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Abstract: In this paper, the issue of balance pattern of the interaction columns of a sym-
metrical design is considered according to orthogonal components system. The minimum
interaction unbalance criterion is proposed for ranking and comparing s-level factorial
designs, where s is any a prime or a prime power. It is further showed that the interac-
tion unbalance pattern is just the generalized wordlength pattern defined by Xu & Wu
(2001) from the point of view of linear-quadratic system based on the ANOVA model, and
consequently the two criteria, minimum interaction unbalance and generalized minimum
aberration, coincide with each other for symmetrical factorial designs, although ground
on two different systems of parameterization.
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1 Introduction

The fractional factorial designs, as we all know, can be broadly classified into two
categories: regular fractional factorials and nonregular fractional factorials. A regular
fractional factorial is determined by its defining relation and has a simple aliasing struc-
ture in that any two effects are either orthogonal or fully aliased. For these designs, the
minimum aberration (MA) criterion proposed by Fries & Hunter (1980) has become the
standard criterion for optimal factorial designs. For nonregular designs, Deng & Tang
(1999) proposed the generalized resolution and minimum G-aberration criterion for rank-
ing the different two-level designs. Subsequently, Tang & Deng (1999) further suggested a
relaxed variant of minimum G-aberration, that is minimum G2-aberration. Their discus-
sion is restricted to the class of two-level factorial designs.

Since a regular symmetrical design in design theory is exactly a linear code in coding
theory and the defining contrast subgroup justly corresponds to the dual code, the con-
nection between the wordlength pattern and the distance distribution of a regular design
can be established based on the MacWilliams identities. Ma & Fang (2001) generalized
this relationship to adapt to nonregular symmetrical designs and defined their generalized

1



wordlength patterns, and moreover proposed the minimum generalized aberration (MGA)
criterion for ranking nonregular symmetrical designs. See Chapter 2 of Fang & Ma (2001)
for the above details.

As we know, there are two systems of contrast parameterization in analyzing more than
two-level factorial designs, that is orthogonal components system and linear-quadratic
system. The former can only deals with the symmetrical designs, for the operations
between two arguments from different Galios fields is still not clear, while the latter, in
contrast, can flexibly adapts to general asymmetrical factorial designs. For details refer
to Chapter 5 of Wu & Hamada (2000).

From the point of view of linear-quadratic system base on the ANOVA model, Xu
& Wu (2001) proposed an efficient and systematic method, i.e., generalized minimum
aberration (GMA) criterion for comparing and selecting general asymmetrical fractional
factorial designs. It covers both the MA and the minimum G2-aberration criteria as two
special cases. It is also showed that for nonregular symmetrical designs the MGA criterion
suggested by Ma & Fang (2001) is equivalent to the GMA criterion. By introducing the
concept of the number of coincidence among runs, Xu (2003) further suggested minimum
moment aberration (MMA) criterion, which is a good surrogate with tremendous com-
putational advantages for the GMA criterion owing to their equivalence for symmetrical
designs and weakly equivalence for asymmetrical designs.

In order to study the projection properties of a design, Tang (2001) and Ai & Zhang
(2002) showed that sequentially minimizing the weighted projection variance vector is
equivalent to the GMA criterion. On the other hand, Lu et al (2002) defined the pro-
jection balance pattern (BP) of a design and obtained some new BP-optimal designs via
resolvable balanced incomplete block designs. Recently, Hickernell & Liu (2002) further
showed that the generalized wordlength pattern of Xu & Wu (2001) can be expressed
as the projection discrepancy pattern with some specified reproducing kernel, and thus
established the connection between aberration and discrepancy for general designs.

In this paper, we consider the issue of balance pattern of the interaction columns of a
symmetrical design according to orthogonal components system. Some reviews on GMA
criterion are first presented in Section 2. Subsequently, an interaction unbalance pattern is
defined in Section 3 for an s-level symmetrical factorial design, where s is any a prime or a
prime power. And the minimum interaction unbalance (MIU) criterion is also proposed for
ranking and comparing symmetrical factorial designs. It is further proved in Section 4 that
the interaction unbalance pattern is just the generalized wordlength pattern defined by
Xu & Wu (2001) from the point of view of linear-quadratic system, and consequently the
two criteria, MIU and GMA, coincide with each other for symmetrical factorial designs,
although ground on two different systems of parameterization.

