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1. The Problem

We consider the system of linear equations

Ax = b, A ∈ Cn×n nonsingular. (1)

The matrix A satisfies the following:

• Large sparse

•Non-Hermitian: ( A 6= A∗)

• Positive definite (or real positive):
the real part <(x∗Ax) > 0 for any nonzerox ∈ Cn.
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Example 1 A Convection-Diffusion Problem

−ν∆u + q(x, y, z) · Ou = f (x, y, z)

on Ω = (0, 1)×(0, 1)×(0, 1), with zero Dirichlet boundary
condition.

Applying the standard centered difference scheme on a
uniform grid, we obtain (1).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example 2 A Complex Symmetric System

A = H + ıW,

whereH and W are real and symmetric, i.e.,

H = HT , W = WT .

Therefore, A is complex and symmetric.

But A is not Hermitian as

A∗ 6= A.

This kind of linear systems may arise from areas such as
electromagnetics and chemistry.
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Example 3 A Regularized KKT System

A =

(
B E
−E∗ C

)
,

where B ∈ Cm×m and C ∈ C`×` are both symmetric
positive definite matrices.

This kind of linear systems may arise from areas such
as fluid flow(Stokes, Navier-Stokes), mixed FEM or ellip-
tic PDE’s, structural analysis, electrical networks, image
processing,· · · .
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2. Typical Iteration Methods

Classical Splitting Iteration Methods

The splitting

A = M −N ; Mx = Nx + b

leads to the “fundamental” iteration scheme:

Mx(k+1) = Nx(k) + b. (2)

Defining the error and the iteration matrix

e(k) = x∗ − x(k); L = M−1N,

we obtaine(k) → 0 ask →∞ if ρ(L) < 1.
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Typical splittings are:

A = D − (D − A)

— Jacobi splitting
= (D − L)− U

— Gauss-Seidel splitting

=
1

ω
(D − ωL)− 1

ω
[(1− ω)D + ωU ]

— SOR splitting

The resulting iteration methods only converge when
the matrix A is strictly diagonally dominant or
Hermitian positive definite.
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Krylov Subspace Iteration Methods

• Split A into its Hermitian and skew-Hermitian parts
asA = H + S, where

H =
1

2
(A + A∗) and S =

1

2
(A− A∗).

• Transform Ax ≡ (H + S)x = b into

(I + H−1S)x = H−1b or

(I + H−1/2SH−1/2)H1/2x = H−1/2b.

• Apply CG or Lanczos

Then we obtain the generalized CG or Lanczos method.
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Requirements:

H is strongly dominant overS:
‖H−1S‖ or ‖H−1/2SH−1/2‖ is quite small !

In general, we can apply the Krylov subspace methods
(e.g., GMRES, etc.) to the linear system (1).

But now good preconditioners (or splitting matrices) are
usually needed !
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3. Hermitian/skew-Hermitian splitting (HSS)

Any A ∈ Cn×n naturally possesses the splitting

A = H + S,

where

H =
1

2
(A + A∗) and S =

1

2
(A− A∗).

We call this splitting the Hermitian and skew-Hermitian
(HS) splitting (HSS) of the matrix A.

And we will study efficient iterative methods based on
this particular HS splitting for solving the linear system.
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HSS As Preconditioners

•H is dominant:

A = H(I +H−1S), thus A−1 = (I +H−1S)−1H−1.

Replace(I + H−1S)−1 by I −H−1S.
Then (I −H−1S)H−1 is a preconditioner toA.

• S is dominant:
Invert the shifted skew-Hermitian matrix αI + S.
Then employ(I − (S + αI)−1(H − αI))(S + αI)−1 as
a preconditioner to A.

Drawbacks:

•Require either H or S be strongly dominant;

•Need exact inverses ofH or αI + S;

•Need to estimate the optimal parameterα.
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HSS Iteration [B./Golub/Ng SIMAX(2003)]

Given initial guessx(0).
For k = 0, 1, 2, . . . until {x(k)} converges, compute

{
(αI + H)x(k+1

2) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI −H)x(k+1
2) + b,

whereα > 0 is a given parameter.
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Properties of HSS:

• Alternates betweenH and S, analog. to ADI for PDE;

•Converges unconditionally;

•Upper bound of the contraction factor is dependent on
the spectrum ofH, but is independent of the spectrum
of S as well as the eigenvectors ofH, S and A;

•Optimal α for the upper bound of the contraction fac-
tor can be determined by the lower and the upper
eigenvalue bounds ofH.
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Convergence Theorem of HSS

Theorem. A ∈ Cn×n is positive definite,α > 0. Then the
iteration matrix M(α) of HSS is:

M(α) = (αI + S)−1(αI −H)(αI + H)−1(αI − S),

and ρ(M(α)) is bounded by

σ(α) ≡ max
λi∈λ(H)

∣∣∣∣α− λi

α + λi

∣∣∣∣ ,

whereλ(H) is the spectral set ofH.

