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These projects are collaborated with Prof. Shing-Tung Yau,
Prof. Feng Luo, Prof. Zhongxuan Luo, Prof. Na Lei and many
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Why dose DL work?

Problem
1 What does a DL system really learn ?
2 How does a DL system learn ? Does it really learn or just

memorize ?
3 How well does a DL system learn ? Does it really learn

everything or have to forget something ?

Till today, the understanding of deep learning remains primitive.
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Why does DL work?

1. What does a DL system really learn?

Probability distributions on manifolds.

2. How does a DL system learn ? Does it really learn or just
memorize ?

Optimization in the space of all probability distributions on a
manifold. A DL system both learns and memorizes.

3. How well does a DL system learn ? Does it really learn
everything or have to forget something ?

Current DL systems have fundamental flaws, mode collapsing.
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Manifold Distribution Principle
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Helmholtz Hypothesis

Helmholtz Hypothesis
Half of the brain is devoted to vision, Helmholtz hypothesized
that vision solves an inverse problem, i.e., inferring the most
likely causes of the retina image. In modern language, the brain
learns a generative model of visual images, and visual
perception is to infer the latent variables of this generative
model. The generative model with its multiple layers of latent
variables form a representation of our visual world.

About representation learning, the basic idea is that the brain
represents a concept by a group of neurons, or latent variables,
that form a vector. Sometimes it is also called embedding, i.e.,
we embed the concept into a multi-dimensional Euclidean
space, which is sometimes called latent space.
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Manifold Distribution Principle

We believe the great success of deep learning can be partially
explained by the well accepted manifold distribution and the
clustering distribution principles:

Manifold Distribution
A natural data class can be treated as a probability distribution
defined on a low dimensional manifold embedded in a high
dimensional ambient space.

Clustering Distribution
The distances among the probability distributions of subclasses
on the manifold are far enough to discriminate them.

X. Gu Geometric Understanding



MNIST tSNE Embedding

a. LeCunn’s MNIST handwritten b. Hinton’s t-SNE embemdding
digits samples on manifold on latent space
Each image 28×28 is treated as a point in the image space
R28×28;

The hand-written digits image manifold is only two dimensional;

Each digit corresponds to a distribution on the manifold.
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Encoding

Hinton’s t-SNE Method

Figure: Each cluster corresponds to a hand written digit. Multiple
clusters may correspond to the same digit.
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MNIST Siamese Embedding

Different embedding result with inferior quality by a Siamese
network.
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MNIST UMap Embedding

UMap embedding, the samples between modes produce
obscure images, which is called mode mixture.
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General Model

ϕi

ϕj

ϕij

Uj

Ui

Σ Manifold

Rn Image Space

Z Latent Space

Ambient Space-
image space Rn

manifold - Support of
a distribution µ

parameter domain -
latent space Rm

coordinates map ϕi -
encoding/decoding
maps

ϕij controls the
probability measure
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Low Dimensional Example

Image space X is R3; the data manifold Σ is the happy
buddaha.
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Example

The encoding map is ϕi : Σ→Z ; the decoding map is
ϕ
−1
i : Z → Σ.
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Example

The automorphism of the latent space ϕij : Z →Z is the chart
transition.
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Example

Uniform distribution ζ on the latent space Z , non-uniform
distribution on Σ produced by a decoding map.
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Example

Uniform distribution ζ on the latent space Z , uniform
distribution on Σ produced by another decoding map.
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Central Tasks for DL

Central Tasks
1 Learn the manifold structure;
2 Learn the probability distribution.
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Generative Model Framework

encoder
decoder

Transport Map

Training Data Generated SamplesLatent Distribution

white noise
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AE-OT Framework

encoder
decoder

OT Mapper

Training Data Generated SamplesLatent Distribution

white noise
Brenier Potential
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Human Facial Image Manifold

One facial image is determined by a finite number of genes,
lighting conditions, camera parameters, therefore all facial
images form a manifold.
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Manifold view of Generative Model

Given a parametric representation ϕ : Z → Σ, randomly
generate a parameter z ∈Z (white noise), ϕ(z) ∈Σ is a human
facial image.
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Manifold view of Denoising

Σ
Rn

p

p̃

Suppose p̃ is a point close to the manifold, p ∈ Σ is the closest
point of p̃. The projection p̃→ p can be treated as denoising.
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Manifold view of Denoising

Σ is the clean facial image manifold; noisy image p̃ is a point
close to Σ; the closest point p ∈ Σ is the resulting denoised
image.
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Manifold view of Denoising

Traditional Method
Fourier transform the noisy image, filter out the high frequency
component, inverse Fourier transform back to the denoised
image.

ML Method
Use the clean facial images to train the neural network, obtain a
representation of the manifold. Project the noisy image to the
manifold, the projection point is the denoised image.