The rest of this section is devoted to notations and definitions. Let wt(u) be the weight
of a vector u = (u1, . . . , um), i.e., the number of nonzero elements of u, Rs = {0, 1, . . . , s−1}
be the integer ring with modulus s, |S| be the number of elements of a set S. For any two
vectors u = (u1, . . . , um) and x = (x1, . . . , xm), δu,x is the Kronecker delta which equals
1 if u = x and 0 otherwise, and the Hamming distance dH(u, x) is the number of places
where they differ.

A mixed-level (or asymmetrical) design of n runs and m factors with s1, . . . , sm levels,
denoted by (n, s1 · · · sm), is a set of n row vectors (or points) in R = Rs1 × · · · × Rsm , or
a set of m column vectors of length n, or an n ×m matrix in which each row represents
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a run, each column represents a factor and the jth column takes values from a set of sj

symbols, say, Rsj . In particular, an (n, sm)-design is symmetrical. Two designs are called
isomorphic if one can be obtained from the other through permutations of rows, columns
and symbols in each column.

2 Reviews on generalized minimum aberration criterion

In this section, we give some reviews on generalized minimum aberration criterion
based on the ANOVA model. For details see Xu & Wu (2001).

Let {χ(i)
ui , ui ∈ Rsi} be the orthonormal contrast coefficients for the ith factor which

has si levels, that is,

∑

xi∈Rsi

χ(i)
ui

(xi)χ
(i)
vi (xi) = siδui,vi , for any ui, vi ∈ Rsi , (1)

where χ
(i)
vi (·) is the complex conjugate of χ

(i)
vi (·). Let χ

(i)
0 (xi) = 1, for any xi ∈ Rsi .

As often done in practice, we only consider the contrast coefficients defined by tensor
products:

χu(x) =
m∏

i=1

χ(i)
ui

(xi), foru = (u1, . . . , um) ∈ R and x = (x1, . . . , xm) ∈ R. (2)

It is easily verified that {χu, u ∈ R} are the orthonormal contrast coefficients, i.e.,∑
x∈R χu(x)χv(x) = (s1 · · · sm)δu,v for any u, v ∈ R.
There are two classes of contrasts used usually. The first is from orthogonal polynomi-

als. The second is the complex contrasts, which are of no meaning in practice but of great
use in theory. For an s-level factor, the complex contrasts are defined to be χu(x) = ξu·x

for any u, x ∈ Rs, where ξ = e2πi/s. Refer to Bailey (1982) for details of complex contrasts.
For a fractional factorial (n, s1 · · · sm)-design D, define

χu(D) =
∑

x∈D

χu(x), for any u ∈ R, (3)

and Aj(D) = n−2
∑

u∈R,wt(u)=j

|χu(D)|2 for j = 1, . . . , m. (4)

Obviously, χ(0,...,0)(D) = n. Xu & Wu (2001) showed that Aj(D) values are independent
of the choice of orthonormal contrasts. The vector (A1(D), . . . , Am(D)) is called the
generalized wordlength pattern of design D. Thus, The GMA criterion is to sequentially
minimize Aj(D) in (4) for j = 1, . . . , m. The isomorphic designs are equivalent under
GMA. It should be noted that the GMA reduces to the minimum aberration for regular
designs and the minimum G2-aberration for two-level nonregular designs.