Therefore,

ρ(M(α)) ≤ σ(α) < 1, ∀α > 0,

i.e., HSS converges unconditionally tox∗ of Ax = b.
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Corollary. Let γmin and γmax be the minimum and the
maximum eigenvalues ofH, resp., andα > 0. Then

α∗ ≡ arg min
α

{
max

γmin≤λ≤γmax

∣∣∣∣α− λ

α + λ

∣∣∣∣} =
√

γminγmax

and

σ(α∗) =

√
γmax −

√
γmin√

γmax +
√

γmin
=

√
κ(H)− 1√
κ(H) + 1

,

whereκ(H) is the spectral condition number ofH.
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Remarks for the Corollary

• The optimal α∗ only minimizes the upper boundσ(α),
not the spectral radius itself;

•When the α∗ is employed, the upper bound of the con-
vergence rate of HSS is about the same as that of CG,
and it does become the same when, in particular,A is
Hermitian;

•When A is normal, HS = SH, and hence,

ρ(M(α)) = σ(α).

The optimal α∗ then minimizes both of these quanti-
ties.
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Application to Model Convection-Diffusion Equation

Consider the 3D convection-diffusion equation:

−(uxx + uyy + uzz) + q(ux + uy + uz) = f

on the unit cubeΩ = [0, 1] × [0, 1] × [0, 1], with constant
coefficientq, and subject to Dirichlet-type boundary con-
ditions.
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For the classical 7-point centered difference scheme with
equidistant step-sizeh = 1

m+1, the coefficient matrix sat-
isfies

A = Tx ⊗ I ⊗ I + I ⊗ Ty ⊗ I + I ⊗ I ⊗ Tz,

where

Tx = tridiag (−1− r, 6,−1 + r),

Ty = tridiag (−1− r, 0,−1 + r),

Tz = tridiag (−1− r, 0,−1 + r),

with r = qh
2 .
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Theorem. If {x(k)} is generated by HSS, then it satisfies

|||x(k+1) − x∗||| ≤ [1− πh +
1

2
π2h2 +O(h3)]

·|||x(k) − x∗|||,

where ||| · ||| is defined by

|||x||| = ‖(αI + S)x‖2.
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4. Normal/Skew-Hermitian Splitting (NSS)

HSS can be extended to theNSS [B./Golub/Ng (2002)]

A = N + So,

where

N : normal, So : skew-Hermitian.

Theorems are similar but choice ofα is more delicate.
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5. Positive-Definite/Skew-Hermitian Splitting(PSS)

Further extension:

A = P + S,

where

P : positive-definite, S : skew-Hermitian.

PSS Iteration Method [B./Golub/Lu/Yin SISC(2005)]

{
(αI + P )x(k+1

2) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI − P )x(k+1
2) + b,

whereα > 0 is given positive constant.
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Convergence Theorem of PSS

Theorem. Let A ∈ Cn×n be a positive definite matrix.
Then the iteration matrix M(α) of PSS is:

M(α) = (αI + S)−1(αI − P )(αI + P )−1(αI − S).

Define

V (α) = (αI − P )(αI + P )−1.

Then ρ(M(α)) is bounded by‖V (α)‖2. Therefore,

ρ(M(α)) ≤ ‖V (α)‖2 < 1, ∀α > 0,

i.e., the PSS converges unconditionally to the exact solu-
tion of (1).
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Choices ofP :

If
A = H + S̃ = (D + LH + L∗H) + S̃,

where LH is the strictly (block) lower triangular matrix
of H, then we can choose

P = D + 2LH and S = L∗H − LH + S̃,

or
P = D + 2L∗H and S = LH − L∗H + S̃.

P is (block) triangular !
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6. Block Triangular/Skew-Hermitian Splitting(BTSS)

Assume thatA is a block matrix, and D, L and U are
its block diagonal, strictly block lower triangular and
strictly block upper triangular parts.