Key Difference
Traditional method is independent of the content of the image;
ML method heavily depends on the content of the image. The
prior knowledge is encoded by the manifold.
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Manifold view of Denoising

If the wrong manifold is chosen, the denoising result is of
non-sense. Here we use the cat face manifold to denoise a
human face image, the result looks like a cat face.
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Manifold Learning
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Topological Theoretic Foundations

Lemma (Urysohn’s Lemma)
Let A,B be closed subsets of a normal topological space X.
There exists a continuous function f : X → [0,1] such that
f (A) = 0 and f (B) = 1.

A

B

0

1

Figure: Urysohn’s lemma provides the theoretic tool for pattern
recognition, supervised learning.
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Topological Theoretic Foundations

Theorem (General Position Theorem)

Any m-manifold unknots in Rn provided n ≥ 2m + 2.

In deep learning, this means that data is easier to manipulate
once it is embedded in higher dimensions.

Figure: Increase the dimension of the embedding space to unlink the
manifolds.
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Whitney Manifold Embedding

Theorem (Whiteny Embedding)
Any smooth real m-dimensional manifold (required also to be
Hausdorff and second-countable) can be smoothly embedded
in the real 2m-space (R2m).

1 Construct an atlas, M ⊂⋃k
i=1 Ui ;

2 Build a partition of unity;
3 Embed each open set in Rm;
4 Glue the local embeddings to embed M in Rkm;
5 Random projection to lower dimension.
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Universal Approximation

Related to the Hilbert 13th Problem,

Theorem (Kolmogorov-Arnold Representation)
f is a multivariate continuous function, then f can be written as
a finite composition of continuous functions of a single variable
and the binary operation of addition.

f (x1,x2, . . . ,xn) =
2n

∑
q=0

Φq

(
n

∑
p=1

ϕp,q(xp)

)
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Universal Approximation

D2

diffc

Flow

Near Id

DNN

Construct a sequence of nested mapping spaces, Fk+1 is
simpler than Fk ,

F0 ⊃F1 ⊃F2 · · · ⊃Fn,

each mapping f ∈Fk can be approximated by a finite
composition of mappings g1,g2, . . . ,gr ∈Fk+1,
f = g1 ◦g2 ◦g3 · · ·gr . Fn can be computed by deep neural
networks.
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Universal Approximation

General C2 diffeomorphisms can be approximated by the
followings steps:

1 By finite composition of diffeomorphisms with compact
support;

2 By finite composition of flow mappings ϕs:

d
dt

ϕ(p, t) = v(ϕ(p, t), t), ϕ(p,0) = id ;

3 By finite composition of near id maps

|Dg− I|< δ ;

4 By deep neural networks, such as affine coupling flows etc,
which grantee the mapping is invertible;
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Autoencoder

Figure: Auto-encoder architecture.

Ambient space X , latent space Z , encoding map
ϕθ : X →Z , decoding map ψθ : Z →X .
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Encoding/Decoding

a. Input manifold b. latent representation c. reconstructed mfld
M ⊂X D = ϕθ (M)⊂Z M̃ = ψθ (D)⊂X

Figure: Auto-encoder pipeline.
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ReLU DNN

Definition (ReLU DNN)
For any number of hidden layers k ∈ N, input and output
dimensions w0,wk+1 ∈ N, a Rw0 → Rwk+1 ReLU DNN is given by
specifying a sequence of k natural numbers w1,w2, . . . ,wk
representing widths of the hidden layers, a set of k affine
transformations Ti : Rwi−1 → Rwi for i = 1, . . . ,k and a linear
transformation Tk+1 : Rwk → Rwk+1 corresponding to weights of
hidden layers.

The mapping ϕθ : Rw0 → Rwk+1 represented by this ReLU DNN
is

ϕ = Tk+1 ◦σ ◦Tk ◦ · · · ◦T2 ◦σ ◦T1, (1)

where ◦ denotes mapping composition, θ represent all the
weight and bias parameters.
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Activated Path

Fix the encoding map ϕθ , let the set of all neurons in the
network is denoted as S , all the subsets is denoted as 2S .

Definition (Activated Path)
Given a point x ∈X , the activated path of x consists all the
activated neurons when ϕθ (x) is evaluated, and denoted as
ρ(x). Then the activated path defines a set-valued function
ρ : X → 2S .
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Cell Decomposition

Definition (Cell Decomposition)
Fix a encoding map ϕθ represented by a ReLU DNN, two data
points x1,x2 ∈X are equivalent, denoted as x1 ∼ x2, if they
share the same activated path, ρ(x1) = ρ(x2). Then each
equivalence relation partitions the ambient space X into cells,

D(ϕθ ) : X =
⋃
α

Uα ,

each equivalence class corresponds to a cell: x1,x2 ∈ Uα if and
only if x1 ∼ x2. D(ϕθ ) is called the cell decomposition induced
by the encoding map ϕθ .

