication Lower Bound for CNNs
• Let N = #iterations = KHWRSCB, M = cache size
• #words moved = Ω(max(… 5 terms

BKHW, … size of Out
σHσWBCWH, ... size of Image
CKRS, ... size of Filter
N/M, ... lower bound for large loop bounds
N/(M1/2 (RS/(σHσW))1/2) ... lower bound for small filters)

• Any one of 5 terms may be largest
• Bottommost bound beats matmul by factor (RS/(σHσW))1/2

– Applies in common case when data does not fit in cache, but one RxS
filter does

– Tile needed to attain N/M too big to fit in loop bounds
• Thm: Always attainable! (computer generated proof)

– Beats im2col in data movement for various practical sizes
• Improved constants to appear in PASC‘22
• Chen/Han/Wang (arxiv:1911.05662v3): HW accelerator

Presenter
Presentation Notes
PASC’22 = Platform for Advanced Scientific Computing

Outline
• Linear Algebra

– Communication Lower Bounds for classical direct linear
algebra

– CA 2.5D Matmul
– TSQR - Tall-Skinny QR
– Iterative Methods for linear algebra

• Machine Learning
– Training Neural Nets – “ImageNet training in minutes”
– Convolutional Neural Nets

• And Beyond
– Extending communication lower bounds and

optimal algorithms to general loop nests
55

Communication lower bounds and
optimal algorithms for general loop nests

• for i = 1:n, for j=1:n, for k = 1:n
C(i,j) = C(i,j) + A(i,k)*B(k,j)

• #Words moved between main memory and cache
of size M = Ω(𝑛𝑛3 / 𝑀𝑀1/2) , attainable

• For (i1,i2,…ik) ∈ 𝑆𝑆 ⊆ ℤ𝑘𝑘, do something with
– A(i1), B(i2, i3+i4), C(i1-i2, i2+3*i3- 5*i4 +2, …), …

• Thm: #Words moved = Ω(𝑆𝑆 / 𝑀𝑀𝑒𝑒𝐻𝐻𝐻𝐻𝐻𝐻)
(Christ, D., Knight, Scanlon, Yelick)
– HBL = Hölder / Brascamp / Lieb
– Uses results by Christ, Tao, others

• Thm: There exists an optimal tiling that attains
this lower bound (D., Rusciano)

57

What’s left?
• Dealing with small loop bounds

– Ex: Matvec special case of Matmul, not optimizable
– Special cases: CNNs
– Thm: If all subscripts like (i),(i,j), etc, and S = parallelepiped,
∃ tighter, attainable lower bound (D., Dinh)

• Dealing with dependencies
– Special cases: Linear algebra outside matmul, Floyd-

Warshall, …
• More realistic performance models than 𝛼𝛼,𝛽𝛽, 𝛾𝛾

– Variable precision
– Heterogeneous processors, accelerators, network

topologies, differing costs of read and writes, …
• Need to automate! (i.e. compilers)

Collaborators and Supporters
• James Demmel, Kathy Yelick, Vivek Bharadwaj, Grace Dinh, Tianyu Liang
• Peter Ahrens, Michael Anderson, Grey Ballard, Austin Benson, Erin Carson, Maryam Dehnavi,

Aditya Devakonda, Michael Driscoll, David Eliahu, Andrew Gearhart, Evangelos Georganas,
Mark Hoemmen, Shoaib Kamil, , Nicholas Knight, Penporn Koanantakool, Ben Lipshitz,
Marghoob Mohiyuddin, Hong Diep Nguyen, Jason Riedy, Alex Rusciano, Oded Schwartz,
Edgar Solomonik, Omer Spillinger, Yang You

• Abhinav Bhatele, Aydin Buluc, Michael Christ, Ioana Dumitriu, Kimon Fountoulakis, Armando
Fox, David Gleich, Ming Gu, Jeff Hammond, Mike Heroux, Olga Holtz, Kurt Keutzer, Julien
Langou, Xiaoye Li, Michael Mahoney, Devin Matthews, Tom Scanlon, Michelle Strout, Sam
Williams, Hua Xiang, Zhao Zhang, Cho-Jui Hsieh,

• Jack Dongarra, Mark Gates, Jakub Kurzak, Dulceneia Becker, Ichitaro Yamazaki, …
• Sivan Toledo, Alex Druinsky, Inon Peled, Greg Henry, Peter Tang,
• Laura Grigori, Sebastien Cayrols, Simplice Donfack, Mathias Jacquelin, Amal Khabou, Sophie

Moufawad, Mikolaj Szydlarski
• Members of SLICE, ADEPT, ASPIRE, BEBOP, ParLab, CACHE, EASI, FASTMath, MAGMA, PLASMA
• Thanks to DOE, NSF, UC Discovery, INRIA, Intel, Microsoft, Mathworks, National Instruments,

NEC, Nokia, NVIDIA, Samsung, Oracle
• bebop.cs.berkeley.edu

59

Presenter
Presentation Notes
Underlined named visited other site, Mathias and Sophie in Summer 2012New INRIA Postdoc: Soleiman Yousef

For more details

• Bebop.cs.berkeley.edu
– 155 page linear algebra survey in Acta Numerica (2014)
– Book in progress (with Ballard, Carson, Grigori)

