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Is computational finance           computational 
optimization?

⊂
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No, but {computational optimization}

{computational finance}
= 

a significant set

I
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Objectives of this talk…

1. Entertainment

2. Intro to some of the practical problems of computational finance

3. Illustration of the important role that optimization can play (but 
be careful! Look out for solution sensitivity to problem 
parameters, robustness, conditioning of problem).
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5 Computational Finance Problems (with 
optimization solutions)

Problem 1: The Implied Volatility Surface Problem

Problem 2: The Incomplete Market Hedging Problem (A: local)

[Problem 3: The Incomplete Market Hedging Problem (B: global)]

Problem 4: The Portfolio of Derivatives Hedging Problem

Problem 5: The Optimal VaR/CVaR Problem
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Problem 1:  The Implied Volatility Surface 
Problem
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Local Volatility
Calculation

Cubic
Splines

Optimization
MethodAutomatic

Differentiation

PDE
Calculation
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Elementary (solved) questions

1. How to fairly price (vanilla) options?
2. How to determine the volatility parameter          (needed for 1)?

Useful for pricing other (exotic options), hedging, …

Background: Vanilla put option – The buyer has the option (not the 
obligation) to sell the underlying at strike price K at time (maturity) T.

Vanilla call option – The buyer has  the option (not the obligation) to buy 
the underlying at strike price K at time (maturity) T.

σ
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The answer to 1:

t
t

t

dS dt dW
S

µ σ= +

Assuming geometric Brownian motion

+ complete market, no arbitrage, constant (future) volatility..
the unique fair price is given by

unobservable

:  Brownian motion
:  constant, the drift
: constant, the volatility

W
µ
σ



Hong Kong Baptist University, December 4, 2003.                 Thomas F. Coleman

Black-Scholes Solution

2
2 2

2

1   ( )
2

:  r i s k - f r e e  i n t e r e s t  r a t e
:  d i v i d e n d  r a t e

  n a t u r a l  b o u n d a r y  c o n d i t i o n s
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Solving The BSolving The B--S EquationS Equation

Given volatility, B-S is easy to solve:
e.g., 

•evaluating a discretized PDE backwards in time
•evaluating a binomial/trinomial tree
•explicit soln (using l cumulative normal dist’n lookup)

•The problem: how to get σ
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Implied Volatility

The answer: assume todays vanilla options are well-priced by the market and solve 
the inverse problem!

But this leads to a non-constant      (i.e., different data points yield diff. answers)

In fact, it appears 

σ

0)( =− valueF σ

Known, trusted

( , )tS tσ σ=
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Option pricing model: 1-Factor Continuous 
Diffusion Approach

dS
S

S t dt S t dWt

t
t t t= +µ σ( , ) ( , )

W:  standard Brownian motion

,   deterministic functions

 local volatility function

µ σ

σ

:

( , ):s t
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Fair price for vanilla option :

Generalized Black -Scholes:

  ∂
∂

+ −
∂
∂

+
∂
∂

=
v
t

r q s v
s

s t s v
s
rv( ) ( , )1

2
2 2

2

2σ

No !µ
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Evaluation

Given the vol surface

Numerical approaches can be used to solve the generalized B-S equation. 
But, 

How to get                                          ?( , ) tS tσ σ=

( , )tS tσ σ=
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Optimization answer 1 (bad)

Take todays (trusted) prices and invert GBS model to extract vol surface
(generalize the 1-D case):

trusted prices

GBS
unknown surface

Why bad? 1. too curvaceous (can be smoothed but…)
2. too many optimization variables (number of grid

points  when                  is discretized (too few values))

2
min ( )F valuesσ −

( , ) tS tσ σ=
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Optimization answer 2 (better)

Add as smoothing (regularization) term:

But:
1. Still thousands of variables (nonlinear obj fcn)
2. How to balance the 2 objectives

2
min ( )  + smoothing termF valuesσ −
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Optimization answer 3 (best)

Model the implied vol surface by a bi-cubic spline form, with p 
unknown knot values: σ σ σ= ( ,..., )1 p
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Optimization answer 3 (best)

Model the implied vol surface by a bi-cubic spline form, with p 
unknown knot values: 

Once                                     is known, and boundary values, the entire 
surface                    is determined.σ ( , )s t

σ σ σ= ( ,..., )1 p

1( ,..., )pσ σ σ=
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Optimization answer 3 (best)

Model the implied vol surface by a bi-cubic spline form, with p unknown 
knot values: 

Once                        is known, and boundary values, the entire surface.
is determined

To determine                                 solve 

1( ,..., )pσ σ σ=

1( ,..., )pσ σ σ=

( , )s tσ

2min ( ) ( ( ))f F vσ σ≡

1( ,..., )pσ σ σ=
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The optimization solution

The problem 

Is nonlinear least-squares (as before). But the number of 
unknowns is the number of knot points p which can be 
chosen 

Smoothness: built- in!