Furthermore, ϕθ maps the cell decomposition in the ambient
space D(ϕθ ) to a cell decomposition in the latent space.
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Piecewise Linear Mapping

d. cell decomposition e. latent space f. cell decomposition
D(ϕθ ) cell decomposition D(ψθ ◦ϕθ )

Piecewise linear encoding/decoding maps induce cell
decompositions of the ambient space and the latent space.
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Learning Capability

Definition (Learning Capability)

Given a ReLU DNN N(w0, . . . ,wk+1), its rectified linear
complexity is the upper bound of the number of pieces of all PL
functions ϕθ represented by N,

N (N) := max
θ

N (ϕθ ),

where N (ϕθ ) is the number of pieces of the PL function ϕθ .

This gives a measurement for the representation capability of a
neural network.
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RL Complexity Estimate

Lemma
The maximum number of parts one can get when cutting
d-dimensional space Rd with n hyperplanes is denoted as
C (d ,n), then

C (d ,n) =

(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n
d

)
. (2)

Proof.

Suppose n hyperplanes cut Rd into C (d ,n) cells, each cell is a
convex polyhedron. The (n + 1)-th hyperplane is π, then the
first n hyperplanes intersection π and partition π into
C (d −1,n) cells, each cell on π partitions a polyhedron in Rd

into 2 cells, hence we get the formula

C (d ,n + 1) = C (d ,n) +C (d −1,n).

It is obvious that C (2,1) = 2, the formula (2) can be easily
obtained by induction.
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RL Complexity Upper Bound

Theorem (Rectified Linear Complexity of a ReLU DNN)

Given a ReLU DNN N(w0, . . . ,wk+1), representing PL mappings
ϕθ : Rw0 → Rwk+1 with k hidden layers of widths {wi}ki=1, then
the linear rectified complexity of N has an upper bound,

N (N)≤ Πk+1
i=1 C (wi−1,wi). (3)
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RL Complexity of Manifold

a. linear rectifiable b. non-linear-rectifiable

Definition (Linear Rectifiable Manifold)

Suppose M is a m-dimensional manifold, embedded in Rn, we
say M is linear rectifiable, if there exists an affine map
ϕ : Rn→ Rm, such that the restriction of ϕ on M,
ϕ|M : M → ϕ(M)⊂ Rm, is homeomorphic. ϕ is called the
corresponding rectified linear map of M.
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Manifold RL Complexity

Definition (Linear Rectifiable Atlas)

Suppose M is a m-dimensional manifold, embedded in Rn,
A = {(Uα ,ϕα} is an atlas of M. If each chart (Uα ,ϕα ) is linear
rectifiable, ϕα : Uα → Rm is the rectified linear map of Uα , then
the atlas is called a linear rectifiable atlas of M.

Definition (Rectified Linear Complexity of a Manifold)

Suppose M is a m-dimensional manifold embedded in Rn, the
rectified linear complexity of M is denoted as N (Rn,M) and
defined as,

N (Rn,M) := min{|A | |A is a linear rectifiable altas of M} .
(4)
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Encodable Condition

Definition (Encoding Map)

Suppose M is a m-dimensional manifold, embedded in Rn, a
continuous mapping ϕ : Rn→ Rm is called an encoding map of
(Rn,M), if restricted on M, ϕ|M : M → ϕ(M)⊂ Rm is
homeomorphic.

Theorem (Encodable Condition)

Suppose a ReLU DNN N(w0, . . . ,wk+1) represents a PL
mapping ϕθ : Rn→ Rm, M is a m-dimensional manifold
embedded in Rn. If ϕθ is an encoding mapping of (Rn,M), then
the rectified linear complexity of N is no less that the rectified
linear complexity of (Rn,M),

N (Rn,M)≤N (ϕθ )≤N (N).
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Representation Limitation Theorem

C1 Peano curve C2 Peano curve

Figure: N (R2,Cn)≥ 4n+1

Theorem
Given any ReLU deep neural network N(w0,w1, . . . ,wk ,wk+1),
there is a manifold M embedded in Rw0 , such that M can not be
encoded by N.

X. Gu Geometric Understanding



Probability Measure Learning
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Generative Model

A generative model converts a white noise into a facial image.
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GAN model

encoder
decoder

Generator

Training Data Generated SamplesLatent Distribution

white noise

Discriminator

transporter
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GAN Overview

Figure: GAN DNN model.

generated distr.

real distributionDiscriminator

Generator

white noise

Figure: GAN learning process.
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Wasserstein GAN Model

Σ
X

Z

ζ

G : gθ

ν

µθ

D : Wc(µθ, ν), ϕξ

X -image space; Σ-supporting manifold; Z -latent space;
Wc(·, ·) is the Wasserstein distance.
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Wasserstein GAN Model

Σ
X

Z

ζ

G : gθ

ν

µθ

D : Wc(µθ, ν), ϕξ

ν-training data distribution; ζ -uniform distribution;
µθ = gθ#ζ -generated distribution; G - generator computes gθ ;
D -discriminator, measures the Wasserstein distance between
ν and µθ , Wc(µθ ,ν).
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Optimal Transport Framework
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Overview