A = T + S,

T = T`, S = S`, ` = 1, 2, 3, 4.
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A = (L + D + U∗) + (U − U∗) ≡ T1 + S1

= (L∗ + D + U) + (L− L∗) ≡ T2 + S2

=

(
L +

1

2
(D + D∗) + U∗

)
+

(
1

2
(D −D∗) + U − U∗

)
≡ T3 + S3

=

(
L∗ +

1

2
(D + D∗) + U

)
+

(
1

2
(D −D∗) + L− L∗

)
≡ T4 + S4

Applying PSS to these splittings we obtain the BTSS iter-
ation methods.
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Properties of BTSS:

•Only need to solve block-triangular linear sub-systems,
rather than to invert a shifted positive-definite ma-
trix as in PSS or shifted Hermitian (normal) positive-
definite matrix as in HSS (NSS);

• The block-triangular linear sub-systems can be solved
recursively;

• The matricesT`, ` = 1, 2, 3, 4, may be much more sparse
than the matricesH and N involved in HSS and NSS.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Specialization to Block 2-by-2 Matrices:

A =

[
W F
E N

]
positive definite,

where

W ∈ Cq×q and N ∈ C(n−q)×(n−q)

are both positive definite.
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A =

[
W 0

E + F ∗ N

]
+

[
0 F

−F ∗ 0

]
≡ T1 + S1

=

[
W E∗ + F
0 N

]
+

[
0 −E∗

E 0

]
≡ T2 + S2
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A =

[ 1
2(W + W ∗) 0

E + F ∗ 1
2(N + N∗)

]
+

[ 1
2(W −W ∗) F

−F ∗ 1
2(N −N∗)

]
≡ T3 + S3

=

[ 1
2(W + W ∗) E∗ + F

0 1
2(N + N∗)

]
+

[ 1
2(W −W ∗) −E∗

E 1
2(N −N∗)

]
≡ T4 + S4.
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The first half-step of BTSS can be easily solved asT is
block triangular.

The second half-step of BTSS requires the solution of lin-
ear systems of the form

αu(k+1) + Fp(k+1) = (αI −W )u(k+1
2) + f,

−F ∗u(k+1) + αp(k+1) = −(E + F ∗)u(k+1
2)

+(αI −N)p(k+1
2) + g.
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When n ≤ 2q, we may first solve the Hermitian positive
definite system of linear equations

(α2I + F ∗F )p(k+1) = −(αE + F ∗W )u(k+1
2)

+α(αI −N)p(k+1
2) + F ∗f + αg,

and then compute

u(k+1) =
1

α

(
−Fp(k+1) + (αI −W )u(k+1

2) + f
)

.
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And when n ≥ 2q, we may first solve the Hermitian pos-
itive definite system of linear equations

(α2I + FF ∗)u(k+1) = (α(αI −W ) + F (E + F ∗))u(k+1
2)

−F (αI −N)p(k+1
2) + αf − Fg,

and then compute

p(k+1) =
1

α

(
F ∗u(k+1) − (E + F ∗)u(k+1

2)

+ (αI −N)p(k+1
2) + g

)
.
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7. Numerical Results

Example A

A ∈ Rn×n is the upwind difference matrix of the 2D
convection-diffusion equation

−(uxx + uyy) + q · exp(x + y)(xux + yuy) = f (x, y)

on the unit squareΩ = [0, 1] × [0, 1], with zero Dirichlet
boundary conditions. The stepsizes along bothx and y
directions are the same, i.e.,h = 1

m+1.
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αexp versusρ(M(αexp)) when q = 1 for Example A

m 8 16 24 32 64

TSS αexp 1.118 0.619 0.424 0.322 0.163

ρ(M(αexp)) 0.723 0.858 0.905 0.929 0.964

HSS αexp 1.054 0.595 0.413 0.316 0.163

ρ(M(αexp)) 0.706 0.837 0.882 0.909 0.953
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IT and CPU when q = 1 for Example A

m 8 16 24 32 64

TSS IT 31 56 83 113 234

CPU 0.009 0.453 4.78 48.095 75.948

HSS IT 24 51 82 108 214

CPU 0.019 0.825 17.954 87.906 115.606

speed-up 2.11 1.82 3.76 1.83 1.52
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The eigenvalue distributions of the HSS iteration matrices when q = 1, and
m = 24 (left) and m = 32 (right)
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αexp versusρ(M(αexp)) whenm = 32 for Example A

q 1 2 3 4 5 6 7 8 9

TSS αexp 0.322 0.379 0.430 0.474 0.512 0.546 0.576 0.605 0.630

ρ(M(αexp)) 0.929 0.921 0.912 0.903 0.895 0.887 0.880 0.874 0.868

HSS αexp 0.316 0.286 0.285 0.298 0.315 0.331 0.346 0.360 0.373

ρ(M(αexp)) 0.909 0.903 0.892 0.882 0.871 0.862 0.853 0.845 0.837
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IT and CPU when m = 32 for Example A