2min ( ) ( ( ))f F vσ σ≡

#option values availablep ≤

A bit of ‘art’ needed 
here



Hong Kong Baptist University, December 4, 2003.                 Thomas F. Coleman

Example…
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Problem 1 moral:

Design an optimization approach, if possible, so that the 
number of optimization  variables is small but appropriate to 

the available information.

Emphasize smoothness, not just ‘matching’ the data.
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Problem 2: The Incomplete Market Hedging 
Problem (A: local)
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2 philosophical points

1. Many hedging strategies assume a complete market (which implies 
continuous hedging). Then, after all the theorems: ‘in practise’ we 
will (of course) only hedge at discrete times ‘(which implies an 
incomplete market).

So, perhaps better to assume reality to begin with (but of course fewer 
theorems, fewer papers,…)

2. Least-squares minimization has many advantages, especially 
theoretical (more theorems!). But absolute-value minimization pays 
less attention to outliers and can yield better ‘average case’ results.
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The Setting….

•T>0: Expiry of a European option

• Discrete hedging dates:
Hence, incomplete market 

• prob. space with filtration 

• trivial:

• measurable discounted asset price process

• Bond price B=1

•H: an          measurable random payoff for an option

0 1 0 Mt t t T= < < < =K

{ }0 ,F = ∅ Ω

TF −

kF −

0,( )k k MF
= ( , , )F PΩ

0,( ) :k k MX
=
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…The Setting….

• Hedging portfolio value at       :

• Units of underlying held at 

• Units of bonds held at

Where, 

denote a hedging strategy

kt k k k kV Xε η= +

:kε

kt

0, 0,( )  and ( )k kk M k Mε η
= =

:kη

kt
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2 Definitions:

•Accumulated Gain (change in value of the hedging portfolio due to 
change in stock price before any changes in the portfolio):

•Cumulative Cost :

(Self-financing if

i.e.,                                                        )  1 1 1( ) 0k k k k kXε ε η η+ + +− + − =

1

1 0
0

( ),   1 ,   0
k

k j j j
j

G X X k M Gε
−

+
=

= − ≤ ≤ =∑

,    0k k kC V G k M= − ≤ ≤

0 1 ... MC C C= = =
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Local risk minimization

•The cost at M is H ; let

•General idea: Choose a hedging strategy so that 

•E.g., local quadratic risk minimization: 

( )M MV H Hη= =

1 0,   0 1k kC C k M+ − ≈ ≤ ≤ −

2
1

for 1, 2,...,0,
             min (( ) | )k k k

k M M
C C F+

= − −

Ε −
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An alternative L1 Incremental Cost

Quadratic measure may be less than ideal:
Larger incremental costs heavily weighted
Not in monetary units

L1-measure: 

1

,  for 1, 2,..., 0
                    min  (| |   | )
M

k k k

V H k M M
E C C F+

= = − −
−
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2 methods: local L1 minimization, local L2 
minimization

•Method 1: 

•Method 2: 

1min  (| |  | )k k kE C C F+ −

2
1min  (( )  | )k k kE C C F+ −
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Implementation

Suppose stock price modeled using a binomial tree with N  periods

Hedging can take place at M << N  times at dates

Hence, at time 
possible states for the stock price.