Motivation
Given a manifold X , all the probability distributions on X
form an infinite dimensional manifold, Wasserstein Space
P(X );
Deep Learning tasks are reduced to optimization in P(X ),
such as the principle of maximum entropy principle,
maximum likely hood estimation, maximum a posterior
estimation and so on;
DL tasks requires variational calculus, Riemannian metric
structure defined on P(X ).
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Overview

Solution
Optimal transport theory discovers a natural Riemannian
metric of P(X ), called Wasserstein metric;
the covariant calculus on P(X ) can be defined
accordingly;
the optimization in P(X ) can be carried out.
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Overview

The geodesic distance between dµ = f (x)dx and
dν(y) = g(y)dy is given by the optimal transport map
T : X → X , T = ∇u,

det
(

∂ 2u
∂xi∂xj

)
=

f (x)

g ◦∇u(x)
.

The geodesic between them is McCann’s displacement,

γ(t) := ((1− t)I + t∇u)#µ

The tangent vectors of a probability measure is a gradient
field on X , the Riemannian metric is given by

〈dϕ1,dϕ2〉=
∫

X
〈dϕ1,dϕ2〉gf (x)dx .
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Equivalence to Conventional DL Methods

Entropy function is convex along the geodesics on P(X );
The Hessian of entropy defines another Riemannian metric
of P(X );
The Wasserstein metric and the Hessian metric are
equivalent in general;
Entropy optimization is the foundation of Deep Learning;
Therefore Wasserstein-metric driven optimization is
equivalent to entropy optimization.
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Monge Problem

Problem (Monge)
Find a measure-preserving transportation map
T : (X ,µ)→ (Y ,µ) that minimizes the transportation cost,

(MP) min
T#µ=ν

C (T ) = min
T#µ=ν

∫
X

c(x ,T (x))dµ(x).

such kind of map is called the optimal mass transportation map.

Definition (Wasserstein distance)
The transportation cost of the optimal transportation map
T : (X ,µ)→ (Y ,ν) is called the Wasserstein distance between
µ and ν , denoted as

W 2
c (µ,ν) := min

T#µ=ν

C (T ).
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Kantorovich Problem

Kantorovich relaxed transportation maps to transportation
schemes.

Problem (Kantorovich)
Find an optimal transportation scheme, namely a joint
probability measure ρ ∈P(X ×Y ), with marginal measures
ρx# = µ, ρy# = ν , that minimizes the transportation cost,

(KP) min
ρ

{∫
X×Y

c(x ,y)dρ(x ,y)
∣∣ρx# = µ, ρy# = ν

}
.

Kantorovich solved this problem by inventing linear
programming, and won Nobel’s prize in economics in 1975.
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Kantorovich Dual Problem

By the duality of linear programming, Kantorovich problem has
the dual form:

Problem (Kantorovich Dual)
Find an functions ϕ : X → R and ψ : Y → R, such that

(DP) max
ϕ,ψ

{∫
X

ϕ(x)du(x) +
∫

Y
ψ(y)dν(y),ϕ(x) + ψ(y)≤ c(x ,y)

}
.
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Kantorovich Dual Problem

Definition (c-transformation)

Given a function ϕ : X → R, and c(x ,y) : X ×Y → R, its
c-transform ϕc : Y → R is given by

ϕ
c(y) := inf

x∈X
{c(x ,y)−ϕ(x)}.

Problem (Kantorovich Dual)
The Kantorovich Dual problem can be reformulated as

(DP) max
ϕ

{∫
X

ϕ(x)du(x) +
∫

Y
ϕ

c(y)dν(y)

}
.

ϕ is called Kantorovich potential.
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Brenier’s Approach

Theorem (Brenier)
If µ,ν > 0 and X is convex, and the cost function is quadratic
distance,

c(x,y) =
1
2
|x−y|2

then there exists a convex function u : X → R unique upto a
constant, such that the unique optimal transportation map is
given by the gradient map

T : x→ ∇u(x).

Problem (Brenier)
Find a convex function u : X → R, such that

(BP) (∇u)#µ = ν ,

u is called the Brenier potential.
X. Gu Geometric Understanding



Brenier’s Approach

From Jacobian equation, one can get the necessary condition
for Brenier potential.

Problem (Brenier)

Find the C2 Brenier potential u : X → R statisfies the
Monge-Ampere equation

(BP) det
(

∂ 2u
∂xi∂xj

)
=

µ(x)

ν(∇f (x))
.
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Convex Geometry
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Minkowski problem - General Case

Minkowski Problem
Given k unit vectors n1, · · · ,nk not
contained in a half-space in Rn

and A1, · · · ,Ak > 0, such that

∑
i

Aini = 0,

find a compact convex polytope P
with exactly k codimension-1 faces
F1, · · · ,Fk , such that

1 area(Fi) = Ai ,
2 ni ⊥ Fi .

ni

FiAi
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Minkowski problem - General Case

Theorem (Minkowski)
P exists and is unique up to
translations.

ni

FiAi
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Alexandrov Theorem

Theorem (Alexandrov 1950)
Given Ω compact convex domain in
Rn, p1, · · · ,pk distinct in Rn,
A1, · · · ,Ak > 0, such that
∑Ai = Vol(Ω), there exists PL convex
function

f (x) := max{〈x,pi〉+ hi |i = 1, · · · ,k}

unique up to translation such that

Vol(Wi) = Vol({x|∇f (x) = pi}) = Ai .