In particular, A symmetrical (n, sm)-design D is a set of n row vectors of length m.
The distance distribution of D is the vector (E0(D), . . . , Em(D)), where

Ej(D) = n−1|{(a, b) : dH(a, b) = j, a ∈ D, b ∈ D}| for j = 0, . . . , m. (5)
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The MacWilliams transforms of the distance distribution are defined as

E′
j(D) = n−1

m∑

i=0

Ei(D)Pj(i; m, s) for j = 0, . . . , m, (6)

where Pj(x;m, s) =
∑j

i=0(−1)i(s − 1)j−i
(
x
i

)(
m−x
j−i

)
are the Krawtchouk polynomials. Let

di,j(D) be the Hamming distance between the ith and jth rows of D. Then it can be
easily shown that

∑n
i=1

∑n
j=1 di,j(D) = n

∑m
i=0 iEi(D). Xu & Wu (2001) showed that

for an (n, sm)-design D, the generalized wordlength pattern is exactly the MacWilliams
transform of the distance distribution, that is

Aj(D) = E′
j(D) for j = 1, . . . ,m. (7)

Throughout this paper, we extend the definition of
(
n
i

)
to allow n and i to be any

integers:

(
n

i

)
=





n(n−1)···(n−s+1)
i(i−1)···1 for 0 < i ≤ n,

1 for i = 0 and n ≥ 0,
0 otherwise.

3 Interaction unbalance pattern

In this section, an (n, sm)-design D is regarded as a set of m columns D = {d1, . . . , dm}
or as an n×m matrix D = (dij), depending on our convenience. For 1 ≤ k ≤ m and any
k-subset S = {dj1 , · · · , djk

} of D, the set of k-factor interactions of S based on orthogonal
components system of parameterization is

I(S) = {w : w =
k∑

t=1

ctdjt (mod s), c1 = 1, 1 ≤ ct ≤ s− 1, t = 2, . . . , k.}. (8)

For any w ∈ I(S), let ni(w) be the number of level i in the interaction column w. The
magnitude

∑
0≤i<j≤s−1[ni(w)− nj(w)]2 measures the discrepancy among the frequencies

all s− 1 levels appear in the column w, that is the unbalance of the interaction w. Then
the k-factor interaction unbalance of S can be defined as

J2
k (S) =

∑

w∈I(S)

∑

0≤i<j≤s−1

[ni(w)− nj(w)]2. (9)

For two-level factorial design D, if we replace its two levels 0 and 1 by +1 and −1,
respectively, then I(S) = {w = dj1 · · · djk

}, one element set, and Jk(S) = |n−1(w) −
n+1(w)| = |∑n

i=1 dij1 · · · dijk
|, which is exactly J-characteristics Jk(S) defined by Tang &

Deng (1999). So our definition is a generalization of their Jk(S) values. Following their
concept, the Jk(S) values are also called the J-characteristics of design D. These Jk(S)
values play an instrumental role in our development of minimum interaction unbalance
criteria.

Define

Bk(D) = n−2
∑

|S|=k,S⊆D

J2
k (S) for k = 1, . . . , m, (10)
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which measures the k-factor interactions unbalance of design D. The vector (B1(D), . . . , Bm(D))
is called the interaction unbalance pattern of design D. For the orthogonal designs,
B1(D) = B2(D) = 0. For two designs D1 and D2, let r be the smallest integer such that
Br(D1) 6= Br(D2). If Br(D1) < Br(D2), then we say that D1 has less interaction unbal-
ance than D2. If no other design has less interaction unbalance than D1, then D1 is said to
have minimum interaction unbalance (MIU). If D is regular, then Bk(D) = (s− 1)Ak(D),
where Ak(D) is the number of words of length k in the defining contrast subgroup of
D, which implies that the MIU criterion is equivalent to minimum aberration for regular
designs. It is also obvious that the MIU criterion is reduced to minimum G2-aberration
for special two-level designs.

As for the statistical justification of this criterion, we can follow Tang & Deng (1999)
and get the same conclusion that the MIU is equivalent to a criterion that sequentially
minimizes the contamination of nonnegligible interactions on the estimation of main ef-
fects, in the order of importance given by the hierarchical assumption. Furthermore, if
the original design is regular, then the minimum aberration design sequentially minimizes
the number of interactions of order j confounded with the main effects in the order given
by j = 2, · · · ,m.

4 Coincidence between GMA and MIU criteria

Although the generalized wordlength pattern and interaction unbalance pattern are
defined from two completely different systems of parameterization, it is proved in this
section that they are in fact the same, and so the GMA and MIU criteria coincide with
each other for symmetrical factorial designs.