Given state j at time      the stock price can only move to 

possible states

0 10 ... :M Mi i N i−= < < < =

 there are 1k k ki n i= +

ki

1 1k k ki iα += − +



….Implementation…

1i

Flow of  
optimization
problems

State j

2i0i ki
t=T

t=0
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…Implementation

1
1

kj j
k kS u Sα −
+ =j

kS

11
1

k jj i j j
k kS u d Sα − −+ −
+ =

1 1
1
k kj j

k kS d Sα α+ − −
+ =j

j k
k j

k

SX
B

=
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…Implementation…

So at each hedging time         for each state j
The optimization problem to solve is 

For k=M-1,…,0
For each state j

kt

1min  (| |   | )jk k k kE C C X X+ − =

1
1 1 1
1 1 1,

0
min | ( ) ( ) |

k

j j
k k

j j j j j
l k k k k k

l

p X
α

ε η
ε ε η η

−
+ + +
+ + +

=

− + −∑
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…Implementation…

With a bit of manipulation…

For k=M-1,…,0
For each state j

Where matrix        is 

2 1
min j

j j
z R

A z b
∈

−

-by-2kαjA
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Computational results

• Assume                                              is a standard Brownian motion

• A binomial tree is calibrated to this process, e.g., CRR

•Assume

• Consider European put options with different strike prices 

where t
t t

dS dt dZ Zµ σ= +
tS

01,  100
.2,   .2
.1,  #periods=600

T S

r
µ σ
= =
= =
=
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Performance measures

(Discounted) incremental cost (risk):

1

1
0

1 | |
M

k k
k

C C
M

−

+
=

−∑



Multiple Rebalancing Times
Less frequent

3.0545

3.5402

1.9134

1.9053

0.5920

0.5820

0.3238

0.3042

0.0648

0.0612

0.0072

0.0072

1
105

2

1.8960

2.7052

1.2655

1.4841

0.4457

0.4750

0.2425

0.2518

0.0458

0.0474

0.0060

0.0060

1
100

2

1.0886

1.9194

0.7459

1.0762

0.2920

0.3600

0.1645

0.1956

0.0343

0.0394

0.0047

0.0047

1

2

60030010050101Strike  Md

95

Rebalance every  K  periods

In

Average Incremental Cost, Risk  (500 Simulations)0 100s =



Histogram of incremental Costs(risks): strike =95, monthly 
rebal.
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Strike = 95 and Monthly Rebalancing

Total Cost:
Method 1: 70% less than mean.   55% less than ½ mean

Method2: 51% less than mean. 12% less than ½ mean

Incremental Cost:
Method 1: 69% less than mean.   58% less than ½ mean

Method 2: 63% less than mean.   30% less than ½ mean.
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Problem 2 Moral

1. Many hedging strategies assume a complete market (which implies 
continuous hedging). Then, after all the theorems: ‘in practise’ we 
will (of course) only hedge at discrete times ‘(which implies an 
incomplete market).

So, perhaps better to assume reality to begin with (but of course fewer 
theorems, fewer papers,…)

2. Least-squares minimization has many advantages, especially 
theoretical (more theorems!). But absolute-value minimization pays 
less attention to outliers and can yield better ‘average case’ results.
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[Problem 3: The Incomplete Market Hedging 
Problem (B: global)]
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Problem 4: The Portfolio of Derivatives Hedging 
Problem
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Philosophical motivating points

1. Derivative portfolio hedging problems are often ill-posed

2. Hedge risk minimization can be preferable to hedging by 
sensitivities

3. Watch out for stochastic vol
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The setting and the problem

The problem: Effectively hedge a large portfolio of derivative instruments

Formalize:

Risk factors:

Hedging instruments:

Value of hedging portfolio:

Value of target portfolio at time t:

dS ∈ℜ

{ }1, , ,  ( , ) value at time n iV V V S t tL

0 ( , )S tπ

1( , , )  where [ , , ]nx S t Vx V V Vπ = = L
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Sensitivities of hedging instruments

[ ]

11

1

2 2

1 2 2
1

, ,

, ,

, , ,  where , ,

* for simplicity of presentation we assume here that each hedging
 instrument  depends on 

nn

d nn

T
d n i i

n i
d

i

VVV
t t t

VVV
S S S

V V
S S

V

×

×

×

∂∂∂  = ∈ℜ ∂ ∂ ∂ 
∂∂∂  = ∈ℜ ∂ ∂ ∂ 

 ∂ ∂
Γ = Γ Γ ∈ℜ Γ =  ∂ ∂ 

L

L

L L

exactly  risk faone ctor

=

=

d
n

dn
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The Hedge Risk Minimization Approach

We measure risk as the expected quadratic replicating error at time t:

0 2

1 1
min ( ) [ ( , ) ( , )]n

n

i ix
risk x xV S t S tπ

∈ℜ
=

 ≡ Ε − 
 
∑
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The problem is ill-posed

To see that this problem is also ill-posed, suppose first that the hedging 
change is specified by delta-gamma approximation:

0

2

2

2

1

2

1

2

( , ) ( ,0)

( ) ( )( )

( )

i i
T

Ti i i

T
Ti i
i

V S t V S

V V Vt S S S
t S S

V Vt S S
t S

δ

δ

−

∂ ∂ ∂   = + ∂ + ∂ ∂   ∂ ∂ ∂   

∂ ∂   = + ∂ + Γ ∂   ∂ ∂   



Hong Kong Baptist University, December 4, 2003.                 Thomas F. Coleman

Infinite number of hedge risk minimizers

In this delta-gamma setting, if each hedge instrument depends on a single 
risk factor then

In this delta-gamma setting, allowing each hedge instrument to depend on 
several risk factors:

*defined in paper

2 1  infinite number of risk minimizersn d> + ⇒

sparsity indicator*  infinite number of risk minimizersn d> + ⇒
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More generally, the problem is very ill-
conditioned

If we move away from the delta-gamma setting, the resulting problem 
can be very ill-conditioned. For example, assume a single risk factor, 
a stock price defined by

Experiments defined by 

And  21 hedging instruments: underlying + vanilla calls with maturities  
1,2,3,6 months and strikes [90,95,100,105,110].

t
t

t

dS dt dX
S

µ σ= +

0 100,  .2,  .1,  .04S rσ µ= = = =
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Continue example…

Hedge risk minimization becomes:

2

2

1 1 1 0 1
1 2 n

0
1 2 n

1min ( ) V , where

V ( , ) V ( , ) V ( , ) ( , )
V = ,  

V ( , ) V ( , ) V ( , ) ( , )

nx

m m m m

m
risk x x b

S t S t S t S t
b

S t S t S t S t

π

π

∈ℜ
= −

   
   =   
      

L

M M L M M

L
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Continue example…ill-conditioned matrix 
and (impractically) large positions

Choosing m=20,000 and hedge horizon = 1 month,

For  different target portfolios of

16(V) 10cond ≅

100 vanilla options , binary options ,  barrier options, ,
 and mix (plus some Asian options) 

V bi ba

m

P P P
P

1.87e+77.47e+73.08e+61.93e+6||x*||1

7.05e-28.04e-33.05e-37.27e-4risk

PmPbaPbiPv
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The point of this example…

Minimizing hedge risk alone yields massively ill-conditioned problems, 
and ridiculously large holdings. 

However, incorporating realistic costs and bounds  can yield better 
problems, more practical solutions…
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Adding management costs and 
bounds

Bounds,                       , can limit extreme positions and can help control initial 
formulation costs. 

Management costs are related to both the number of different instruments in 
the portfolio, and the size of the positions.

Our approach to address both problems simultaneously:

x xl x u≤ ≤

1
min { ( ) :  }n

n

i i x xx
i

risk x c x l x uα
∈ℜ

=

+ ≤ ≤∑

Balance between risk and cost
Per unit cost
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Why 1-norm penalty?

There exists a finite threshold value of
For which the optimal solution has a zero holding of instrument i

So, as       increases, the number of zero holdings increases.

An alternative formulation:

icα

α

1
min | |

             

             risk(x)

n

n

i ix
i

x x

r

c x

l x u

µ

∈ℜ
=

≤ ≤

≤

∑
control

control
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Example results: Binary options

7.63e+21.87e+33.08+6||x*||1

5.00e-13.41e-23.05e-3risk*

52119
# active 
instruments

Model 2Model 1Model 0

0
0(0) E( ) cost 1.8 2

: no constraints, : bounds only
: 1-norm + bou

Method 0 Method 1
Meth nod 2 ds

risk eπ= = = +
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Incorporating volatility uncertainty

Note that we have assumed that the future implied vol,        ,  is the 
same as current implied vol. Suppose we assume this in our 
computation but in reality,

tσ

0( , )t volNσ σ σ∈

Standard deviationImplied vol at t=0
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Sensitivity to errors in future vol

0( , )t volNσ σ σ∈

Suppose it is assumed, in our computation, that future vol is the same as current vol
and x is chosen by solving