Alexandrov’s proof is topological, not
variational. It has been open for years
to find a constructive proof.

Ω

Wi

Fi

πj

uh(x)
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Variational Proof

Theorem (Gu-Luo-Sun-Yau 2013)

Ω is a compact convex domain in Rn, y1, · · · ,yk distinct in Rn, µ

a positive continuous measure on Ω. For any ν1, · · · ,νk > 0 with
∑νi = µ(Ω), there exists a vector (h1, · · · ,hk ) so that

u(x) = max{〈x,pi〉+ hi}

satisfies µ(Wi ∩Ω) = νi , where Wi = {x|∇f (x) = pi}.
Furthermore, h is the maximum point of the convex function

E(h) =
k

∑
i=1

νihi −
∫ h

0

k

∑
i=1

wi(η)dηi ,

where wi(η) = µ(Wi(η)∩Ω) is the µ-volume of the cell.
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Variational Proof

X. Gu, F. Luo, J. Sun and S.-T.
Yau, “Variational Principles for
Minkowski Type Problems,
Discrete Optimal Transport,
and Discrete Monge-Ampere
Equations”, arXiv:1302.5472

Accepted by Asian Journal of
Mathematics (AJM)
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Computational Algorithm

a. Brenier potential b. Legendre dual

Figure: Brenier potential and its Legendre dual for the Buddha
example.
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Computational Algorithm

Figure: Optimal transport map between the conformal image and
uniform distribution on the disk.
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Wasserstein GAN Model

Σ
X

Z

ζ

G : gθ

ν

µθ

D : Wc(µθ, ν), ϕξ

ν-training data distribution; ζ -uniform distribution;
µθ = gθ#ζ -generated distribution; G - generator computes gθ ;
D -discriminator, measures the distance between ν and µθ ,
Wc(µθ ,ν).
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OMT view of WGAN

L1 case
When c(x ,y) = |x−y |, ϕc =−ϕ, given ϕ is 1-Lipsitz, the
WGAN model: min-max optimization

min
θ

max
ξ

∫
X

ϕξ ◦gθ (z)dζ (z)−
∫

Y
ϕξ (y)dν(y).

namely

min
θ

max
ξ

Ez∼ζ (ϕξ ◦gθ (z))−Ey∼ν (ϕξ (y)).

with the constraint that ϕξ is 1-Lipsitz.
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OMT view of WGAN

L2 case
The discriminator computes the Kantorovich potential ϕ; the
generator G computes the optimal transportation map, T = ∇u,
where u is the Brenier potential; The Brenier potential equals to

u =
1
2
|x |2−ϕ(x),

Generator G computes u, Discriminator D computes ϕ, hence
in theory:

G can be obtained from the optimal D without training;
Half of the computation is wasted;
The competition between D and G is unnecessary.
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Empirical Distribution

Empirical Distribution
In practice, the target probability measure is approximated by
empirical distribution:

ν =
n

∑
i=1

δ (y −yi)νi ,

in general νi = 1/n.
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Semi-discrete Optimal Transportation

Wi

Ω

T

(pi, Ai)

Given a compact convex domain Ω in Rn and p1, · · · ,pk in Rn

and A1, · · · ,Ak > 0, find a transport map T : U→{p1, · · · ,pk}
with vol(T−1(pi)) = Ai , so that T minimizes the transport cost

1
2

∫
U
|x−T (x)|2dx.
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Power Diagram vs Optimal Transport Map

uh u∗h

∇uh

Wi(h) yi

πi(h)
π∗i

Ω,V Ω, T

proj proj∗

1 ∀yi ∈ Y , construct a hyper-plane π i
h(x) = 〈x ,yi〉−hi ;

2 compute the upper envelope of the planes
uh(x) = maxi{π i

h(x)}
3 produce the power diagram of Ω, V (h) = ∪iWi(h);
4 adjust the heights h, such that µ(Wi(h)) = νi .
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Learning Problem

Problem
Since DNNs have large capacities, do they really learn anything
or just memorize the training samples ?