For a symmetrical (n, sm)-design D, let D(k) be composed of all k-factor interaction
columns of D, that is D(k) =

⋃
|S|=k,S⊆D I(S). Obviously, ck = |D(k)| =

(
m
k

)
(s − 1)k−1.

Then the interaction unbalance pattern defined in (10) can be expressed as the distance
distribution of D(k), which is presented in the following theorem.

Theorem 1. For a symmetrical (n, sm)-design D, its interaction unbalance pattern
can be expressed as follows:

Bk(D) =
(

m

k

)
(s− 1)k − s

n

ck∑

i=1

iEi(D(k)) for k = 1, . . . ,m. (11)

Proof. Firstly, J2
k (S) in (9) can be expressed as

J2
k (S) = 2−1

∑

w∈I(S)

s−1∑

i=0

s−1∑

j=0

{
[ni(w)]2 + [nj(w)]2 − 2ni(w)nj(w)

}

=
∑

w∈I(S)



s

s−1∑

i=0

[ni(w)]2 −
[

s−1∑

i=0

ni(w)

]2




= s
∑

w∈I(S)

s−1∑

i=0

[ni(w)]2 − n2(s− 1)k−1.
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Define

τ(i),j(w) =
{

1, if the jth element of w is i,
0, otherwise;

τi,j(w) =
{

1, if the ith and jth element of w are the same,
0, otherwise;

and di,j(w) = 1− τi,j(w). Then

s−1∑

i=0

[ni(w)]2 =
s−1∑

i=0




n∑

j=1

τ(i),j(w)




2

=
s−1∑

i=0

n∑

j,l=1

τ(i),j(w)τ(i),l(w) =
n∑

j,l=1

s−1∑

i=0

τ(i),j(w)τ(i),l(w)

=
n∑

j,l=1

τj,l(w) = n2 −
n∑

j,l=1

dj,l(w).

So Bk(D) in (10) can further be written as

Bk(D) = s

(
m

k

)
(s− 1)k−1 − sn−2

n∑

j,l=1

∑

|S|=k,S⊂D

∑

w∈I(S)

dj,l(w)−
(

m

k

)
(s− 1)k−1

=
(

m

k

)
(s− 1)k − sn−2

n∑

j,l=1

dj,l(D(k))

=
(

m

k

)
(s− 1)k − sn−1

ck∑

i=1

iEi(D(k)).

This theorem is proved.

Next, we introduce some known properties of Krawtchouk polynomials to deduce the
relationship between the generalized wordlength pattern and the interaction unbalance
pattern [see MacWilliams & Sloane (1977) for details].

Lemma 1. The Krawtchouk polynomials Pj(i; m, s) have the following properties:
(i) Pj(0; m, s) =

(
m
j

)
(s− 1)j for 0 ≤ j ≤ m,

(ii) P0(i; m, s) = 1 for 0 ≤ i ≤ m,
(iii)

∑m
j=0 Pj(i; m, s) = smδi,0.

For any a k-subset S of D, let d
(k)
j,l (S) =

∑
w∈I(S) dj,l(w). Obviously, dj,l(D(k)) =

∑
|S|=k,S⊆D d

(k)
j,l (S). It can be seen that the design

⋃
S1⊆S,S1 6=φ I(S1) consists of n rows

justly coming from the saturated design with sk runs, permitting some replicated rows.
Since the Hamming distance between any two different runs in the saturated design with
sk runs is the constant sk−1 [Peterson & Weldon (1972), page 75], Then for j, l = 1, . . . , n,
if dj,l(S) > 0, we have

d
(k)
j,l (S) = sk−1 −

k−1∑

t=1

∑

|S1|=t,S1⊆S

d
(t)
j,l (S1). (12)
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It can be seen that the value d
(k)
j,l (S) depends only on the parameters s, k and dj,l(S), but

not on the choice of set S.
From this deductive formula, we can get the following Lemma 2, which plays an in-

strumental role in establishing the coincidence between the two criteria.

Lemma 2. The values dj,l(D(k)) can be expressed in terms of the Krawtchouk polyno-
mials as follows:

dj,l(D(k)) = s−1

(
m

k

)
(s− 1)k − s−1Pk(x; m, s) for k = 1, . . . , m; j, l = 1, . . . , n,(13)

where x = dj,l(D).