Next assume that in reality 

And compute

0 2

1 1
min ( ) [ ( , ) ( , )]n

n

i ix
risk x xV S t S tπ

∈ℜ
=

 ≡ Ε − 
 
∑

* 0( , , ) ( , , )x S x Sσ σ∏ −∏
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…model 0 is a disaster under vol error

Risk when (.2,.005)t Nσ ∈

3.24e+11.36e+22.77e+5Pm

7.57e+15.75e+11.73e+5Pba

5.84e-18.54e+01.46e+4Pbi

3.46e+13.38e+26.28e+3Pv

Model 2Model 1Model 0

Why so large! ?
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…More model 0 under vol error

Extreme sensitivity due to large positions model 0 incurs combined 

with ill-conditioning of the problem, combined with minimization using 

just a single value of 

Minimization does do a good job reducing risk if future

equals current value…………………. 

σ

σ



If vol is constant…

80 85 90 95 100 105 110 115 120 125
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D
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Model 0 sensitivity to vol error
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120
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…More model 0 under vol error

To help ameliorate this effect, assume volatility is stochastic: Still, 

but

2

2

1( ) Vrisk x x b
m

= −

1 1 1 1 1 1 0 1 1
1 2 n

0
1 2 n

V ( , , ) V ( , , ) V ( , , ) ( , , )
V = ,  

V ( , , ) V ( , , ) V ( , , ) ( , , )m m m m m m m m

S t S t S t S t
b

S t S t S t S t

σ σ σ π σ

σ σ σ π σ

   
   =   
      

L

M M L M M

L
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Now compute difference between target and 
hedging portfolios….

* 0( , , ) ( , , )x S x Sσ σ∏ −∏



Not quite as good around initial vol…

80 85 90 95 100 105 110 115 120 125
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4
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D
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..yields a much flatter variation surface

.5%volσ =

80
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Example results when stochastic vol is 
included (binary option portfolio)

7.54e+11.78e+31.32e+4||x*||1

1.4e-11.07e-19.03e-02risk*

122121
# active 
instruments

Model 2Model 1Model 0
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Problem 4 Moral

1. Hedging a portfolio of derivatives is often ill-posed

2. Adding bounds and management costs (in the 1-norm formulation) 
can stabilize and yield practical solutions (fewer instruments, 
smaller positions)

3. Further stabilizing can be achieved with incorporation of stochastic 
volatility



Hong Kong Baptist University, December 4, 2003.                 Thomas F. Coleman

Problem 5: The Optimal VaR/CVaR Problem
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The Problem

Given a set of derivative instruments (with values               ) , 1 2, ,..., nV V V

dependent on a set                 of risk factors, how to choose an dS

investment where        is the amount invested in 

instrument I , to minimize the (conditional)  value-at-risk. (The 

worst (5%) losses.)

∈ℜ

nx∈ℜ ix
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Some definitions

0

( , )

 Portfolio loss function: ( , ) ( )

 Probability density of : ( )

 Cumulative distribution function: 

               ( , ) ( )

T

f x

f x S x V V

S p S

x p S dS
α α

ψ α
≤

• = −

•

•

= ∫
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….more definitions

Value-at-risk (VaR) of a portfolio    for  a confidence level

Conditional Value-at-risk (CVaR): mean of a the tail loss distribution

,
       ( ) inf{ : ( , ) }x xβ

β
α α ψ α β= ∈ℜ ≥

x

1( ) inf ( (1 ) ( ) ))x fβ αφ α β α− += + − Ε −





Porfolio CVaR Optimization

Rockafellar & Uryasev: 1999,2002:

If 

( , )

1

min ( ) min ( , ),  where

         ( , ) (1 ) [( ) ]
       

x x Xx F x

F x f

β α β

β

φ α

α α β α

∈ ×ℜ

− +

=

= + − Ε −

( , )

( , ) and  are convex then

           min ( , )

is a convex nonlinear programming problem.
x X

f S X

F xα β α∈ ×ℜ

⋅
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But,

Similar to the previous example,

CVaR/VaR minimization for portfolios of derivatives is 
ill-posed.