Answer
The DL system learns the Brenier potential implicitly,

max
i
{〈x ,yi〉−hi}

It both learns and memorizes:
1 it memorizes all the training samples {yi};
2 it learns the probability {hi}.
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Complexity of Geometric Optimal Transport
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Semi-discrete Optimal Transport Map

uh u∗h

∇uh

Wi(h) yi

πi(h)
π∗i

Ω,V Ω, T

proj proj∗

A convex domain Ω⊂ Rd with a measure µ, dµ = f (x)dx , f (x)
is continuous; the range is Y = {y1,y2, . . . ,yn} with measure
µ = ∑

n
i=1 νiδ (y −yi). µ(Ω) = ∑

n
i=1 νi .

uh :=
n

max
i=1
{〈x ,yi〉−hi}, T = ∇uh.
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Semi-discrete Optimal Transport Map

uh u∗h

∇uh

Wi(h) yi

πi(h)
π∗i

Ω,V Ω, T

proj proj∗

Power diagram and Convex polytope

Dh Ω =
n⋃

i=1

Wi(h), Wi(h) := {x ∈ Rd |∇uh(x) = yi}

Ph Convex Hull({(yi ,h)}ni=1), graph of u∗h
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Gelfand-Kapranov-Zelevinsky: Secondary Polytope

All the triangulations
T ∈ ∂PY are called
regular triangulations.

Definition (Characteristics)
Let T is a triangulation of the convex
hull of Y , Conv(Y ). The characteristic
of T defined as a vector,
cT = (a1,a2, . . . ,ak )T ,

ai = ∑
vi∼σj

vol(σj).

Definition (Secondary Polytop)
The secondary polytope of Y is the
convex hull of all characteristic
vectors of all possible triangulations of
Conv(Y ), denoted as PY .
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Gelfand-Kapranov-Zelevinsky: Secondary Polytope

Each upper envelope of planes

uh =
n

max
i=1
{〈x ,yi〉−hi}

induces a closest power diagram
Dh. Its dual weighted Delaunay
triangulation Th must be on the
lower part of the secondary
polytope PY , and vice versa.
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Gelfand-Kapranov-Zelevinsky: Secondary Polytope

Each lower envelop of planes

uh =
n

min
i=1
{〈x ,yi〉−hi}

induces a furthest power diagram
Dh. Its dual weighted Delaunay
triangulation Th must be on the
upper part of the secondary
polytope PY , and vice versa.
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Gelfand-Kapranov-Zelevinsky: Secondary Polytope

The number of regular
triangulations of any
configuration of n points in
dimension d is O

(
n(n−d−2)2

)
.

The diameter of the secondary
polytope is bounded by

min

{
(d + 2)

(
n⌊

d
2 + 1

⌋),( n
d + 2

)}
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Secondary Diagram

Definition (Admissible Height Space)
Fix Ω and Y , the admissible height space is defined as

HY = {h|Wi(h) 6= /0, ∀Wi(h) ∈Dh}
⋂{ n

∑
i=1

hi = 0

}
.

Theorem (Gu-Luo-Sun-Yau)
The admissible height space HY is a convex non-empty set.

Proof.
By Alexandrov theorem and Brunn-Minkowski inequality.
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Secondary Diagram

Definition (Secondary Diagram)
Fix Ω and Y , the admissible height space HY has a cell
decomposition:

DY HY :=
⋃

T ∈PY

HY (T ), HY (T ) := {h| u∗h induces T }

Theorem (Gu-Lei-Si)
The secondary diagram DY is a power diagram, induced by
lower envelop of hyperplanes

min{〈h,cT 〉|T ∈PY} .
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Singularity of Geometric Optimal Transport
Map
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Regularity of Optimal Transportation Map

Let Ω and Ω∗ be bounded domains in Rn, let f and g be mass
densities on Ω and Ω∗ satisfying

1 0≤ f ∈ L1(Ω), 0≤ g ∈ L1(Ω∗),∫
Ω

f =
∫

Ω∗
g.

2 ∃ constants f0, f1,g0,g1 > 0, such that

f0 ≤ f ≤ f1,g0 ≤ g ≤ g1.
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Regularity of Optimal Transportation Map

Let (u,v) be the Kantorovich’s potential functions. The optimal
mapping Tu is given by

Du(x) = Dxc(x ,Tu(x))

Differentiate the formula

D2u(x) = D2
x c(x ,Tu(x)) + D2

xyc(x ,Tu(x))DTu.

We obtain the equation

det[D2u(x)−D2
x c(x ,Tu(x))] = detD2

xyc(x ,Tu(x))
f (x)

g(Tu(x)
,

with the boundary condition Tu(Ω) = Ω∗.
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Regularity of Optimal Transportation Map

Caffarelli obtained the regularity of optimal mappings for the
cost function

c(x ,y) = |x−y |2

or equivalently c(x ,y) = x ·y , then we have the standard
Monge-Ampere equation

detD2u =
f (x)

g(Du(x))
,

with boundary condition Du(Ω) = Ω∗.
1 if f ,g > 0,∈ Cα and Ω∗ is convex, then u ∈ C2,α (Ω)

2 if f ,g > 0,∈ C0 and Ω∗ is convex, then u ∈W 2,p
loc (Ω), ∀p > 1

(the continuity is needed for large p).
3 if f ,g > 0,∈ Cα , both Ω and Ω∗ are uniformly convex and

C2,α , then u ∈ C2,α (Ω̄)
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Regularity of Optimal Transportation Map

Theorem (Ma-Trudinger-Wang)

The potential function u is C3 smooth if the cost function c is
smooth, f ,g are positive, f ∈ C2(Ω), g ∈ C2(Ω∗), and

A1 ∀x ,ξ ∈ Rn, ∃!y ∈ Rn, s.t. ξ = Dxc(x ,y) (for existence)
A2 |D2

xyc| 6= 0.
A3 ∃c0 > 0 s.t. ∀ξ ,η ∈ Rn, ξ ⊥ η

∑(cij ,rs−cp,qcij ,pcq,rs)cr ,kcs,l
ξiξjηk ηl ≥ c0|ξ |2|η |2.