Proof. The formula (13) is now being proved by using the inductive method for k =
1, . . . , m.

Firstly, since dj,l(D(1)) = dj,l(D) = x, and P1(x; m, s) = (s − 1)(m − x) − x = m(s −
1)− sx, the formula (13) can easily be verified to hold for k = 1.

Secondly, from the formula (12), if dj,l(S) > 0 for a two-subset S ⊆ D, then d
(2)
j,l (S) =

s − dj,l(S). So sdj,l(D(2)) = s
∑
|S|=2,S⊆D d

(2)
j,l (S) = s

∑2
y=1

(
x
y

)(
m−x
2−y

)
(s − y) = s(s −

1)x(m− x)− s(s− 2)
(
x
2

)
. Referring to the definition of P2(x;m, s), we can verify that the

formula (13) also holds for k = 2.
Suppose that the formula (13) holds for all 1 ≤ t ≤ k − 1, and that S∗ is a specified

k-subset of D with dj,l(S∗) = y, then combining with the formula (12) and Lemma 1, we
have

sdj,l(D(k)) = s
∑

|S|=k,S⊆D

d
(k)
j,l (S) = s

k∑

y=1

(
x

y

)(
m− x

k − y

)
d

(k)
j,l (S∗)

= s
k∑

y=1

(
x

y

)(
m− x

k − y

)
sk−1 −

k−1∑

t=1

∑

|S1|=t,S1⊆S∗
d

(t)
j,l (S1)




= sk

[(
m

k

)
−

(
m− x

k

)]
−

k∑

y=1

(
x

y

)(
m− x

k − y

) k−1∑

t=1

[(
k

t

)
(s− 1)t − Pt(y; k, s)

]

= sk

[(
m

k

)
−

(
m− x

k

)]

−
k∑

y=1

(
x

y

)(
m− x

k − y

)[
k−1∑

t=1

(
k

t

)
(s− 1)t + Pk(y; k, s) + P0(y; k, s)

]

= sk

[(
m

k

)
−

(
m− x

k

)]
−

k∑

y=1

(
x

y

)(
m− x

k − y

) [
sk − (s− 1)k + Pk(y; k, s)

]

= (s− 1)k

[(
m

k

)
−

(
m− x

k

)]
−

k∑

y=1

(
x

y

)(
m− x

k − y

)
Pk(y; k, s).

Since Pk(y; k, s) =
∑k

i=0(−1)i(s− 1)k−i
(
y
i

)(
k−y
k−i

)
= (−1)y(s− 1)k−y, the above identity
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can further be simplified as

sdj,l(D(k)) = (s− 1)k

[(
m

k

)
−

(
m− x

k

)]
−

k∑

y=1

(
x

y

)(
m− x

k − y

)
(−1)y(s− 1)k−y

= (s− 1)k

(
m

k

)
− Pk(x; m, s).

Thus the formula (13) holds for k, and the proof of this lemma is completed.

Substituting dj,l(D(k)) in Theorem 1 with the formula (13) and Noting that
∑m

i=0 Ei(D) =
n, we have

Bk(D) =
(

m

k

)
(s− 1)kn−1

m∑

x=0

Ex(D)− n−1
m∑

x=0

Ex(D)
[(

m

k

)
(s− 1)k − Pk(x; m, s)

]

= n−1
m∑

x=0

Ex(D)Pk(x;m, s) = E′
k(D) = Ak(D).

Thus we get the following theorem.

Theorem 2. For a symmetrical (n, sm)-design D, the interaction unbalance pattern is
exactly the generalized wordlength pattern, that is, Bk(D) = Ak(D) for all k = 1, . . . ,m,
and so the MIU and GMA criteria coincide with each other.

Remark. It can be concluded that the GMA designs balance the levels of the inter-
actions as equally as possible sequentially from lower orders to higher orders. Therefore,
the interaction balance justification of GMA criterion is established according to the other
different system of parameterization, that is the orthogonal components system.
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