To see the effect of this ill-posedness, consider a typical 
CVaR solution:



Holdings

Instrument index

H
edging ratio

lower

uppe
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Properties and problems of the 
optimal portfolio

Properties:
1. The optimal portfolio contains all 192 instruments
2. 77% of the instruments are at their bounds

Practical Problems:
1. Large management and transaction costs
2. Magnification of the model error

A Solution: Add cost consideration to the CVaR objective:

1 1
min ( ( ) | |),  where  are pos. weights.

n

x B i i ix c x cφ
=

+∑



Instrument index

H
edging R

atio

Includes transaction
costs

upper

lower

Holdings
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Minimizing CVaR (for portfolios of 
derivatives)

Can be formed as a large LP (m simulations for ) :1{( ) }mi iVδ =

( , , , )
1

0

1min
(1 )

   ( ) 1
   ( ( ))
   ( ) ,  0,  1,...,
   

m

x y z i
i

T

T

T
i i i

y
m

V x
V x r

y V x y i m
l x u

α α
β

δ

δ α

=

+
−

=

Ε =

≥ − − ≥ =

≤ ≤

∑



LP Efficiency

-

9907.9

2120.8

n=200

9296.91573.82-642.243.650000

2345.4351.4414744.6162.130.125000

427.953.71843.961.911.110000

n=48n=8n=200n=48n=8m

CPLEX (cpu sec)Mosek (cpu sec)
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Removing the dependence on m

Note that

And assuming continuity of 

1

1

1( , ) [( ) ]
(1 )

( , ) (1 ) (( ( , ) ) )

m
mT

i
i

F x V x
m

F x f x S

β

β

α α δ α
β

α α β α

→+∞+

=

− +

= + − →
−

= + − Ε −

∑

continuou( , ),   sly di( , ) is fferentiab .leS F xβα αΨ



A smooth approximation…

2
1 1
2 4

1

Let ( ) max(0, ). Given >0, ( ) is the continuously 
differentiable funct

c

ion:
 if 

( )  if 
4

0  otherwise

1( , ) ( ( ) )
(1 )

( , ) is ontinuousla y 

m
T
i

i

p z z p z

z z
zp z z z

F x p V x
m

F x

ε ε

ε

β ε

β

ε

ε

ε ε ε
ε

α α δ α
β

α

=

≈

≥

= + + − ≤ ≤



= + − −
− ∑%

%  approximatidifferentiab on to 

(

e

, )

l

F xβ α



Smooth approximations
Smooth approx

Piecewise
linear

D
ecrease tolerance



Hong Kong Baptist University, December 4, 2003.                 Thomas F. Coleman

A piecewise quadratic convex 
program:

This leads to the following piecewise quadratic convex program, with O(n) 
independent variables and constraints:

( , )
1

0

min ( , ) | |

( ) 1
subject to ( [ ])

n

x j j
j

T

T

F x c x

V x
E V x r
l x u

α β α

δ

=

+

 =
 =
 ≤ ≤

∑%
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Efficiency: Lp vs smoothing technique

1545.5-1413.3-196

412.01068.60182.082893.16100

47.65124.424.4129.720

50000

1088.82258.4875.37484.89196

177.4687.982.6826.9100

14.748.310.749.620

25000

w=.01
Mosek smth

w=0
Mosek smth

nm    
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Moral of Problem 5

1. Look out for ill-posedness in the formulation of optimization problems. 
Correct it.

2. Optimal CVaR problems naturally lead to VERY large LPs. However, 
the LPs actually approximate a smooth function (as # scenarios 
increase.). Therefore, it can be cost effective to approximate this 
smooth function directly, reducing the number of constraints and the 
number of variables. W/o this reduction the problems quickly become 
intractable.
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Concluding Remarks
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Concluding Remarks

1. Optimization ideas and methods can/do play a central role in the
solution of problems in computational finance and financial 
engineering. Some to the problems are ‘internal’.
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Concluding Remarks

1. Optimization ideas and methods can/do play a central role in the
solution of problems in computational finance and financial 
engineering. Some to the problems are ‘internal’.

2. Computational finance/FE yield many interesting optimization 
problems to be solved (many of the discrete constraints are ‘soft’ and 
can be handled through the use of continuous methodologies)

3. To effectively apply optimization methodology to finance, the financial 
‘setting’ must be well understood!

4. To effectively apply optimization methodology to finance, the 
methods/tools , strengths/weaknesses of optimization must be will 
understood!
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Thank you for listening!

Feel free to email me with follow-up questions, etc:

coleman@tc.cornell.edu
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