B1 Ω∗ is c-convex w.r.t. Ω, namely ∀x0 ∈ Ω,

Ω∗x0
:= Dxc(x0,Ω

∗)

is convex.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Regularity of Solution to Monge-Ampere Equation

Theorem (Figalli Regularity)

Let Ω,Λ⊂ Rd be two bounded open sets, let f ,g : Rd → R+ be
two probability densities, that are zero outside Ω, Λ and are
bounded away from zero and infinity on Ω, Λ, respectively.
Denote by T = ∇u : Ω→ Λ the optimal transport map provided
by Brenier theorem. Then there exist two relatively closed sets
ΣΩ ⊂ Ω and ΣΛ ⊂ Λ with |ΣΩ|= |ΣΛ|= 0 such that
T : Ω\ΣΩ→ Λ\ΣΛ is a homeomorphism of class C0,α

loc for some
α > 0.
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Singularity Set of OT Maps

x0

x1

γ0

γ1
γ2

γ3

Ω

∂u

Λ

Figure: Singularity structure of an optimal transportation map.

We call ΣΩ as singular set of the optimal transportation map
∇u : Ω→ Λ.
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Medial Axis

Figure: The Brenier potential of the OT map.X. Gu Geometric Understanding



Singularity of OT Map

Figure: The Brenier potential of the optimal transport map.X. Gu Geometric Understanding



Singularity

Given a planar polygonal domain Ω, we densely sample the
boundary and the interior, the samples are denoted as
Y = {y1,y2, · · · ,yn}. Given the powers {w1,w2, · · · ,wn}, or
equivalently the height h = (h1,h2, · · · ,hn), the power diagram is
denoted as DY (h). For each point p ∈ R2, the closest point of p
to Y is defined as

ClY (p,h) := argminipow(p,yi)

Definition (Power Medial Axis)

Given (Y ,h), the power medial axis is defined as

MATY (h) := {p ∈ R2| |ClY (p,h)|> 1}.
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Singularity Stability

Theorem
Given a convex domain D ⊂ Rn and the discrete point set
Y = {y1,y2, · · · ,yk}, then for any two admissible heights
h1,h2 ∈HY , their power medial axises are homotopic to each
other.

Corollary
The singularity of a semi-discrete optimal transport map is
homotopic to the medial axis.
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singularity

Figure: Singularity set.X. Gu Geometric Understanding



singularity

Figure: Singularity set.X. Gu Geometric Understanding



Singularity Stability
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Singularity Stability

X. Gu Geometric Understanding



Singularity Stability
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Singularity Stability

∂Ω
γ(s)

T (S)

n(s)

ẇ(s)

MAT (s)

h(s)

Lemma

Suppose ∂ Ω is a C2 curve, denoted as γ(s), where s is the arc length
parameter. φ : (Ω,µ)→ (D2,ν) is the optimal transport map, the Brenier
potential is u : Ω→ R, the corresponding power weight is w : Ω→ R, then

ϕ(s) = γ(s)−T (s)ẇ(s) + h(s)n(s),

where n(s) is the normal to ∂ Ω and h : ∂ Ω→ R is differentiable.
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Discontinuity of Optimal Transportation Map

Figure: Discontinuous Optimal transportation map, produced by a
GPU implementation of algorithm based on our theorem. The middle
line is the singularity set Σ1.
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Discontinuity of Optimal Transportation Map

γ1

γ2

Figure: Discontinuous Optimal transportation map, produced by a
GPU implementation of algorithm based on regularity theorem. γ1
and γ2 are two singularity sets.
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Discontinuity of Optimal Transportation Map

Figure: Optimal transportation between a solid ball to the Stanford
bunny. The singular sets are the foldings on the boundary surface.
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Discontinuity of Optimal Transportation Map

Figure: Optimal transportation between a solid ball to the Stanford
bunny. The singular sets are the foldings on the boundary surface.
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Discontinuity of Optimal Transportation Map

Figure: Optimal transportation map is discontinuous, but the Brenier
potential itself is continuous. The projection of ridges are the
discontinuity singular sets.
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Discontinuity of Optimal Transportation Map

Figure: Optimal transportation map is discontinuous.
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Discontinuity of Optimal Transportation Map

Figure: Optimal transportation map is discontinuous.
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Mode Collapse
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Mode Collapse

GANs are difficult to train and sensitive to
hyper-parameters;
GANs suffer from mode collapsing, the generated
distributions miss some modes;
GANs may generate unrealistic samples;
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Mode Collapse

1 The training process is unstable, and doesn’t converge;
2 The searching converges to one of the multiple connected

components of Λ, the mapping converges to one
continuous branch of the desired transformation mapping.
This means we encounter a mode collapse;

3 The training process leads to a transportation map, which
covers all the modes successfully, but also cover the
regions outside Λ. In practice, this will induce the
phenomena of generating unrealistic samples.
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Mode Collapse

Intrinsic Conflict
Deep neural networks can only represent continuous mappings,
but the transportation maps are discontinuous on singular sets.
Namely, the target mappings are outside the functional space
of Dnns. This conflict induces mode collapsing.