q 1 2 3 4 5 6 7 8 9

TSS IT 113 98 95 91 88 83 79 79 76

CPU 48.095 38.567 39.224 35.889 35.161 18.116 17.741 17.379 16.330

HSS IT 108 106 99 91 82 83 71 72 65

CPU 87.906 91.372 85.389 72.429 37.056 38.673 32.981 31.427 29.013

speed-up 1.83 2.37 2.18 2.02 1.05 2.13 1.86 1.81 1.78



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
 m = 32 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
 m = 32 

The eigenvalue distributions of the HSS iteration matrices when m = 32, and
q = 6 (left) and q = 9 (right)
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IT, CPU and RES for Example A

q 7 8 9
m 32 64 32 64 32 64

αexp 0.5762 0.3072 0.6041 0.3231 0.6303 0.3379
TSS

IT 40 80 38 76 38 73
CPU 0.35 19.96 0.33 19.00 0.32 18.96
IT 201 419 458 309 – –

GMRES(5)
CPU 1.54 65.52 3.51 55.07 – –
RES – – – – 4.32e-2 1.14e-2
IT 144 201 181 309 387 –

GMRES(10)
CPU 0.95 34.80 1.19 55.07 2.58 –
RES – – – – – 8.76e-3
IT 151 178 161 309 200 346

GMRES(15)
CPU 0.97 22.47 1.03 55.07 1.25 62.57
RES – – – – – –
IT 120 163 178 231 179 218

GMRES(20)
CPU 0.72 20.21 1.08 37.83 1.10 34.48
IT 50 85 53 82 60 86

BiCGSTAB
CPU 0.54 27.34 0.57 26.67 0.65 25.11
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IT and CPU when q = 7 for Example A

Preconditioners
Methods m TSS ILU UGS

IT CPU IT CPU IT CPU
32 24 0.18 39 1.78 561 3.45GMRES(5)
64 28 3.66 140 96.70 362 142.74
32 22 0.12 27 1.59 410 2.41GMRES(10)
64 28 3.15 100 23.34 335 112.81
32 23 0.12 25 0.91 263 1.38GMRES(15)
64 28 2.90 58 32.31 391 123.82
32 20 0.09 19 0.65 189 0.97GMRES(20)
64 26 2.73 55 29.73 280 84.91
32 14 0.12 21 1.22 101 0.92BiCGSTAB
64 15 2.83 51 11.47 151 87.80
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Example B

A =

[
W FΩ

−FT N

]
,

where

W ∈ Rq×q and N, Ω ∈ R(n−q)×(n−q),
with 2q > n.
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The matrices W = (wk,j), N = (nk,j), F = (fk,j) and
Ω = diag(ω1, . . . , ωn−q) are:

wk,j =

 k + 1, for j = k,
1, for |k − j| = 1,
0, otherwise,

nk,j =

 k + 1, for j = k,
1, for |k − j| = 1,
0, otherwise,

fk,j =

{
j, for k = j + 2q − n,
0, otherwise,

ωk =
1

k
.
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The eigenvalue distributions of the HSS iteration matrices when n = 400 (left)
and n = 800 (right)
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αexp and ρ(M(αexp)) for Example B

n 100 200 400 800 1600

BTSS αexp 4.865 6.874 9.713 13.733 19.418

ρ(M(αexp)) 0.901 0.929 0.949 0.964 0.974

HSS αexp 4.476 6.351 8.999 12.736 18.018

ρ(M(αexp)) 0.896 0.924 0.946 0.961 0.972



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

IT and CPU for Example B

n 100 200 400 800 1600

BTSS IT 66 101 145 210 293

CPU 0.064 0.402 2.991 39.869 208.375

HSS IT 70 97 134 192 269

CPU 0.133 0.967 6.635 69.744 394.706

speed-up 2.08 2.41 2.22 1.75 1.89
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8. Concluding Remarks

•We have established a series of unconditionally con-
vergent splitting iteration methods, which present new
solvers for non-Hermitian and positive definite linear
systems

• The splitting iteration methods provide convergent
smoothers for multigrid methods for non-Hermitian
and positive definite linear systems

•Choice of the optimal iteration parameter α and ef-
ficient method for the shifted skew-Hermitian sub-
system need in-depth study
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Thank you!


	Introduction
	typiterations
	HSS
	NSS
	PSS
	BTSS
	Results
	Remarks