• CS267 – Berkeley’s Parallel Computing Course
– Live broadcast in Spring 2021, now in 2022

• www.cs.berkeley.edu/~demmel
• All slides, video available

– Prerecorded version broadcast since Spring 2013
• www.xsede.org
• Free supercomputer accounts to do homework
• Free autograding of homework

60

http://www.cs.berkeley.edu/%7Edemmel
http://www.xsede.org

Summary

Don’t Communic…

61

Time to redesign all
linear algebra, machine learning, n-body, …

algorithms and software, and compilers

61

Backup slides

Proof of Communication Lower Bound on C = A·B (1/4)
• Basic Counting Argument:

– Only M entries of A, B and C are available in cache
– Find an upper bound F on the number of different

iterations C(i,j) = C(i,j) + A(i,k)*B(k,j) we can perform
– Need to refill cache n3/F times to complete algorithm
– Need to read/write at least M n3/ F words to/from cache

• Represent iterations and data geometrically

CS267 Lecture 7 63

Presenter
Presentation Notes
Ignore fact that T/F may not be an integer, fix later(change # segments to # complete_segments, T/F to floor(T/F),Then #complete_segments >= floor(T/F), otherwise, if#complete_segments <= floor(T/F) – 1 < T/F - 1, then#flops < F*((T/F)-1) + F = T, oops

Proof of Communication Lower Bound on C = A·B (2/4)
k

“A face”

“C face”

Cube representing
C(1,1) += A(1,3)·B(3,1)

• If we have at most M “A squares”, “B squares”, and “C squares”
on faces, how many cubes can we have?

i

j

A(2,1)

A(1,3)

B
(1

,3
)

B
(3

,1
)

C(1,1)

C(2,3)

A(1,1) B
(1

,1
)

A(1,2)

B
(2

,1
)

64

Proof of Communication Lower Bound on C = A·B (3/4)

x
z

z

y

x
y

k

A shadow

C shadow

j

i

cubes in black box with
side lengths x, y and z

= Volume of black box
= x·y·z
= (xz · zy · yx)1/2

= (#A□s · #B□s · #C□s)1/2

(i,k) is in A shadow if (i,j,k) in 3D set
(j,k) is in B shadow if (i,j,k) in 3D set
(i,j) is in C shadow if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
cubes in 3D set = Volume of 3D set
≤ (area(A shadow) · area(B shadow) ·

area(C shadow)) 1/2

65

Proof of Communication Lower Bound on C = A·B (4/4)

• # loop iterations doable with M words of data = #cubes
≤ (area(A shadow) · area(B shadow) ·area(C shadow)) 1/2

≤ (M · M · M) 1/2 = M 3/2 = F
• Need to read/write at least M n3/ F = Ω(n3/M 1/2) =

Ω(#loop iterations / M 1/2) words to/from cache

66

Presenter
Presentation Notes
Still true if M > n^2

	Communication-Avoiding Algorithms�for Linear Algebra, ML and Beyond
	Why avoid communication? (1/3)
	Why avoid communication? (2/3)
	Why avoid communication? (3/3)�Same story for saving energy
	Goals
	Sample Speedups
	Sample Speedups
	Outline
	Outline
	Summary of CA Linear Algebra
	Lower bound for all “n3-like” linear algebra
	Lower bound for all “n3-like” linear algebra
	Lower bound for all “n3-like” linear algebra
	Outline
	SUMMA– n x n matmul on P1/2 x P1/2 grid�(nearly) optimal using minimum memory M=O(n2/P)
	Summary of dense parallel algorithms �attaining communication lower bounds
	Can we do better?
	2.5D Matrix Multiplication
	2.5D Matrix Multiplication
	2.5D Matmul on BG/P, 16K nodes / 64K cores
	Outline
	TSQR: QR of a Tall, Skinny matrix
	TSQR: QR of a Tall, Skinny matrix
	TSQR: An Architecture-Dependent Algorithm
	TSQR Performance Results
	TSQR Performance Results
	Outline
	Avoiding Communication in Iterative Linear Algebra
	Minimizing Communication of GMRES to solve Ax=b
	Slide Number 36
	Outline
	Training Neural Nets by�Mini-Batch Stochastic Gradient Descent (SGD)
	SGD: 𝑊 𝑖 = 𝑊 𝑖 - (𝜂/P) ∙ Σ 𝑖=1 𝑃 ∇𝐿 𝑊 𝑖
	Improving SGD convergence as B grows
	ImageNet Training in Minutes
	ImageNet Training in Minutes
	Outline
	What CNNs compute
	What CNNs compute
	What CNNs compute
	What CNNs compute
	What CNNs compute
	What CNNs compute
	Communication Lower Bound for CNNs
	Outline
	Communication lower bounds and optimal algorithms for general loop nests
	What’s left?
	Collaborators and Supporters
	For more details
	Summary
	Backup slides
	Proof of Communication Lower Bound on C = A·B (1/4)
	Proof of Communication Lower Bound on C = A·B (2/4)
	Proof of Communication Lower Bound on C = A·B (3/4)
	Proof of Communication Lower Bound on C = A·B (4/4)