Avoid Mode Collapse
The optimal transport map is discontinuous, but Brenier
potential itself is continuous. The neural network should
represent the Brenier potential, instead of its gradient, namely
the transportation map.
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Avoid Mode Collapsing

encoder
decoder

OT Mapper

Training Data Generated SamplesLatent Distribution

white noise
Brenier Potential

X. Gu Geometric Understanding



Distribution Transformation

Optimal Transportation Map

Figure: Find a mapping, which transform a source distribution to the
data latent code distribution.
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Brenier Theorem

Optimal Transportation Map

Figure: The optimal transportation map is given by a convex function
u, T = ∇u.
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Singularity Set Detection

T

ϕ−1ϕ

ϕ−1 ◦ T

p

P

Manifold

Latent Space

Figure: Singularity set detection.
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Curves on facial photo manifold

Figure: Curves on facial photo manifold.
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Mode Collapse

(a) generated facial images (b) a path through a singularity.

Figure: Facial images generated by an AE-OT model, the image in
the center of (b) shows the transportation map is discontinuous.
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Mode Collapse

Figure: Facial images with zero probability.
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Autoencoder-Optimal Transportation
Framework
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Auntoencoder-OMT

Σ
X

Z Z

ζ

fθ

ν

T

µ = (fθ)#ν

gξ

Use autoencoder to realize encoder and decoder, use OMT in
the latent space to realize probability transformation.
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Auntoencoder-OMT

Merits
1 Solving Monge-Ampère equation is reduced to a convex

optimization, which has unique solution. The optimization
won’t be trapped in a local optimum;

2 The Hessian matrix of the energy has explicit formulation.
The Newton’s method can be applied with second order
convergence; or the quasi-Newton’s method can be used
with super-linear convergence. Whereas conventional
gradient descend method has linear convergence;

3 The approximation accuracy can be fully controlled by the
density of the sampling density by using Monte-Carlo
method;

4 The algorithm can be refined to be hierarchical and
self-adaptive to further improve the efficiency;

5 The parallel algorithm can be implemented using GPU.
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Experiments - Mode Collapse

(a) original (b) GAN

(c) pacgan (d) Our model, AE-OT
Figure: Comparison between conventional models with AE-OT.
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Experiments - Mode Collapse

(a) original (b) GAN

(c) pacgan (d) Our model, AE-OT
Figure: Comparison between conventional models with AE-OT.
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Experiments - mnist

(a) VAE (b) WGAN

(c) Our model, AE-OT (d) Our model, AE-OT
Figure: Comparison between conventional models VAE and WGAN
with our model AE-OT (AutoEncoder-OptimalTransportation).
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Experiments - WGAN-QC CelebA

(a) WGAN-GP (b) WGAN-div

Figure: Failure cases for WGAN-GP and WGAN-div.
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Experiments - WGAN-QC CelebA

(c) CRGAN - mode collapsing (d) Our model

Figure: Comparision between CRGAN and our model.
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Experiments - WGAN-QC CelebAHQ

Figure: Human facial images generated by our model.

X. Gu Geometric Understanding



Experiments - WGAN-QC CelebAHQ

Figure: Human facial images generated by our model.
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Experiments - AE-OT Interpolation

Figure: Human facial images generated by our AE-OT model
(AutoEncoder-OptimalTransportation).
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Experiments - WGAN-QC Interpolation

Figure: Human facial images generated by our model.
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Experiments - MNIST Fashion

Figure: Our method has smallest FID score. (Fréchet Inception
Distance)
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Conclusion

This work introduces a geometric understanding of deep
learning:

The intrinsic pattern of natural data can be represented by
manifold distribution principle.
The deep learning system has two major tasks: manifold
learning and probability distribution transformation.
Optimal transportation assign a Riemannian metric in the
space of distributions, so variational optimization can be
carried out.
By Brenier theory, the generator and discriminator should
collaborate instead of compete with each other;
The regularity theory of Monge-Ampere equation explains
mode collapse;
The AE-OT framework can avoid mode collapse, and make
half the blackbox transparent.
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New Text Book

Please email to gu@cs.stonybrook.edu.

Textbook on Optimal Transportation Theory and Computation
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Thanks

Please email to gu@cs.stonybrook.edu.

Thank you!
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